Department of Mathematics and Statistics Fourier analysis
 Exercise 5
 Oct. 12, 2015

1. (a) Show that if $f_{n} \rightarrow f$ and $g_{n} \rightarrow g$ in $L^{2}(-\pi, \pi) \quad$ (i.e. converging in the L^{2}-norm), then

$$
\left(f_{n}, g_{n}\right)_{L^{2}} \rightarrow(f, g)_{L^{2}} \quad \text { as } n \rightarrow \infty .
$$

(b) Prove the Pythagorean theorem in $L^{2}(-\pi, \pi)$, that is, show that

$$
\|f+g\|_{L^{2}}^{2}=\|f\|_{L^{2}}^{2}+\|g\|_{L^{2}}^{2} \quad \text { if } \quad f \perp g \quad \text { and } \quad f, g \in L^{2}(-\pi, \pi) .
$$

2. Suppose $f \in C_{\#}^{1}(-\pi, \pi)$. Show that the Fourier series of f converges absolutely, i.e. we have $\sum|\widehat{f}(n)|<\infty$.
[Hint: Determine $\widehat{f}(n)$ in terms of $\widehat{f}^{\prime}(n)$, and recall that the Cauchy-Schwarz inequality holds for the inner product $(a, b)_{\ell^{2}}=\sum_{k=-\infty}^{\infty} a_{k} \overline{b_{k}}$ in the space ℓ^{2}, see Lecture notes p. 58 (the C-S holds in every inner product space).]
3. Suppose $f \in C^{1}[0, \pi]$ with $f(0)=0=f(\pi)$. Prove Wirtinger's inequality,
(*) $\quad \int_{0}^{\pi}|f(x)|^{2} d x \leq \int_{0}^{\pi}\left|f^{\prime}(x)\right|^{2} d x$.
Show also that the equality holds in $(*)$ for some functions $f \neq 0$. Can you identify these?
[Hint: Extend f as an odd function to the interval $[-\pi, \pi]$ and represent the functions as a Fourier series.]
4. Determine the Fourier series of the 2π-periodic function f defined by $f(x)=1$ for $|x|<1$ and $f(x)=0$ when $x \in[-\pi, \pi] \backslash[-1,1]$.

Use the series and Plancherel's formula, or Thm. 6.5 in Lecture notes, to calculate the sum $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{n^{2}}$.
5. Suppose the Fourier series of a function $g \in C_{\#}(-\pi, \pi)$ is a lacunary series of the form

$$
\sum_{k=-\infty}^{\infty} a_{k} e^{i 2^{|k|} x}
$$

Show that then the partial Fourier sums are uniformly bounded, i.e. $\left|S_{n} g(x)\right| \leq$ C for some constant $C<\infty$ and for all $n \in \mathbb{N}$.

