Health-illness model revisited

In general, rates $\alpha(t, z), \mu(t, z)$ and $\nu(t, z)$ may depend on calendar time t and age z.

Open cohort

e Consider an open cohort, in which new individuals are born in calendar time with rate $\beta(t)$ (cf. the Lexis diagram)
e How does the population look with respect to the healthy-ill status of individuals at a given time point t ?
e What is the proportion of ill individuals?
e What is the proportion of ill of all those of age z ?
e What is the relation between incidence and prevalence?
e We'll consider the stationary situation in particular

Healthy individuals of age z at time t

e The number of healthy individuals of age $[z, z+d z[$ at time t :

$$
\begin{aligned}
& \beta(t-z) k(t, z) d z \equiv \\
& \beta(t-z) \exp \left(-\int_{0}^{z}(\mu(t-z+u, u)+\alpha(t-z+u, u) d u) d z\right.
\end{aligned}
$$

Ill invidividuals of age z at time t

e The number of ill individuals of age $[z, z+d z[$ at time t, with onset of diseat at age $[y, y+d y[$

$$
\begin{aligned}
& \beta(t-z) h(t, y, z) d y d z \equiv \\
& \beta(t-z) \exp \left(-\int_{0}^{y}(\mu(t-z+u, u)+\alpha(t-z+u, u)) d u\right) \times \\
& \alpha(t-z+y, y) \times \exp \left(-\int_{y}^{z} \nu(t-z+u, u) d u\right) d z
\end{aligned}
$$

e The number of ill individuals of age $[z, z+d z[$ at time t :

$$
\beta(t-z) \int_{0}^{z} h(t, y, z) d y d z
$$

Stationarity

e Assume stationarity in the sense that the rates do not depend on calendar time
e It then follows that at any time t the numbers of healthy and ill of age $[z, z+d z[$ are:
$\beta k(z) d z=\beta \exp \left(-\int_{0}^{z}(\mu(u)+\alpha(u)) d u\right) d z$ (healthy)

$$
\beta \int_{0}^{z} h(y, z) d y d z=\beta \int_{0}^{z} k(y) \alpha(y) \exp \left(-\int_{y}^{z} \nu(u) d u\right) d y d z \text { (ill) }
$$

Distribution of healthy-ill status

e Under stationarity the probability that an individual is healthy and of age $[z, z+d z[$ thus is $\frac{k(z) d z}{C}$
e Likewise, the probability that an individual is ill and of age $[z, z+d z[$ is
$\frac{\int_{0}^{z} h(y, z) d y d z}{C}$
e The normalising constant C is the mean life length (see next slide)

Mean times as healthy and ill

e The normalising constant

$$
C=\int_{0}^{\infty} k(z) d z+\int_{0}^{\infty} \int_{0}^{z} h(y, z) d y d z=M_{H}+M_{I}
$$

where
$M_{H}=$ the mean time spent healthy
$M_{I}=$ the mean time spent ill (see next slide)

Mean time spent ill ${ }_{\text {cont }}$

e The mean time spent ill equals the risk R of ever falling ill times the mean duration D of illness (in those that fall ill):
$M_{I}=\int_{0}^{\infty} \int_{0}^{z} h(y, z) d y d z=\int_{0}^{\infty} \int_{y}^{\infty} h(y, z) d z d y=$ $\int_{0}^{\infty} \int_{y}^{\infty} k(y) \alpha(y) \exp \left(-\int_{y}^{z} \nu(u) d u\right) d z d y=$ $\int_{0}^{\infty} k(y) \alpha(y) \mathbf{E}(X-Y \mid Y=y) d y=$
$R \times \mathrm{E}(X-Y \mid$ the individual falls even ill $) \equiv R \times D$
e Here X is the time of death and Y is the time of falling ill

Age-specific prevalence of ill individuals

e Conditioning on age, we can now write an expression for the proportion of ill individuals of all those of age z :

$$
\frac{\int_{0}^{z} h(y, z) d y}{k(z)+\int_{0}^{z} h(y, z) d y}
$$

Prevalence of ill individuals

e Marginalising, we can write the proportion of ill invividuals in the population as:

$$
\frac{\int_{0}^{\infty} \int_{0}^{z} h(y, z) d y d z}{\int_{0}^{\infty} k(z) d z+\int_{0}^{\infty} \int_{y}^{z} h(y, z) d y d z}=\frac{M_{I}}{M_{H}+M_{I}}
$$

Prevalence and incidence numbers

e The prevalenve number of ill individuals

$$
\beta \int_{0}^{\infty} \int_{y}^{\infty} h(y, z) d z d y=(\beta R) \times D
$$

e The incidence (number) of new cases per time unit:

$$
\beta \int_{0}^{\infty} k(y) \alpha(y) d y=\beta R
$$

e It follows that "prevalence number = incidence number x mean duration"

Prevalence, incidence and mean duratio

e Based on the prevalence of ill individuals (see above),

Prevalence odds of ill individuals $=\frac{M_{I}}{M_{H}}=\frac{R}{M_{H}} \times D$
e If rate α does not depend on age, $R / M_{H}=\alpha$, so "prevalence odds = incidence \times mean duration"

