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Why survival analysis?

In describing the distribution of failure/life times,
special attention is needed because

◮ failure times may be censored

◮ the individual leaves the study cohort
(lives until the end of follow-up, migrates, quits,...)

◮ the individual may leave the study cohort for another event
than what is being studied (competing risks)

◮ different studies are difficult to compare, if their follow-up
times differ

◮ model specification and interpretation are often more
convenient in terms of conditional failure rates



An introductory example

Break the total follow-up period into shorter time intervals (bands)

From a follow-up of one individual over three consecutive bands
(next slide), there are four possible observations:

◮ failure (F) during the 1st band

◮ failure during the 2nd band

◮ failure during the 3rd band

◮ survival (S) until the end of follow-up
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Conditional probabilities of failure

The three consecutive Bernoulli trials are described in terms of
(three) conditional probabilities of failure:

◮ probability π(1) of failure during the 1st band

◮ probability π(2) of failure during the 2nd band, given survival
until the end of the 1st band

◮ probability π(3) of failure during the 3rd band, given survival
until the the end of the 2nd band



Unconditional probabilities

The probabilities of the three failure outcomes can be expressed in
terms of conditional failure probabilities:

π(1)

(1− π(1))π(2)

(1− π(1))(1− π(2))π(3)

In general, P(failure during band i) = π(i)
∏i−1

j=1(1− π(j))

In addition, the probability of surviving the entire follow-up can be
calculated as

i∏

j=1

(1− π(j))



Cumulative survival probabilities

The probabilities to survive, i.e, to escape failure, up to the end of
each time band:

(1− π(1))

(1− π(1))(1− π(2))

(1− π(1))(1− π(2))(1− π(3))

P(escape failure up to the end of band i) =
∏i

j=1(1− π(j))



Estimation of conditional probabilities

Assume we have followed N = 100 individuals over three time
bands:

F

F

F

S

S

S

10

15

67

75

8

100

90

The likelihood for conditional probabilities:

log L(π(1), π(2), π(3))

= 10 log(π(1)) + 90 log(1− π(1))

+15 log(π(2)) + 75 log(1− π(2))

+8 log(π(3)) + 67 log(1− π(3))



Estimation of conditional probabilities cont.

◮ This is equivalent to the likelihood from three (conditionally)
independent Bernoulli trials

◮ The maximum likelihood estimates are easily found to be:

π̂(1) = 10/100, π̂(2) = 15/90, π̂(3) = 8/75



Important lessions

◮ The unit of observation is one individual’s “experience” over
one time band

◮ A sufficient summary of data is the size of risk set Yi and the
number of failures Di from each time band i

◮ The risk set at a given time band includes all individuals still in
the follow-up, that is, those that have until that

◮ The likelihood for conditional probabilities:
log L =

∑

i log L(π
(i)), where

log L(π(i)) = Di log(π
(i)) + (Yi − Di ) log(1− π(i))

◮ The maximum likelihood estimates are π̂(i) = Di/Yi



Survival function based on life tables

◮ When only grouped failure times are available, cencorings can
be taken to occur sometime during the band.

◮ Assume that for band ti−1 ≤ t < ti the observations are
(Yi ,Di , Li ), where

Di = number of failures during time bandi

Li = number of censorings during time bandi

Yi = the size of the risk set at the beginning

of time bandi



◮ To estimate cumulative survival, the size of the risk set at
band i is taken to be

Ri = Yi − 0.5 ∗ Li

= N −
i−1∑

j=0

Dj −
i−1∑

j=0

Lj − 0.5Li

◮ We have thus assumed that a half of censorings took place at
the beginning and another half at the end of the interval.

◮ The following table presents life times since diagnosis in two
cancer treatment groups:



Example: two cancer treatments

Year ti Group I Group II
Yi Di Li Yi Di Li

1 110 5 5 234 24 3
2 100 7 7 207 27 11
3 86 7 7 169 31 9
4 72 3 8 129 17 7
5 61 0 7 105 6 13
6 54 2 10 85 6 6
7 42 3 6 73 5 6
8 33 0 5 62 3 10
9 28 0 4 49 2 13
10 24 1 8 34 4 6



◮ For each time interval (year since diagnosis):
◮ conditional survival probabilities

P(T > ti |T > ti−1) = 1− Di/Ri

◮ survival function

S(ti ) = P(T > ti ) =
∏i

j=1(1− Dj/Rj)



Example cont.
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The Kaplan-Meier estimate

◮ assume that exact failure times tj are known

◮ break the follow-up period into bands so that each contains at
most one time of failure∗

◮ let the length of time bands go to zero ⇒ survival function as
function of time:

S(t) = P(T > t) =
∏

i ;ti≤t

(1− Di/Yi )

∗ There can be several failures and/or censorings at the same time.
Censorings are assumed to take place after failures.



