Department of Mathematics and Statistics Fourier analysis Exercise 5 Oct. 12, 2015

1. (a) Show that if $f_n \to f$ and $g_n \to g$ in $L^2(-\pi, \pi)$ (i.e. converging in the L^2 -norm), then

$$(f_n, g_n)_{L^2} \to (f, g)_{L^2}$$
 as $n \to \infty$.

(b) Prove the Pythagorean theorem in $L^2(-\pi,\pi)$, that is, show that

$$||f+g||_{L^2}^2 = ||f||_{L^2}^2 + ||g||_{L^2}^2$$
 if $f \perp g$ and $f, g \in L^2(-\pi, \pi)$.

2. Suppose $f \in C^1_{\#}(-\pi,\pi)$. Show that the Fourier series of f converges absolutely, i.e. we have $\sum |\widehat{f}(n)| < \infty$.

[Hint: Determine $\widehat{f}(n)$ in terms of $\widehat{f}'(n)$, and recall that the Cauchy-Schwarz inequality holds for the inner product $(a,b)_{\ell^2} = \sum_{k=-\infty}^{\infty} a_k \overline{b_k}$ in the space ℓ^2 , see Lecture notes p. 58 (the C-S holds in every inner product space).]

3. Suppose $f \in C^1[0,\pi]$ with $f(0) = 0 = f(\pi)$. Prove Wirtinger's inequality,

(*)
$$\int_0^{\pi} |f(x)|^2 dx \le \int_0^{\pi} |f'(x)|^2 dx$$

Show also that the equality holds in (*) for some functions $f \neq 0$. Can you identify these ?

[Hint: Extend f as an odd function to the interval $[-\pi, \pi]$ and represent the functions as a Fourier series.]

4. Determine the Fourier series of the 2π -periodic function f defined by f(x) = 1 for |x| < 1 and f(x) = 0 when $x \in [-\pi, \pi] \setminus [-1, 1]$.

Use the series and Plancherel's formula, or Thm. 6.5 in Lecture notes, to calculate the sum $\sum_{n=1}^{\infty} \frac{\sin^2(n)}{n^2}$.

5. Suppose the Fourier series of a function $g \in C_{\#}(-\pi, \pi)$ is a lacunary series of the form

$$\sum_{k=-\infty}^{\infty} a_k e^{i2^{|k|}x}.$$

Show that then the partial Fourier sums are uniformly bounded, i.e. $|S_n g(x)| \leq C$ for some constant $C < \infty$ and for all $n \in \mathbb{N}$.