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This lecture

v

The general form of survival likelihood
Parametric survival models

v

» The hazard rate depends on time through (a small number of)
parameters

» Parametric families of (continuous) survival distributions

» Exponential
> Weibull
» More complex distributions

v

Data exploration, model choice and model checking



Basic concepts revisited

» Let X; be the time of event of interest and C; the (random)
censoring time. For each i, observed time T; = min(X;, G;),
censoring indicator d; = 1x,<c;}, and a covariate vector Z;
are observed.

» The cumulative distribution function and the corresponding
survival function of X; are denoted as F;(t) = P(X; < t) and
5,'(1.') =1- F,‘(t) = P(X,' > 1.').

» Hazard rate is defined as the momentary probability of event,
given survival up to that moment:

; ;>
() = lim P(Xie[t,t+ h)| Xi>1t)
h—0 h



Basic concepts revisited cont.

» Cumulative hazard is defined as

» Cumulative hazard and the survival function have the
following relation:

Si(t) = exp{—NAi(t)}

» The density function has the expression

fi(t) = Ai(t)Si(t)



Parametric models of the hazard: notation

» In parametric modelling, the hazard rate A(t; 0) is allowed to
depend on time through a model with parameters 6

» We use the following notation (however, sometimes omitting
to explicitly write the dependence on 6):
» Survival function

S(t;0) = exp(— [y Mu; 0)du) = exp(—A(t; 0)), t >0

> Cumulative hazard A(t;0) = [; Mu;6)du, t >0
» Density function f(t;0) = A\(¢;0)S(¢t;6), t >0



Survival data and censoring

Assume the following data from a follow-up of a cohort of N
individuals from time 0 to time T ,ax:

» observed times t;, i=1,.... N

» censoring indicators d;, i =1,.... N

> In summary, this mean the data are (t;,d;), i=1,..., N

In what follows we will assume uninformative censoring

» This means that the (random) censoring time is assumed to
be independent of the parameters of interest 6 (i.e. those
defining the distribution of the event of interest)



Likelihood contributions under uninformative censoring
> Let h(t; ¢) be the hazard of the censoring process, A(t;6) is
the hazard of the event of interest, and 6 and ¢ are separate
» Censoring can then be omitted from the likelihood expression
of parameter(s) 6 because the likelihood expression factorises
completely
» If the d; = 1, i.e., the event of interest occurs at time t;, the
whole likelihood contribution (for parameters 6 and ¢) is

Li(ea ¢v ti) = )\(tlv exp{ fol U 0 + h(U ¢))du}
A(ti; 0) exp{— [3" \(u; 0) du}} x exp{— [y h(u; ¢)du}
= )\(t,'; (9)5( i ) X L;(QZ), 1.',')
> If the d; = 0, i.e., censoring occurs at time t;:

Li(6,¢; t)) = h(t;; ) exp{— f (u; 0) + h(u; ¢))du}

= exp{— [;' Mu; 0)du} x { (ti; @) exp{ffot" h(u
= S(t,'; 9) X L¢(¢; t,')



Survival likelihood

Under uninformative censoring and for statistically independent
individuals, the likelihood then is a product over individual
contributions (omitting notation for 6):

LO:A(tnd)ii=1,. N} =TT (A6)7S()
= (T AE)* ) exp(— I Jo7 A(u)du)
= (I AE)* ) exp(— o™ ¥ (u)A(u)du).

where Y (u) = SN, Yi(u) = SN, 1(t; > u) is size of the risk set
at time u. Here Yj(u) = 1 if individual i is still in the risk set
(under observation) at time u— (i.e. just before u).



The risk process

» Technically, the risk indicator Y;(t) and the risk set Y'(t) are

» left-continuous stochastic processes
» and so, they are predictable, e.g. lim,_,;_ Y (u) = Y(t)

N.B. The individual that fails at time t is still included in the risk
set at the failure time.

N.B. For standard survival data, in which everyone enters the risk
set at time 0, the risk process Y(t) is non-increasing. This is not
true for more general models with late entry, i.e. when individuals
may enter the risk set at at a later time than the time origin.



Left truncation and late entry

» Left truncation is another pattern of incomplete observation,
usually tractable in the analysis

» It emerges when individuals may enter the study (i.e. the risk
set) later than the time origin

» Likelihood contribution of an individual with entry at
(random) time v; and exit at time t; with censoring indicator

d,'i
)\(ti)dfP(X > t,'|X > \/’) )\(t,)d ggt,)

i exp{ / u)du}

exp{ / A(u)du}

= \(t;)% exp{— fv,-)‘ u)du}

» This means that the only change in the general survival
likelihood needed is to define the risk process as
Y) =N 1(vi<u<t)




(1) Exponential distribution

This is the simplest of all, with a constant hazard rate A
» S(t;\) = exp(—=At), t >0
> f(t;A) = AS(t), t>0
» A(t;\)=At, t>0

If X ~ Exp(}),
» mean E(X) =1/
» variance Var(X) = 1/A%.
» coefficient of variation (the ratio of standard deviation to
mean) is 1



Exponential distribution cont.: No memory!

