Department of Mathematics and Statistics Fourier analysis
 Exercise 6
 Nov. 2, 2015

1. Show that the periodic heat kernel $H_{t}(x):=\sum_{n=-\infty}^{\infty} e^{-n^{2} t} e^{i n x}$ and the Dirichlet heat kernel $K_{t}(x, y):=\sum_{n=1}^{\infty} e^{-n^{2} t} \sin (n y) \sin (n x)$ are connected by the following relation:

$$
\left(H_{t} * f\right)(x)=\frac{2}{\pi} \int_{0}^{\pi} K_{t}(x, y) f(y) d y
$$

for every odd function $f \in L^{2}(-\pi, \pi)$ and for every $x \in[0, \pi]$.
2. Consider the function in \mathbb{R}^{1} defined by $f(x):=e^{-k|x|}$ (where $k>0$). Show that its Fourier transform $\widehat{f}(\xi)=\int_{-\infty}^{\infty} e^{-i \xi x} f(x) d x$ is given by

$$
\widehat{f}(\xi)=\frac{2 k}{k^{2}+\xi^{2}}, \quad \xi \in \mathbb{R}
$$

3. (i) Suppose that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{C}$ has the form

$$
f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right), \quad \forall x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2},
$$

where $f_{1}, f_{2} \in L^{1}\left(\mathbb{R}^{1}\right)$. Show that then $f \in L^{1}\left(\mathbb{R}^{2}\right)$ and we have

$$
\widehat{f}\left(\xi_{1}, \xi_{2}\right)=\widehat{f}_{1}\left(\xi_{1}\right) \widehat{f}\left(\xi_{2}\right) \quad \forall \xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}
$$

(ii) If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $g(x)=\overline{f(-x)}$, show that $\widehat{g}(\xi) \equiv \overline{\hat{f}(\xi)}$.
(ii) If $f \in L^{1}\left(\mathbb{R}^{d}\right)$ and $g(x)=\frac{1}{t^{d}} f\left(\frac{x}{t}\right), t>0$, show that $\widehat{g}(\xi) \equiv \widehat{f}(t \xi)$.
4. If $f \in L^{2}(0, \pi)$ and $A_{n}(f):=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (n x) d x, n \geq 1$, show that

$$
\int_{0}^{\pi}\left|f(x)-\sum_{n=1}^{N} A_{n}(f) \sin (n x)\right|^{2} d x \rightarrow 0
$$

and that

$$
\frac{2}{\pi} \int_{0}^{\pi}|f(x)|^{2} d x=\sum_{n=1}^{\infty}\left|A_{n}(f)\right|^{2}
$$

[Hint: Extend f to $[-\pi, \pi]$ by a reflection, i.e. set $f(-x)=-f(x)$, and
express in terms of a sine-series the partial Fourier sums $S_{N} f$ of the extension.]
5. (i) Determine the Fourier transform of the characteristic function $\chi_{[-a, a]}$ of the interval $[-a, a]$.
(that is, $\chi_{[-a, a]}(x)=1$, if $|x| \leq a$ and $\chi_{[-a, a]}(x)=0$ if $|x|>a$.)
(ii) Show that $\widehat{f} \notin L^{1}(\mathbb{R})$. Is $\widehat{f} \in L^{2}(\mathbb{R})$?
(iii) More generally, determine the Fourier transform of the characteristic function of the cube $[-a, a]^{d}$.

