Department of Mathematics and Statistics Fourier analysis Exercise 2 Sept. 14, 2015

1. Which of the following families $\{K_n\}_{n=1}^{\infty}$ of 2π -periodic functions is a family of *good kernels*, which not:

i)
$$K_n(x) = 2\pi n \max\{0, 1-n|x|\},$$
 ii) $K_n(x) = \frac{\sin(nx)}{x^2},$ *iii*) $K_n(x) = (n+1)\left(1 - \frac{|x|}{\pi}\right)^n.$

The kernels $K_n(x)$ above are all defined on the interval $x \in [-\pi, \pi]$.

2. Let f(x) and g(x) be 2π -periodic functions such that $f, g \in L^1[-\pi, \pi]$. Show that the Fourier coefficients of the convolution f * g are given by

$$(\widehat{f * g})(n) = \widehat{f}(n) \,\widehat{g}(n), \quad n \in \mathbb{N}.$$

[Hint: You may use e.g. Fubini's theorem]

3. Consider the function $f : [-\pi, \pi] \to \mathbb{R}$ defined by $f(x) = \cos(x/2)$. Determine the Fourier coefficients of f. Does the corresponding Fourier series converge at every point? If yes, what is the identity you find when evaluating the series at x = 0?

4. Show that the Dirichlet kernels satisfy the following identity,

$$\sum_{k=0}^{N-1} D_k(x) = \left(\frac{\sin(Nx/2)}{\sin(x/2)}\right)^2, \qquad N \in \mathbb{N}.$$

[Hint: Show that $(e^{ix/2} - e^{-ix/2})D_k(x) = e^{ix/2}e^{ikx} - e^{-ix/2}e^{-ikx}, k \in \mathbb{N}$, using identities from lectures. Sum this over indices $k = 0, 1, \ldots, N - 1$.]

5. From lectures we know that the Fourier coefficients $\widehat{f}(n)$ of a function $f \in C_{\#}^{(k)}$ decay to zero with the speed $|n|^{-k}$ as $n \to \infty$.

Show that a converse result holds in the following sense: If f is continuous on the interval $[-\pi, \pi]$ and for every $k \in \mathbb{N}$ there is a constant $C = C_k$ for which

$$|\widehat{f}(n)| \le C_k (1+|n|)^{-k}, \quad n \in \mathbb{Z},$$

$$\pi := O^{\infty} C^{(k)} (-\pi, \pi)$$

then $f \in C^{\infty}_{\#}(-\pi,\pi) := \bigcap_{k=1}^{\infty} C^{(k)}_{\#}(-\pi,\pi).$

[Hint: Show that you can derivate the Fourier series]