Department of Mathematics and Statistics Fourier analysis
 Exercise 4

Oct. 5, 2015

1. Suppose f is the 2π-periodic function given by $f(x)=\operatorname{sgn}(x)=x /|x|$ when $x \in(-\pi, \pi) \backslash\{0\}$, and $f(0)=f(\pm \pi)=0$. Determine the Fourier series of f and show that for $N \geq 1$ an odd integer, you can write the partial series in the form

$$
S_{N} f(x)=\frac{4}{\pi} \sum_{k=0}^{(N-1) / 2} \frac{\sin ((2 k+1) x)}{2 k+1} .
$$

2. Suppose the sequence $\left(x_{n}\right)_{n=1}^{\infty}$ is equidistributed $(\bmod 1)$ and $a \in \mathbb{Z} \backslash\{0\}$. Show that then also the sequence $\left(a x_{n}\right)_{n=1}^{\infty}$ is equidistributed $(\bmod 1)$.

Does the result hold when $\alpha \notin \mathbb{Q}$?
3. Use the Dirichlet kernel $D_{N}(x)=\frac{\sin \left[\left(N+\frac{1}{2}\right) x\right]}{\sin \frac{2}{2}}$ and the integral $\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{N}(x) d x=1$ to show that

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x:=\lim _{M \rightarrow \infty} \int_{0}^{M} \frac{\sin x}{x} d x=\frac{\pi}{2} .
$$

[Hint: Show that the function $g(x)=\frac{1}{\sin \frac{x}{2}}-\frac{2}{x}$ is continuous on the interval $[-\pi, \pi]$, and use the Riemann-Lebesgue Lemma.]
4. Show that the sequence $(<a \log n>)_{n=1}^{\infty}$ is not equidistributed $(\bmod 1)$ for any $a \in \mathbb{R}$.
[Hint: Apply Weyl's criterium and compare the sum $\sum_{n=1}^{N} e^{2 \pi i a \log n}$ with the corresponding integral.]
5. Suppose f is the function of Problem 1. Show that

$$
\lim _{N \rightarrow \infty} S_{N} f\left(\frac{\pi}{N}\right)=\frac{2}{\pi} \int_{0}^{\pi} \frac{\sin (x)}{x} d x=: G_{0}
$$

and that $G_{0}>1$. This proves the Gibbs phenomenon for the function f, c.f. the pictures on the next page.
[Hint: In " > " make use Problem 3.]

