Department of Mathematics and Statistics Fourier analysis Exercise 7 Nov. 9, 2015

1. Find an example of a function $g \in L^2(\mathbb{R})$, such that $\widehat{g} \in L^1(\mathbb{R})$ but $g \notin L^1(\mathbb{R})$.

2. Suppose $K_t : \mathbb{R}^d \to \mathbb{C}$ are measurable functions such that, for all t > 0 $\int_{\mathbb{R}^d} K_t(x) dx = 1$ and $\int_{\mathbb{R}^d} |K_t(x)| dx \leq C_0$, and that $\forall \delta > 0$,

$$\int_{|x|>\delta} |K_t(x)| dx \to 0 \quad \text{as} \quad t \to 0$$

(in this case we say $\{K_t\}_{t>0}$ is a family of good kernels in \mathbb{R}^d , cf. notes p. 21).

Let $f \in L^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$. Show that

- (i) If f is continuous at the point $x_0 \in \mathbb{R}^d$, then $(K_t * f)(x_0) \to f(x_0)$ as $t \to 0$.
- (*ii*) For all $\xi \in \mathbb{R}^d$ we have $(\widehat{K_t * f})(\xi) \to \widehat{f}(\xi)$ as $t \to 0$.
- 3. Suppose $\alpha \in \mathbb{N}^d$ is a multi-index. Show that if $f \in \mathcal{S}(\mathbb{R}^d)$, then (i) $x^{\alpha}f(x) \in \mathcal{S}(\mathbb{R}^d)$ and $\partial^{\alpha}f(x) \in \mathcal{S}(\mathbb{R}^d)$, (ii) $f \in L^p(\mathbb{R}^d)$, $1 \le p \le \infty$, (iii) $\widehat{f} \in C^{\infty}(\mathbb{R}^d)$, and $\partial^{\alpha}\widehat{f}(\xi) = \left((-ix)^{\alpha}f(x)\right)^{\gamma}(\xi)$ (iv) $(\partial^{\alpha}f)^{\gamma}(\xi) = (i\xi)^{\alpha}\widehat{f}(\xi)$. Above $i^{\alpha} := i^{|\alpha|}$.
- 4. (i) If $f(x) = e^{-|x|^2}$, for $x \in \mathbb{R}^d$, show that $f \in \mathcal{S}(\mathbb{R}^d)$. (ii) If $f \in \mathcal{S}(\mathbb{R}^d)$, show that $\widehat{f} \in \mathcal{S}(\mathbb{R}^d)$.

5. Suppose the Fourier transform of a function $f \in L^1(\mathbb{R})$ satisfies the condition

$$|\widehat{f}(\xi)| \le \frac{C}{(1+|\xi|)^{1+a}}, \qquad \xi \in \mathbb{R},$$

for some constants 0 < a < 1 and $C < \infty$. Show that then $f \in Lip_a(\mathbb{R})$, that is,

$$|f(x+h) - f(x)| \le M |h|^a, \qquad x \in \mathbb{R}, \quad h \in \mathbb{R}.$$

[Hint: The formula for the inverse Fourier transform, when $f, \hat{f} \in L^1(\mathbb{R})$, might be useful.]