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This lecture

◮ The general form of survival likelihood

◮ Parametric survival models
◮ The hazard rate depends on time through (a small number of)

parameters

◮ Parametric families of (continuous) survival distributions
◮ Exponential
◮ Weibull
◮ More complex distributions

◮ Data exploration, model choice and model checking



Basic concepts revisited

◮ Let Xi be the time of event of interest and Ci the (random)
censoring time. For each i , observed time Ti = min(Xi ,Ci ),
censoring indicator di = 1{Xi≤Ci}, and a covariate vector Zi

are observed.

◮ The cumulative distribution function and the corresponding
survival function of Xi are denoted as Fi (t) = P(Xi ≤ t) and
Si (t) = 1− Fi (t) = P(Xi > t).

◮ Hazard rate is defined as the momentary probability of event,
given survival up to that moment:

λi (t) = lim
h→0

P(Xi ∈ [t, t + h) | Xi ≥ t)

h



Basic concepts revisited cont.

◮ Cumulative hazard is defined as

Λi (t) =

∫ t

0

λi (t)dt

◮ Cumulative hazard and the survival function have the
following relation:

Si (t) = exp{−Λi (t)}

’

◮ The density function has the expression

fi (t) = λi (t)Si (t)



Parametric models of the hazard: notation

◮ In parametric modelling, the hazard rate λ(t; θ) is allowed to
depend on time through a model with parameters θ

◮ We use the following notation (however, sometimes omitting
to explicitly write the dependence on θ):

◮ Survival function

S(t; θ) = exp(−
∫ t

0
λ(u; θ)du) = exp(−Λ(t; θ)), t ≥ 0

◮ Cumulative hazard Λ(t; θ) =
∫ t

0
λ(u; θ)du, t ≥ 0

◮ Density function f (t; θ) = λ(t; θ)S(t; θ), t ≥ 0



Survival data and censoring

Assume the following data from a follow-up of a cohort of N
individuals from time 0 to time Tmax :

◮ observed times ti , i = 1, ...,N

◮ censoring indicators di , i = 1, ...,N

◮ In summary, this mean the data are (ti , di ), i = 1, . . . ,N

In what follows we will assume uninformative censoring

◮ This means that the (random) censoring time is assumed to
be independent of the parameters of interest θ (i.e. those
defining the distribution of the event of interest)



Likelihood contributions under uninformative censoring
◮ Let h(t;φ) be the hazard of the censoring process, λ(t; θ) is

the hazard of the event of interest, and θ and φ are separate
◮ Censoring can then be omitted from the likelihood expression

of parameter(s) θ because the likelihood expression factorises
completely

◮ If the di = 1, i.e., the event of interest occurs at time ti , the
whole likelihood contribution (for parameters θ and φ) is

Li (θ, φ; ti ) = λ(ti ; θ) exp{−
∫ ti
0
(λ(u; θ) + h(u;φ))du}

=
[

λ(ti ; θ) exp{−
∫ ti
0
λ(u; θ)du}

]

× exp{−
∫ ti
0
h(u;φ)du}

≡ λ(ti ; θ)S(ti ; θ)× Lcφ(φ; ti )

◮ If the di = 0, i.e., censoring occurs at time ti :

Li (θ, φ; ti ) = h(ti ;φ) exp{−
∫ ti
0
(λ(u; θ) + h(u;φ))du}

= exp{−
∫ ti
0
λ(u; θ)du} ×

[

h(ti ;φ) exp{−
∫ ti
0
h(u;φ)du}

≡ S(ti ; θ)× Lφ(φ; ti )



Survival likelihood

Under uninformative censoring and for statistically independent
individuals, the likelihood then is a product over individual
contributions (omitting notation for θ):

L(θ; {(ti , di ); i = 1, . . . ,N}) =
∏N

i=1

(

λ(ti )
diS(ti )

)

=
(

∏N
i=1 λ(ti )

di
)

exp(−
∑N

i=1

∫ ti
0
λ(u)du)

=
(

∏N
i=1 λ(ti )

di
)

exp(−
∫ Tmax

0
Y (u)λ(u)du),

where Y (u) =
∑N

i=1 Yi (u) ≡
∑N

i=1 1(ti ≥ u) is size of the risk set
at time u. Here Yi (u) = 1 if individual i is still in the risk set
(under observation) at time u− (i.e. just before u).



The risk process

◮ Technically, the risk indicator Yi (t) and the risk set Y (t) are
◮ left-continuous stochastic processes
◮ and so, they are predictable, e.g. limu→t− Y (u) = Y (t)

N.B. The individual that fails at time t is still included in the risk
set at the failure time.

N.B. For standard survival data, in which everyone enters the risk
set at time 0, the risk process Y (t) is non-increasing. This is not
true for more general models with late entry, i.e. when individuals
may enter the risk set at at a later time than the time origin.



Left truncation and late entry

◮ Left truncation is another pattern of incomplete observation,
usually tractable in the analysis

◮ It emerges when individuals may enter the study (i.e. the risk
set) later than the time origin

◮ Likelihood contribution of an individual with entry at
(random) time vi and exit at time ti with censoring indicator
di :

λ(ti )
diP(X > ti |X > Vi ) = λ(ti )

di S(ti )
S(vi )

= λ(ti )
di

exp{−

∫ ti

0

λ(u)du}

exp{−

∫ vi

0

λ(u)du}

= λ(ti )
di exp{−

∫ ti
vi
λ(u)du}

◮ This means that the only change in the general survival
likelihood needed is to define the risk process as
Y (t) =

∑N
i=1 1(vi < u ≤ ti )



(1) Exponential distribution

This is the simplest of all, with a constant hazard rate λ

◮ S(t;λ) = exp(−λt), t > 0

◮ f (t;λ) = λS(t), t > 0

◮ Λ(t;λ) = λt, t > 0

If X ∼ Exp(λ),

◮ mean E(X ) = 1/λ

◮ variance Var(X ) = 1/λ2.

