6. Data exploration, model choice and model checking

September 1 – 25, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Data exploration, model choice and model checking

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

- Exploratory data analysis
- Model choice
- Goodness-of-fit and model checking
- Model expansion through stratification

(1) Exploratory analysis

- It is about interrogating your data!
- Kaplan-Meier plots of survival function
 - stratified by different grouping variables (e.g. treatment vs. no treatment)

- Nelson–Aalen plots of cumulative hazards
 - in particular, when competing risk or multi-state models
- Preliminary checking of
 - parametric assumptions
 - proportionality assumptions

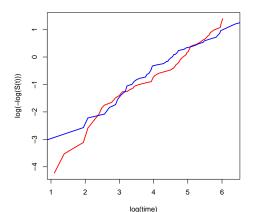
Exploring parametric assumptions

- Compare the non-parametric estimate of the cumulative hazard against its theoretical form under the assumed parametric model
- For example, consider two groups (strata) under the Weibull regression model: log(−log(Ŝ(t))) should be a linear function of log(t) in both groups (with dummy covariates Z = 0 or Z = 1):

$$\begin{split} \log(-\log(S(t;Z,\theta)) &= \log(\Lambda(t;Z,\theta)) \\ &= \log((t/\alpha)^{\gamma}\exp(\beta Z)) \\ &= \gamma \log(t) - \gamma \log(\alpha) + \beta Z \end{split}$$

Example

The log-log plots for the veteran data, stratified by 'treatment' (red = standard treatment; blue = experimental treatment). Ref. exercise 4 in practical 2.



N.B. Under the Weibull model, the slopes should approximate γ and the distance of the two curves should approximate β (the log relative rate)

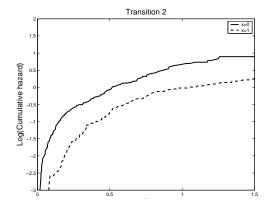
Exploring proportionality

- In general, compare non-parametric estimates of the cumulative hazard across different strata (of a categorical variable Z)
- If the proportional hazards model is appropriate, the curves for the different groups (strata) should be parallel and their (vertical) distance correspond to log relative rates

• For example, for two groups (Z = 1 or Z = 0):

$$\begin{split} \log(-\log(S(t;Z,\theta)) &= \log(\Lambda(t;Z,\theta)) \\ &= \log(\Lambda_0(t)\exp(\beta Z)) \\ &= \log(\Lambda_0(t)) + \beta Z \end{split}$$

Exploring proportionality: example



◆□> ◆□> ◆三> ◆三> ・三 ・ のへ()・

(2) Model choice

Nested models can be compared by the likelihood ratio test:

$$-2\log\left(\frac{\sup_{\theta_1} L(\theta_1, \theta_2)}{\sup_{\theta} L(\theta)}\right) \sim \chi_q^2,$$

where *L* is the likelihood of the larger model with a (p + q)-dimensional parameter vector $\theta = (\theta_1, \theta_2)$, and θ_2 has dimension *q* (so *q* is the difference in the number of parameters)

Example

- The Weibull model reduces to the exponential model by choosing the shape parameter (γ) as 1
- ► The two models are thus nested. The difference of deviances has a χ_1^2 distribution:

$$-2\log\left(\frac{\sup_{\alpha}L(\alpha,1)}{\sup_{\alpha,\gamma}L(\alpha,\gamma)}\right) \sim \chi_1^2,$$

where L is the Weibull likelihood

In R, nested models can (sometimes) be compared with the anova command from the output objects c1 and c2: anova(c1,c2).

See exercise 2 in practical 2.

Prediction or explanation?

- If the ultimate aim of the analysis is prediction, rather than explanation, different information criteria for model selection may be used
- Akaike's Information Criterion (AIC)
 - ► AIC = -2*(log-likelihood) + 2*(number of parameters)

- penalises models with too many parameters
- the smaller, the better the model's predictive ability
- command extractAIC(object) in R

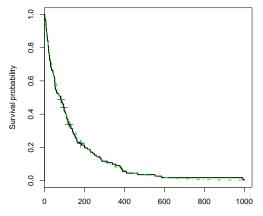
(3) Model checking

- Statistical procedures for model selection do not (necessarily) tell how good the model fits the actual data
- So, after fitting a parametric model, the results should be checked against the observed data
- We here give three alternatives
 - inspection of the fitted survival function or cumulative hazard against their non-parametric estimates

- inspection of fitted residuals
- extension of the Cox proportional hazard model

Kaplan-Meier vs. estimated survival

Example: survival in the veteran data (KM vs the estimated survival under the Weibull model). Ref exercise 1 in practical 2.



