Department of Mathematics and Statistics
 Fourier analysis

Exercise 3
Sept. 21, 2015
[Note: There will be no exercises on Sept. 28; next exercises Oct.5]

1. Suppose $f(x)$ and $g(x)$ are 2π-periodic functions with $f, g \in L^{1}[-\pi, \pi]$. Show that if either $f \in C_{\#}(-\pi, \pi)$ or $g \in C_{\#}(-\pi, \pi)$, then the convolution $f * g \in C_{\#}(-\pi, \pi)$.

Prove that the claim holds also when $C_{\#}(-\pi, \pi)$ is replaced by $C_{\#}^{1}(-\pi, \pi)$.
2. a) If a series $\sum_{n=0}^{\infty} a_{n}$ converges, show that it converges also in the Cesàro sense.
b) Suppose $f: \mathbb{R} \rightarrow \mathbb{C}$ is continuous and 2π-periodic. If the Fourier series of f converges at $x_{0} \in[-\pi, \pi]$, that is, if

$$
\exists \lim _{N \rightarrow \infty} S_{N} f\left(x_{0}\right)=a \in \mathbb{C},
$$

show that the limit must necessarily be the value of f at x_{0}, i.e. we have $a=f\left(x_{0}\right)$.
3. Show that the Fourier coefficients of the Fejer kernel are given by

$$
\widehat{F_{N}}(k)=\left(1-\frac{|k|}{N}\right), \quad \text { when }|k| \leq N
$$

while $\widehat{F_{N}}(k)=0$ when $|k| \geq N$.
4. a) Show that for every 2π-periodic function $f \in L^{1}[-\pi, \pi]$ we have

$$
\widehat{f}(n)=\frac{1}{4 \pi} \int_{0}^{2 \pi} e^{-i n x}(f(x)-f(x+\pi / n)) d x
$$

b) If $f \in C_{\#}(-\pi, \pi)$ is Hölder-continuous with exponent $\alpha \in(0,1]$, show that

$$
|\widehat{f}(n)| \leq C|n|^{-\alpha}, \quad \text { for }|n| \geq 1
$$

5. Prove Corollary 4.8; that is, show that if a 2π-periodic function $f(x)$ is piecewise C^{1}, then its Fourier series converges at every point, and

$$
\lim _{N \rightarrow \infty} S_{N} f(x)=\lim _{t \rightarrow 0} \frac{f(x+t)+f(x-t)}{2}, \quad x \in[-\pi, \pi] .
$$