◮ coefficient of variation (the ratio of standard deviation to
mean) is 1



Exponential distribution cont.: No memory!

◮ A constant conditional rate of occurrence means that there is
no memory, i.e., the mean residual life time (rml) is always the
same!

rml(t) = E(X − t|X > t) = E(X ) = 1/λ

N.B. Despite the simplistic assumption, the exponential
distribution proves to be useful in many applications (cf. the use of
piecewise constant hazards in non-parametric methods).



The log-likelihood under the exponential model

◮ The log-likelihood is

l(λ) = log L(λ) =
∑N

i=1 di log(λ)− λ
∑N

i=1 ti = D log(λ)− λY

where D is the total number of observed failures and
Y is the total person-time.

◮ Together (D,Y ) are the sufficient statistics for λ.

◮ The ML estimate is λ̂ = D/Y



Example: leukaemia remission

◮ Time of remission in the treatment group of leukaemia
patients (∗ = censored):

6∗, 6, 6, 6, 7, 9∗, 10∗, 10, 11∗, 13, 16, 17∗, 19∗, 20∗, 22, 23, 25∗, 32∗,
32∗, 34∗, 35∗ (weeks)

◮ The suffficient statistics (D = 9,Y = 359), from which the
ML estimate

λ̂ = 9/359 = 0.025 (per week)

Cox and Oakes: Analysis of Survival Data, Table 1.1



Confidence intervals
◮ 95% CI based on the log-likelihood function (see Figure):

[0.012,0.045]
◮ 95% CI based on the normal approximation of the

log-likelihood for parameter β = log λ and the standard error
for β (see formula below): [0.013,0.048]
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(2) Weibull distribution

◮ The Weibull hazard is defined in terms of two parameters: α
(”scale”) and γ (”shape”)

◮ Properties:

λ(t;α, γ) = α−1γ(t/α)γ−1, t > 0

S(t;α, γ) = exp(−(t/α)γ), t > 0

Λ(t;α, γ) = (t/α)γ , t > 0

N.B. There are many alternative parameterisations of the Weibull
distribution.



Weibull hazard

Depending on the shape parameter γ, the Weibull hazard can
either increase or decrease with time:
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Weibull survival function

The corresponding survival functions are:
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Weibuill examples (cf. above)

◮ all three distributions have the same median (6.93) in this
example

◮ when γ = 1, the distribution is exponential, i.e., the hazard
rate is constant

◮ when γ > 1, the hazard rate is increasing with time

◮ when γ < 1, the hazard rate is decreasing with time



Likelihood estimation under the Weibull model

◮ The log-likelihood from a censored sample is (u denotes
summation over the uncensored failure times only):

l(α, γ) = D log(γ)−Dγ log(α)+ (γ− 1)
∑

u log(ti )− (1/α)γ
∑

ti
γ

◮ Even in the absence of censoring, there is no sufficient
statistics for (α, γ)

◮ The score equations:

Uα = ∂l
∂α

= −
Dγ
α + γ(1/α)γ+1∑ t

γ
i = 0

Uγ = ∂l
∂γ

= D
γ − D log(α) +

∑

u log(ti )− (1/α)γ
∑

t
γ
i log(ti/α) = 0



Likelihood estimation cont.

◮ From Uα = 0, for a given value of γ, the ML estimator of α is

α(γ) =
(

(
∑

t
γ
i )/D

)1/γ

◮ Substituting α(γ) to Uγ = 0:

0 = D
γ +

∑

u log(ti )− D

∑

u

t
γ
i log(ti )

∑

t
γ
i

◮ This can be solved numerically to find γ̂ (and then α̂)
◮ In the leukaemie example, (1/α̂, γ̂) = (0.030, 1.35)



Profile likelihood

◮ Substituting α(γ) to the log-likelihood, we obtain the profile
likelihood for γ

◮ This can be used to test for exponentiality:
◮ The 95% confidence interval for γ is [0.70,2.20]
◮ Exponentiality cannot be rejected (see also next slide)
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Likelihood ratio test

◮ The reasoning above was based on the fact that the (profile)
confidence interval included value 1

◮ Alternatively, a likelihood ratio test can be used (Weibull vs.
the Exponential as a nested model):

−2 log
L1(α̂)

L2(α̂, γ̂)
∼ χ2

1

under the exponential model as the null hypothesis. Here L1 refers
to the exponential and L2 to the Weibull model.



More complex distributions

◮ Survival distributions for time X can sometimes be defined
through log(X ) = α+ σW , where W has a defined
distribution

◮ Different choices for the distribution of W lead to different
models for X :

◮ log-normal distribution, if W ∼ Normal(0,1) (i.e. the standard
normal distribution)

◮ log-logistic distribution, if W has the logistic density

expw

(1 + expw )
2

◮ gamma distribution, if σ = 1 and the density of W

exp(kw − expw )

Γ(k)

◮ For some of these distributions, the hazard and/or the survival
function are cumbersome to compute



Log-logistic distribution
◮ The density function is

f (x) = λp(λx)p−1
[

1 + (λx)p]−2, where λ = exp(−α), p = σ−1

◮ Here λ is a rate parameter and p a shape parameter
◮ Function Llogis in package eha (uses scale as 1/rate)
◮ Example (with rate 2.0 and shape 3):
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