Department of Mathematics and Statistics
 Fourier analysis
 Exercise 7
 Nov. 9, 2015

1. Find an example of a function $g \in L^{2}(\mathbb{R})$, such that $\widehat{g} \in L^{1}(\mathbb{R})$ but $g \notin L^{1}(\mathbb{R})$.
2. Suppose $K_{t}: \mathbb{R}^{d} \rightarrow \mathbb{C}$ are measurable functions such that, for all $t>0$ $\int_{\mathbb{R}^{d}} K_{t}(x) d x=1$ and $\int_{\mathbb{R}^{d}}\left|K_{t}(x)\right| d x \leq C_{0}$, and that $\forall \delta>0$,

$$
\int_{|x|>\delta}\left|K_{t}(x)\right| d x \rightarrow 0 \quad \text { as } \quad t \rightarrow 0
$$

(in this case we say $\left\{K_{t}\right\}_{t>0}$ is a family of good kernels in \mathbb{R}^{d}, cf. notes p. 21).
Let $f \in L^{\infty}\left(\mathbb{R}^{d}\right) \cap L^{1}\left(\mathbb{R}^{d}\right)$. Show that
(i) If f is continuous at the point $x_{0} \in \mathbb{R}^{d}$, then $\left(K_{t} * f\right)\left(x_{0}\right) \rightarrow f\left(x_{0}\right)$ as $t \rightarrow 0$.
(ii) For all $\xi \in \mathbb{R}^{d}$ we have $\left(\widehat{K_{t} * f}\right)(\xi) \rightarrow \widehat{f}(\xi)$ as $t \rightarrow 0$.
3. Suppose $\alpha \in \mathbb{N}^{d}$ is a multi-index. Show that if $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, then
(i) $\quad x^{\alpha} f(x) \in \mathcal{S}\left(\mathbb{R}^{d}\right) \quad$ and $\quad \partial^{\alpha} f(x) \in \mathcal{S}\left(\mathbb{R}^{d}\right)$,
(ii) $f \in L^{p}\left(\mathbb{R}^{d}\right), \quad 1 \leq p \leq \infty$,
(iii) $\quad \widehat{f} \in C^{\infty}\left(\mathbb{R}^{d}\right)$, and $\quad \partial^{\alpha} \widehat{f}(\xi)=\left((-i x)^{\alpha} f(x)\right) \wedge(\xi)$
(iv) $\quad\left(\partial^{\alpha} f\right)^{\wedge}(\xi)=(i \xi)^{\alpha} \widehat{f}(\xi)$.

Above $i^{\alpha}:=i^{|\alpha|}$.
4. (i) If $f(x)=e^{-|x|^{2}}$, for $x \in \mathbb{R}^{d}$, show that $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(ii) If $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, show that $\widehat{f} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
5. Suppose the Fourier transform of a function $f \in L^{1}(\mathbb{R})$ satisfies the condition

$$
|\widehat{f}(\xi)| \leq \frac{C}{(1+|\xi|)^{1+a}}, \quad \xi \in \mathbb{R}
$$

for some constants $0<a<1$ and $C<\infty$. Show that then $f \in \operatorname{Lip}_{a}(\mathbb{R})$, that is,

$$
|f(x+h)-f(x)| \leq M|h|^{a}, \quad x \in \mathbb{R}, \quad h \in \mathbb{R} .
$$

[Hint: The formula for the inverse Fourier transform, when $f, \widehat{f} \in L^{1}(\mathbb{R})$, might be useful.]

