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Data exploration, model choice and model checking

◮ Exploratory data analysis

◮ Model choice

◮ Goodness-of-fit and model checking

◮ Model expansion through stratification



(1) Exploratory analysis

◮ It is about interrogating your data!

◮ Kaplan-Meier plots of survival function
◮ stratified by different grouping variables (e.g. treatment vs. no

treatment)

◮ Nelson–Aalen plots of cumulative hazards
◮ in particular, when competing risk or multi-state models

◮ Preliminary checking of
◮ parametric assumptions
◮ proportionality assumptions



Exploring parametric assumptions

◮ Compare the non-parametric estimate of the cumulative
hazard against its theoretical form under the asssumed
parametric model

◮ For example, consider two groups (strata) under the Weibull
regression model: log(− log(Ŝ(t))) should be a linear function
of log(t) in both groups (with dummy covariates Z = 0 or
Z = 1):

log(− log(S(t;Z , θ)) = log(Λ(t;Z , θ))

= log((t/α)γ exp(βZ ))

= γ log(t)− γ log(α) + βZ



Example
◮ The log-log plots for the veteran data, stratified by

’treatment’ (red = standard treatment; blue = experimental
treatment). Ref. exercise 4 in practical 2.
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N.B. Under the Weibull model, the slopes should approximate γ
and the distance of the two curves should approximate β (the log
relative rate)



Exploring proportionality

◮ In general, compare non-parametric estimates of the
cumulative hazard across different strata (of a categorical
variable Z )

◮ If the proportional hazards model is appropriate, the curves for
the different groups (strata) should be parallel and their
(vertical) distance correspond to log relative rates

◮ For example, for two groups (Z = 1 or Z = 0):

log(− log(S(t;Z , θ)) = log(Λ(t;Z , θ))
= log(Λ0(t) exp(βZ ))
= log(Λ0(t)) + βZ



Exploring proportionality: example
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(2) Model choice

◮ Nested models can be compared by the likelihood ratio test:

−2 log





sup
θ1

L(θ1, θ2)

sup
θ

L(θ)





∼ χ2
q,

where L is the likelihood of the larger model with
a (p + q)-dimensional parameter vector θ = (θ1, θ2), and
θ2 has dimension q (so q is the difference in the number of

parameters)



Example

◮ The Weibull model reduces to the exponential model by
choosing the shape parameter (γ) as 1

◮ The two models are thus nested. The difference of deviances
has a χ2

1
distribution:
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,

where L is the Weibull likelihood

◮ In R, nested models can (sometimes) be compared with the
anova command from the output objects c1 and c2:
anova(c1,c2).

◮ See exercise 2 in practical 2.



Prediction or explanation?

◮ If the ultimate aim of the analysis is prediction, rather than
explanation, different information criteria for model selection
may be used

◮ Akaike’s Information Criterion (AIC)
◮ AIC = -2*(log-likelihood) + 2*(number of parameters)
◮ penalises models with too many parameters
◮ the smaller, the better the model’s predictive ability
◮ command extractAIC(object) in R



(3) Model checking

◮ Statistical procedures for model selection do not (necessarily)
tell how good the model fits the actual data

◮ So, after fitting a parametric model, the results should be
checked against the observed data

◮ We here give three alternatives
◮ inspection of the fitted survival function or cumulative hazard

against their non-parametric estimates
◮ inspection of fitted residuals
◮ extension of the Cox proportional hazard model



Kaplan-Meier vs. estimated survival
◮ Example: survival in the veteran data (KM vs the estimated

survival under the Weibull model). Ref exercise 1 in practical
2.
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Nelson–Aalen vs. the fitted model

◮ The log-log plot for the standard treatment vs. test treatment
in the veteran data (non-parametric = dashed; estimated =
dot-dashed)
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Extension of the PH model

Allow the relative risk to vary with time. For example, consider

◮ Z1(t) = Z1 and Z2(t) = Z1t. The model is

λ(t;Z1,Z2, θ) = λ0(t) exp(β1Z1 + β2Z2),

where β2 measures the interaction between Z1 and the time.

◮ Note that the relative risk of Z1 = 1 to Z1 = 0 is
exp(β1 + β2t), a smooth function of t.

◮ If β2 > 0 then the relative risk function is increasing and
β2 < 0 then it is decreasing.



Extension of the PH model cont.

◮ β2 = 0 corresponds to the proportional hazards or constant
relative risk model.

◮ This extension can be used to test the proportionality
assumption.



Unit exponentiality

◮ If random variable T has survival function S(t), then
S(T ) ∼ Uniform[0, 1]

and, equivalently,

Λ(T ) = − log(S(T )) ∼ Exp(1)
◮ So, calculate ”residuals”:

r̂i = Λ(ti ; γ̂, α̂,Zi ), i = 1, ...,N

and check if these can be taken to arise from
from the Exp(1) distribution.

◮ If the model is appropriate, Λ̂(ti ) are (appr.) samples from the
exponential distribution with rate 1.



Example
◮ The Kaplan-Meier plot of the Λ-residuals in the veteran data.
◮ The models was Weibull regression with explanatory variable

”treatment”
◮ The green curve shows the survival function of the Exp(1)

distribution

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

S
ur

vi
va

l p
ro

ba
bi

lit
y



(4) Model expansion through stratification

◮ So far we have assumed that the hazard rates in different
subgroups (strata), defined by covariates (i.e. men and
women), are proportional under

◮ a parametric regression model
◮ the Cox proportional hazards model

◮ Proportionality implies
◮ a common baseline rate of failure, baseline referring to those

with “baseline” values of the covariates, and
◮ a multiplicative effect of covariates on the baseline

◮ If needed, how to expand the model through stratification?



Weibull regression with stratification

◮ Assuming the same shape parameter but different scale
parameters, and the same effects of covariates across the
strata, the stratum-specific hazard is defined as

λis(ti ;Zi , θ) = α−1
s γs(t/αs)

γs−1 exp(β′Zi ), i = 1, ..., S

◮ A more general model with varying effects of covariates with
strata:

λis(ti ;Zi , θ) = α−1
s γs(t/αs)

γs−1 exp(β′

sZi ), i = 1, ..., S



Stratified Cox analysis

◮ The model is now specified as

λis(t;Zi , θ) = λ0s(t) exp(β
′Zi )

N.B. In R, stratified analysis is obtained by option strata:

Surv(time,status)∼ A + strata(B)