The risk set

◮ The size of the risk set at time ti is

Yi = N −
i−1∑

i=0

Dj −
i−1∑

j=0

Lj

Dj = number of failures at timetj

Lj = number of censorings at timetj

◮ The conditional survival probabilities are now:

P(T > ti |T > ti−1) = 1− Di/Yi

◮ and the survival function:

S(ti ) = P(T > ti ) =
i∏

j=1

(1− Dj/Yj)



Example

ti Yi Di Li Di/Yi 1− Di/Yi P(T > ti )

0 50 2 0 0.0400 0.9600 0.9600
1 48 1 0 0.0208 0.9792 0.9400
2 47 2 0 0.0426 0.9574 0.9000
3 45 1 1 0.0222 0.9778 0.8800
8 43 1 0 0.0233 0.9767 0.8595
10 42 1 0 0.0238 0.9762 0.8391
... ... ... ... ... ... ...



Example cont.

A Kaplan-Meier estimate of the survival function
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Properties of the KM estimate

◮ piecewise constant

◮ non-parametric

◮ jumps at the observation times only

◮ if no censoring at all, the size of the jump is dj/N

◮ the precision of the estimate is poor towards the end of the
follow-up

◮ confidence limits can be derived (next slide)



Confidence limits

Considering observations at each failure as binomial experiments
(”drawing failures from the risk set”), one can derive the following
standard deviation for Λ(t) at the kth failure time:

s.e.(Λk) =

√

D1
Y1(Y1 − D1)

+ . . .+ Dk

Yk(Yk − Dk)

The so called Greenwood formula of standard error of the survival
function at the kth failure time then is

s.e.(Λk)× (S(tk))
2

This can be easily calculated by the survfit function in R.



Hazard rate

The hazard is the rate of change of the conditional
failure probability:
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Assuming the
✡

is short, the conditional failure
probability over the time interval

✠ � ☞ � ✍ ✡☛✠
, given

survival until � , is
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. – p.23/33

The hazard function has many names and uses:

incidence rate or incidence density

force of mortality

force of morbidity

force of infection

...

. – p.24/33



Going to the limit

Assume first that the hazard is constant in time. Based
on the experience of one individual, when

failure occurs at time � ✖
the individual’s follow-up period

✠ ✄ ☞ � ✖✁� is divided into✂
“clicks”

the length of each click is
✡

✡
goes to zero so that

✂ ✡ ✁ � ✖ remains constant

. – p.25/33

✝✟✞✆✠☛✡ ✖ ✏ � ✍

✁ ✝✓✞✖✠☎✄ � ✏✌✒✔✓ � ✍✝✆ ✛✢✂ � ✌ ✝✟✞✆✠✟✞ ✏ � ✡ ✍✑✏ ✒ ✓ � ✡ ✍ ✆ ✛✢✂ �
✁ ✝✓✞✖✠ � ✍ ✝✓✞✖✠ ✡ ✍ ✏ ✂ ✓ ✒ ✍ ✝✓✞✖✠ ✏✌✒ ✓ � ✡ ✍
✁ ✝✓✞✖✠ � ✍ ✏ ✂ ✓ ✒ ✍ ✝✟✞✆✠ ✏ ✒✔✓ � ✡ ✍✎✍

const.
✠ ✝✓✞✆✠ � ✓ ✂ � ✡ ✍

const. ✁ ✝✓✞✖✠ � ✓ � � ✖ ✍ const.

as
✡ ✠ ✄✞✝

The likelihood contribution from the observation on
individual ✕ failing at time � ✖ thus is

✡ ✖ ✏ � ✍ ✁ ✆ ✏ � ✖ ✍ ✁ ✡ ✏ � ✖ ✍ ✁
probability density☛ ☞✍✌ ✎�✑✏✓✒✕✔ ✏✌✓ � � ✖ ✍ ✝
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Censored observations

Likewise, if the individual’s failure is censored at time � ✖ ,✝✓✞✖✠ ✡ ✖ ✏ � ✍ ✁ ✝✟✞✆✠ ✏ ✒✔✓ � ✡ ✍✝✆
✁ ✂ ✝✟✞✆✠ ✏✌✒✔✓ � ✡ ✍ ✠ ✓ � ✂ ✡ ✁ ✓ � � ✖

Thus, the likelihood contribution from the observation on
individual ✕ being censored at time � ✖ is✡ ✖ ✏ � ✍ ✁ ✏ ✒✕✔ ✏✌✓ � � ✖ ✍ ✁ ✆ ✏ � ✖ ✍ ✝

