Department of Mathematics and Statistics Fourier analysis Exercise 10 Nov. 30, 2015

- 1. (i) If $f_0(x) = |x|, x \in \mathbb{R}$, show that $f_0 \in \mathcal{S}'(\mathbb{R})$. (ii) Calculate the (distributional) derivatives f'_0, f''_0 . What is $x^2 f_0^{(4)}$?
- 2. Given $a \in \mathbb{R}^d$, let the distribution $T \in \mathcal{S}'(\mathbb{R}^d)$ be given by

$$T(g) = \int_{-1}^{1} g(ta) dt$$

(c.f. Exercises 9). Show that the distributional derivative $\sum_{j=1}^{d} a_j \partial_j T$ can be expressed a sum of suitable δ -functions.

3. (i) Does $|a|\delta_a \to 0$ converge in $\mathcal{S}'(\mathbb{R})$, when $a \to \infty$? If yes, what is the limit?

(ii) If $f_{\varepsilon}(x) = e^{-\varepsilon |x|}$, $x \in \mathbb{R}$, show that $\widehat{f}_{\varepsilon}(\xi) = \frac{2\varepsilon}{\varepsilon^2 + \xi^2}$. Find the distribution $T \in \mathcal{S}'(\mathbb{R})$ for which $f_{\varepsilon} \to T$ in \mathcal{S}' as $\varepsilon \to 0$. What can you say of the Fourier transform of the limit distribution T? Can you show directly that $\widehat{f}_{\varepsilon} \to \widehat{T}$ in \mathcal{S}' ?

4. Suppose that $\phi \in C^{\infty}(\mathbb{R}^d)$ and that for every $\alpha \in \mathbb{N}$ we can find constants $C, M < \infty$ such that $|\partial^{\alpha} \phi(x)| \leq C(1+|x|^2)^M, x \in \mathbb{R}^d$. Show that

 $g\mapsto \phi g$

is a continuous map from $\mathcal{S}(\mathbb{R}^d)$ onto itself, and that $\phi T \in \mathcal{S}'(\mathbb{R}^d)$ whenever $T \in \mathcal{S}'(\mathbb{R}^d)$.

5. (i) Let $g \in \mathcal{S}(\mathbb{R})$ and write $g_{\varepsilon}(x) := \varepsilon^{-1} (g(x + \varepsilon) - g(x))$. Show that $g_{\varepsilon}(x) \to g'(x)$ in the metric of $\mathcal{S}(\mathbb{R})$ as $\varepsilon \to 0$.

(ii) Using the above, show that for every $f \in L^1(\mathbb{R})$ we have, as $\varepsilon \to 0$,

$$\varepsilon^{-1}(f(x+\varepsilon)-f(x)) \to \frac{d}{dx}f \quad \text{in } \mathcal{S}'(\mathbb{R}),$$

where $\frac{d}{dx}f$ is the distributional derivative of f.