Department of Mathematics and Statistics Fourier analysis
 Exercise 10
 Nov. 30, 2015

1. (i) If $f_{0}(x)=|x|, x \in \mathbb{R}$, show that $f_{0} \in \mathcal{S}^{\prime}(\mathbb{R})$.
(ii) Calculate the (distributional) derivatives f_{0}^{\prime}, $f_{0}^{\prime \prime}$. What is $x^{2} f_{0}^{(4)}$?
2. Given $a \in \mathbb{R}^{d}$, let the distribution $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ be given by

$$
T(g)=\int_{-1}^{1} g(t a) d t
$$

(c.f. Exercises 9). Show that the distributional derivative $\sum_{j=1}^{d} a_{j} \partial_{j} T$ can be expressed a sum of suitable δ-functions.
3. (i) Does $|a| \delta_{a} \rightarrow 0$ converge in $\mathcal{S}^{\prime}(\mathbb{R})$, when $a \rightarrow \infty$? If yes, what is the limit?
(ii) If $f_{\varepsilon}(x)=e^{-\varepsilon|x|}, x \in \mathbb{R}$, show that $\widehat{f}_{\varepsilon}(\xi)=\frac{2 \varepsilon}{\varepsilon^{2}+\xi^{2}}$. Find the distribution $T \in \mathcal{S}^{\prime}(\mathbb{R})$ for which $f_{\varepsilon} \rightarrow T$ in \mathcal{S}^{\prime} as $\varepsilon \rightarrow 0$. What can you say of the Fourier transform of the limit distribution T ? Can you show directly that $\widehat{f}_{\varepsilon} \rightarrow \widehat{T}$ in $\mathcal{S}^{\prime} ?$
4. Suppose that $\phi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ and that for every $\alpha \in \mathbb{N}$ we can find constants $C, M<\infty$ such that $\left|\partial^{\alpha} \phi(x)\right| \leq C\left(1+|x|^{2}\right)^{M}, x \in \mathbb{R}^{d}$. Show that

$$
g \mapsto \phi g
$$

is a continuous map from $\mathcal{S}\left(\mathbb{R}^{d}\right)$ onto itself, and that $\phi T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ whenever $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$.
5. (i) Let $g \in \mathcal{S}(\mathbb{R})$ and write $g_{\varepsilon}(x):=\varepsilon^{-1}(g(x+\varepsilon)-g(x))$. Show that $g_{\varepsilon}(x) \rightarrow g^{\prime}(x)$ in the metric of $\mathcal{S}(\mathbb{R})$ as $\varepsilon \rightarrow 0$.
(ii) Using the above, show that for every $f \in L^{1}(\mathbb{R})$ we have, as $\varepsilon \rightarrow 0$,

$$
\varepsilon^{-1}(f(x+\varepsilon)-f(x)) \rightarrow \frac{d}{d x} f \quad \text { in } \mathcal{S}^{\prime}(\mathbb{R})
$$

where $\frac{d}{d x} f$ is the distributional derivative of f.