. – p.27/33

The survival likelihood

We can now construct the likelihood for a constant
hazard

�
, based on the follow-up of a study cohort with

observed failure times � ✖ ☞ ✕ ✁ ✒✆☞ ✝ ✝ ✝✟☞ ✂
failure indicators � ✖ ☞ ✕ ✁ ✒✆☞ ✝ ✝ ✝✓☞ ✂

The likelihood based on these observations is a product
over individual contributions

✡ ✖ ✏ � ✍ :
✡ ✏ � ✍ ✁ ✙✄✂✖ ✤ ✂ ✡ ✖ ✏ � ✍ ✁ ✙✄✂✖ ✤ ✂ �✆☎ ✞ ✆ ✏ � ✖ ✍

✁ �✞✝ ✏ ✒✕✔ ✏✆✓ � ✝ ✂✖ ✤ ✂ � ✖ ✍ ✁ �✞✝☎✏ ✒ ✔ ✏✌✓ � ☎
✍

. – p.28/33



The maximum likelihood estimate:
� ✡

� �
✁ � ✆ �✞✝ ✛✢✂ ✓ �✞✝ ☎✂✁ ✏✓✒✕✔ ✏✌✓ � ☎

✍ ✁ ✄

✁ �� ✁ ✆
✁

☎ ✁ number of failures
person-time

In the example of the previous Figure, a sufficient data
summary is: ✆ ✁ ✄ (failures) ja ☎ ✁ ✒ ✝ ✗

(years of
person-time). We obtain

�� ✁ ✄ ✁ ✒ ✝ ✗ ✁ ✒ ✝ ✒ ✒
.

. – p.29/33

Interpretation of the hazard function

Concerns one individual (cf. risk)
� ✏✆☎ ✍ ☞ ✄

, it is not bounded from above,

So, it is not a probability but a rate

Can be scaled apppropriately. For example, for a
constant hazard the following expressions are
equivalent:

0.05/person/year
= 0.0042/person/month
= 5000/100000 person/year

. – p.30/33



N.B. Absolute incidence rates

In a large population, one can determine the (absolute)
incidence:

✂ ✏ � ✍ � , where
✂ ✏ � ✍ is the risk set at time �

if the population is open and stationary so that the size
of the risk set stays constant, the incidence is

✂ �
.

the expected number of failures occurring from time
0 to time � is

✂ � �

. – p.31/33

Nelson–Aalen estimate

In general, the cumulative hazard is defined as� ✏ � ✍ ✁ � ✆✠ ✏ ☎ ✍ �
☎

An estimate can be calculated as follows� ✏ � ✍ jumps upwards at failure times � ✣
the size of the jump is

�� ✁ ✣ ☎ ✡ ✁ ✁ ✆ ✣
☎ ✣ ✡✄✂ ✡ ✁ ✆ ✣ ✁

☎ ✣

when ☎ ✣ is the size of the risk set and ✆ ✣ the

number of failures at � ✣ . We obtain (t) = ✝ ✣ ✄✝✆✆☎ ✠ ✆ ✆ ✣
☎ ✣

. – p.32/33



There is a close relation between the Kaplan-Meier and
Nelson–Aalen estimates: when ✆ ✣ ✁

☎ ✣ ✌ ✄
,

✏ ✒ ✔ ✏✆✓
✂✁�✄✂✆☎✞✝✠✟ ✛☛✡✌☞ ✂✍�✎✟☛ ☞✍✌ ✎
✣ ✄✝✆ ☎ ✠✡✆ ✆ ✣ ✁
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☎ ✣ ✍ ✌

✏ ☞✎✑ ✂ ☞ ✟ ✛ ✆ � ✖ �✓✒☛ ☞✍✌ ✎
✣ ✄✝✆ ☎ ✠✡✆

✏ ✒ ✓
✆ ✣ ✁

☎ ✣ ✍

. – p.33/33



Comparison of two survival curves

For each failure time ti , compare the expected and observed
numbers of failures in the two groups. For time ti , the data are

Group 1 Group 2 Total

Failures D1i D2i Di

At risk Y1i Y2i Yi



Log-rank test

◮ Given that there were Di = 1 failures, and assuming that
survival is equal in the two groups, the expected number of
failures in group j at time ti is πji = Yji/Yi .

◮ The expected total numbers are Ej =
∑

i πji , j = 1, 2. The
log-rank test compares these to the observed numbers of
failures Oj =

∑

i Dji :

(E1 − O1)
2

E1
+

(E2 − O2)
2

E2

◮ This has a χ2 distribution from which P values can be
calculated


