Department of Mathematics and Statistics Fourier analysis
 Exercise 11
 Dec. 7, 2015

1. Is the function $f(x)=x \sin (x)$ the Fourier transform of some distribution $T \in \mathcal{S}^{\prime}(\mathbb{R})$? If it is, determine T.
2. (i) Suppose $A: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is an invertible linear map (we denote by A also its matrix). If $f \in L^{1}\left(\mathbb{R}^{d}\right)$, define $g(x)=f(A x)$. Show that

$$
\widehat{g}(\xi)=\frac{1}{|\operatorname{det}(A)|} \widehat{f}\left(\left(A^{-1}\right)^{T} \xi\right)
$$

where $\left(A^{-1}\right)^{T}$ is the transpose of the inverse of A.
(ii) A function $f \in L^{1}\left(\mathbb{R}^{d}\right)$ is radial if $f(x)$ depends only on $|x|$. Use (i) to show that for a radial function, the Fourier transform is radial.
(iii) Show that the result in (ii) holds also for every radial $f \in L^{2}\left(\mathbb{R}^{d}\right)$.
3. Show that $f(x)=\log |x| \in \mathcal{S}^{\prime}(\mathbb{R})$ and that the distributional derivative of f is

$$
\frac{d}{d x}(\log |x|)=\text { p.v. } \frac{1}{x}
$$

4. Use the Poisson summation formula to prove

$$
\sum_{n \in \mathbb{Z}} \frac{1}{1+n^{2}}=\pi \frac{1+e^{-2 \pi}}{1-e^{-2 \pi}}
$$

[Hint: Recall the Fourier transform of $f(x)=e^{-|x|}$.]
5. (i) If $0<\gamma<d$, show that the function

$$
f_{\gamma}(x)=\frac{1}{|x|^{\gamma}}, \quad x \in \mathbb{R}^{d} \backslash\{0\}
$$

determines a tempered distribution, by writing it as a sum of two functions, one belonging to $L^{1}\left(\mathbb{R}^{d}\right)$ and the other to $L^{p}\left(\mathbb{R}^{d}\right)$ for a suitable $p>1$. If $\gamma>d / 2$, show that one can choose $p=2$.
(ii) Prove that

$$
\widehat{f}_{\gamma}(\xi)=c(d, \gamma) \frac{1}{|x|^{d-\gamma}}
$$

for some constant $c(d, \gamma)$.
[Hints: Consider first the case $\gamma>d / 2$ and use (i) to show \widehat{f}_{γ} is a function. Apply Problem 2 together with the scaling property $f_{\gamma}(t x)=t^{-\gamma} f_{\gamma}(x)$.
The case $\gamma<d / 2$ follows by inverse transform, and case $\gamma=d / 2$ by a limiting argument.]

