Department of Mathematics and Statistics Fourier analysis
 Exercise 12 (Voluntary)
 Dec. 14, 2015

1. (i) Show that $\left\langle\mathcal{F}^{-1} T, g\right\rangle=\left\langle T, \mathcal{F}^{-1} g\right\rangle$ for all $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and $g \in \mathcal{S}\left(\mathbb{R}^{d}\right)$.
(ii) If $T:=p \cdot v \cdot \frac{1}{i \xi}$, show that $i \xi T=1$, as elements of $\mathcal{S}^{\prime}(\mathbb{R})$.
2. Define the principal value p.v. $\frac{1}{x^{2}}$ as a distribution in $\mathcal{S}^{\prime}(\mathbb{R})$, by setting

$$
\left\langle p \cdot v \cdot \frac{1}{x^{2}}, g\right\rangle:=\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R} \backslash(-\varepsilon, \varepsilon)} \frac{g(x)-g(0)}{x^{2}} d x, \quad \text { when } \quad g \in \mathcal{S}(\mathbb{R}) \text {. }
$$

Show that this is indeed a tempered distribution.
3. If $T=p \cdot v \cdot \frac{1}{x}$ interpreted as a distribution, c.f. Lectures, show that the (distributional) derivative of T is $-p \cdot v \cdot \frac{1}{x^{2}}$, the distribution defined in Problem 2 multiplied by -1 .
What is the Fourier transform of $p \cdot v \cdot \frac{1}{x^{2}}$?
4. Let $A=\{(x, y): x>0, y>0\} \cup\{(x, y): x<0, y<0\} \subset \mathbb{R}^{2}$.

Show that the characteristic function χ_{A} is a fundamental solution (perusratkaisu) for the differential operator $P_{1}(\partial)=\frac{1}{2} \partial_{1} \partial_{2}$.
5. Let $B=\{(x, y): y>|x|\} \cup\{(x, y): y<-|x|\} \subset \mathbb{R}^{2} ;$ sketch a picture.

Show that $\frac{-1}{4} \chi_{B}$ is a fundamental solution for the wave operator

$$
P_{2}(\partial)=\partial_{1}^{2}-\partial_{2}^{2} .
$$

[Hint: Determine $P_{2}(\partial) g$ for the function $g(x, y)=h(x+y, y-x)$ and change variables.]

Additional Review Problems

6. i) Let $f \in L^{1}(\mathbb{R})$. If $|\xi| \widehat{f}(\xi) \in L^{1}(\mathbb{R})$, show that

$$
f \in C^{1}(\mathbb{R})
$$

ii) if $f=\chi_{[-1,1]} * \chi_{[-1,1]} * \cdots * \chi_{[-1,1]}$, where f is the convolution of $(n+2)$ characteristic functions, $n \geq 0$, show that

$$
f \in C^{(n)}(\mathbb{R})
$$

7. Let $\phi(x)=e^{i a x}-e^{i b x}, x \in \mathbb{R}$, where $a, b \in \mathbb{R}$ are constants. From the lectures we know how to multiply a tempered distribution by ϕ. Show that

$$
T:=\phi(x) p \cdot v \cdot \frac{1}{x} \in C_{0}(\mathbb{R})
$$

In other words, show that $T=T_{f}$ for some function $f \in C_{0}(\mathbb{R})$. Determine the function f.
8. If $a, b \in \mathbb{R}$ with $0<b<1<a$ and $a b>1$, recall the Weierstrass functions

$$
f(x)=\sum_{n=1}^{\infty} b^{n} e^{i a^{n} x}, \quad x \in \mathbb{R}
$$

Then $f \in \mathcal{S}^{\prime}(\mathbb{R})$ (why). Show that the distributional derivate of this function is

$$
f^{\prime}=\sum_{n=1}^{\infty} i a^{n} b^{n} e^{i a^{n} x}
$$

where the sum converges in $\mathcal{S}^{\prime}(\mathbb{R})$.
[Although the function is nowhere differentiable, in the classical sense !]