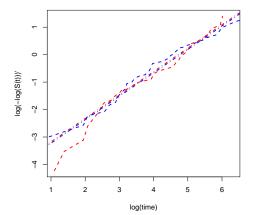
time

(日)、

э

Nelson-Aalen vs. the fitted model

 The log-log plot for the standard treatment vs. test treatment in the veteran data (non-parametric = dashed; estimated = dot-dashed)



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

Extension of the PH model

Allow the relative risk to vary with time. For example, consider

• $Z_1(t) = Z_1$ and $Z_2(t) = Z_1 t$. The model is

 $\lambda(t; Z_1, Z_2, \theta) = \lambda_0(t) \exp(\beta_1 Z_1 + \beta_2 Z_2),$

where β_2 measures the interaction between Z_1 and the time.

- Note that the relative risk of Z₁ = 1 to Z₁ = 0 is exp(β₁ + β₂t), a smooth function of t.
- If β₂ > 0 then the relative risk function is increasing and β₂ < 0 then it is decreasing.</p>

Extension of the PH model cont.

 β₂ = 0 corresponds to the proportional hazards or constant relative risk model.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 This extension can be used to test the proportionality assumption.

Unit exponentiality

If random variable T has survival function S(t), then S(T) ∼ Uniform[0,1]

and, equivalently,

$$\Lambda(T) = -\log(S(T)) \sim \text{Exp}(1)$$

• So, calculate "residuals":

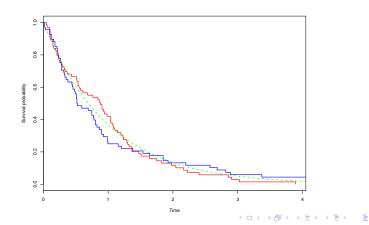
$$\hat{r}_i = \Lambda(t_i; \hat{\gamma}, \hat{\alpha}, Z_i), i = 1, ..., N$$

and check if these can be taken to arise from from the Exp(1) distribution.

• If the model is appropriate, $\hat{\Lambda}(t_i)$ are (appr.) samples from the exponential distribution with rate 1.

Example

- ► The Kaplan-Meier plot of the Λ-residuals in the veteran data.
- The models was Weibull regression with explanatory variable "treatment"
- The green curve shows the survival function of the Exp(1) distribution



(4) Model expansion through stratification

- So far we have assumed that the hazard rates in different subgroups (strata), defined by covariates (i.e. men and women), are *proportional* under
 - a parametric regression model
 - the Cox proportional hazards model
- Proportionality implies
 - a common baseline rate of failure, baseline referring to those with "baseline" values of the covariates, and

- a multiplicative effect of covariates on the baseline
- If needed, how to expand the model through stratification?

Weibull regression with stratification

Assuming the same shape parameter but different scale parameters, and the same effects of covariates across the strata, the stratum-specific hazard is defined as

$$\lambda_{is}(t_i; Z_i, \theta) = \alpha_s^{-1} \gamma_s(t/\alpha_s)^{\gamma_s - 1} \exp(\beta' Z_i), \ i = 1, ..., S$$

A more general model with varying effects of covariates with strata:

$$\lambda_{is}(t_i; Z_i, \theta) = \alpha_s^{-1} \gamma_s(t/\alpha_s)^{\gamma_s - 1} \exp(\beta'_s Z_i), \ i = 1, ..., S$$

Stratified Cox analysis

The model is now specified as

$$\lambda_{is}(t; Z_i, \theta) = \lambda_{0s}(t) \exp(\beta' Z_i)$$

N.B. In R, stratified analysis is obtained by option *strata*: Surv(time,status) \sim A + strata(B)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