» A constant conditional rate of occurrence means that there is
no memory, i.e., the mean residual life time (rml) is always the
same!

rml(t) = E(X — t|X > t) =E(X) =1/A
N.B. Despite the simplistic assumption, the exponential

distribution proves to be useful in many applications (cf. the use of
piecewise constant hazards in non-parametric methods).



The log-likelihood under the exponential model

> The log-likelihood is

I(A) =log L(A) = SN dilog(A\) = AN, t; = Dlog(\) — AY

where D is the total number of observed failures and
Y is the total person-time.

» Together (D, Y') are the sufficient statistics for A.
» The ML estimate is A\ = D/Y



Example: leukaemia remission

» Time of remission in the treatment group of leukaemia
patients (x = censored):
6*,6,6,6,7,9%,10%,10,11*%,13,16,17*,19*% 20*, 22, 23, 25*, 32*,
32%,34* 35* (weeks)

» The suffficient statistics (D =9, Y = 359), from which the
ML estimate

A =9/359 = 0.025 (per week)

Cox and Oakes: Analysis of Survival Data, Table 1.1



Confidence intervals
» 95% Cl based on the log-likelihood function (see Figure):
[0.012,0.045]
» 95% CI based on the normal approximation of the
log-likelihood for parameter 5 = log A and the standard error
for 3 (see formula below): [0.013,0.048]

Log-likelihood




(2) Weibull distribution

» The Weibull hazard is defined in terms of two parameters: «
("scale”) and v ("shape”)

» Properties:
Mta,y) =a y(t/a)™t t>0
S(tia,7) = exp(—(t/a)?), t>0
At a,y) =(t/a)?, t>0

N.B. There are many alternative parameterisations of the Weibull
distribution.



Weibull hazard

Depending on the shape parameter -y, the Weibull hazard can
either increase or decrease with time:

hazard rate




Weibull survival function

The corresponding survival functions are:




Weibuill examples (cf. above)

» all three distributions have the same median (6.93) in this
example

» when v =1, the distribution is exponential, i.e., the hazard
rate is constant

> when v > 1, the hazard rate is increasing with time

» when 7y < 1, the hazard rate is decreasing with time



Likelihood estimation under the Weibull model

» The log-likelihood from a censored sample is (v denotes
summation over the uncensored failure times only):

I(ar,y) = Dlog(y) — Dylog(a) + (v —1) >_, log(ti) — (1/a)? Y- t;7

» Even in the absence of censoring, there is no sufficient
statistics for (a,7y)

» The score equations:

D
Us = = -8 +9(1/0) " 8 = 0

Uy= 3L =D Diog(a) + X2, log(ty) ~ (1/0)" X2 ¢ log(ti/a) = 0



Likelihood estimation o

» From U, = 0, for a given value of ~, the ML estimator of « is
a() = (1))
» Substituting a(y) to U, = 0:
Z t] log(t:)
0=L45 log(t) - D

» This can be solved numerically to find 4 (and then &)
> In the leukaemie example, (1/&,4) = (0.030, 1.35)



Profile likelihood

» Substituting () to the log-likelihood, we obtain the profile
likelihood for ~

» This can be used to test for exponentiality:

» The 95% confidence interval for «y is [0.70,2.20]
» Exponentiality cannot be rejected (see also next slide)

Log-likelihood




Likelihood ratio test

» The reasoning above was based on the fact that the (profile)
confidence interval included value 1

» Alternatively, a likelihood ratio test can be used (Weibull vs.
the Exponential as a nested model):

_ 1() ~ 2
28 T(aq) 0

under the exponential model as the null hypothesis. Here L; refers
to the exponential and Ly to the Weibull model.



More complex distributions

» Survival distributions for time X can sometimes be defined
through log(X) = a+ oW, where W has a defined
distribution

» Different choices for the distribution of W lead to different
models for X:

» log-normal distribution, if W ~ Normal(0,1) (i.e. the standard
normal distribution)
> log-logistic distribution, if W has the logistic density

exp”
(1+ expW)2
» gamma distribution, if o =1 and the density of W
exp(kw — exp")
r(k)

» For some of these distributions, the hazard and/or the survival
function are cumbersome to compute



Log-logistic distribution
» The density function is
F(x) = Ap(Ax)PH 1+ (Ax)P] ™2, where A = exp(—a), p=0""

» Here )\ is a rate parameter and p a shape parameter
» Function Llogis in package eha (uses scale as 1/rate)
» Example (with rate 2.0 and shape 3):

hazard
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