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Mathematical formulation

Cosnider a sample of n (uncensored) continuously distributed
survival times X1, . . . ,Xn from survival functions S() with hazard
rate α()

S(t) = P(X > t) = Pt

0[1− α(s)ds] = exp
(
−
∫

t

0
α(s)ds

)
.

Interpretation of the hazard rate α

P(t ≤ X < t + dt | X ≥ t) = α(t)dt.

Cumulative hazard A(t) =
∫
t

0 α(s)ds.
Interest is in estimation of α() or the cumulative hazard A().



Survival data

◮ Data: (X̃i ,Di ), i = 1, . . . , n, Di = censoring indicator

{
Xi = X̃i if Di = 1, uncensored,

Xi > X̃i if Di = 0, censored.

◮ All n survival periods start together at t = 0.

◮ Independent censoring: at any time t, the survival experience
in the future is not statistically altered (from what it would
have been without censoring) by censoring and survival
experience in the past.



Filtration

Mathematically past is represented by so called history or filtration
(Ft , t ≥ 0) where Ft is the available data at time t and Ft− is the
available data just prior to time t.

In survival data, Ft means the values of (X̃i ,Di ) for all i such that
X̃i ≤ t otherwise just the information that X̃i > t.

Ft− = {(i : X̃i < t,Di ) and (i : X̃i ≥ t)}

P(t ≤ X̃i < t + dt,Di = 1 | Ft−) =

{
α(t)dt if X̃i ≥ t

0 if X̃i < t



Expected failures

We have n individuals then the expectation of the sum of the
indicator 1{t ≤ X̃i < t + dt,Di = 1} is

E (
n∑

i=1

1{t ≤ X̃i < t + dt,Di = 1} | Ft−)

= E (#{i : t ≤ X̃i < t + dt,Di = 1} | Ft−)

=
n∑

i=1

1{X̃i ≥ t}α(t)dt =
n∑

i=1

Yi (t)α(t)dt

= Y (t)α(t)dt

= λ(t)dt,



At risk process

For individual i , Yi (t) = 1{X̃i ≥ t} counts 1 if individual i is still
at risk at time t and is 0 otherwise.

Summing over n such processes,
Y (t) =

∑
n

i=1 Yi (t) =
∑

n

i=1 1{X̃i ≥ t} counts the number at risk
at time t and gives the size of the risk set.

1. Y (t) is a left-continuous process.

2. It is predictable with respect to the filtration Ft−.

3. When the entry time is 0, the process Y (t) is non-increasing
with t.



Counting processes

A process counting the observed failures

Ni (t) = 1{X̃i ≤ t,Di = 1}, 0 ≤ t ≤ τ

Proprties:

1. Ni (0) = 0

2. Right continuous process

3. Increments are dNi (t) = Ni (t)− Ni (t−) and is +1 in case of
death



Counting process

◮ For the cohort of size n, the process N = (N(t))t≥0 which
counts the failures is

N(t) =
n∑

i=1

Ni (t) = #{i : X̃i ≤ t,Di = 1}

◮ Increment over the small interval [t, t + dt) is dN(t) =
N((t + dt)−)− N(t−) = #{i : t ≤ X̃i < t + dt,Di = 1}.

◮ The expectation of the increment given the history is

E (dN(t) | Ft−) = E (

n∑

i=1

1{t ≤ X̃i < t + dt,Di = 1} | Ft−)

= λ(t)dt.



Intensity process

The intensity process (λ(t))t≥0 is random, through dependence on
the conditioning random variables in Ft−.

Integrated or cumulative intensity process Λ is defined as

Λ(t) =

∫
t

0
λ(s)ds, t ≥ 0



Counting process martingale (1)

The compensated counting process or counting process martingale
M is defined as M(t) = N(t)− Λ(t)
difference between the counting process and its expectation!

E (dM(t) | Ft−) = E (dN(t)− dΛ(t) | Ft−) = 0.

The martingale property says that the conditional expectation of
increments of M over small time intervals, given the past at the
beginning of the interval, is zero.

This is heuristically equivalent to

E (M(t) | Fs) = M(s), ∀ s < t, E (M(t) | F0) = M(0) = 0.



Counting process martingale (2)

Martingale as a pure noise process - difference between the
observed and expected number of death in the interval [0, t]

Method of moments

Example: Simulation of a counting process and its compensator



Predictable variation of a martingale (1)

Consider the process M2 and note that

d(M2)(t) = M((t + dt)−)2 −M(t−)2

= (dM(t))2 + 2dM(t)M(t−)

E (d(M2)(t) | Ft−) = E ((dM(t))2 | Ft−)

= var(dM(t) | Ft−) = d < M > (t).



Predictable variation of a martingale (2)

If M is a compensated counting process and the compensator Λ is
continuous, then M’s predictable variation process < M > is
simply Λ itself.
This can be seen by noting that

◮ No two uncensored failure times fall into the same small
interval and hence, the increments of N over small time
intervals are 0 or 1.

◮ dN(t) = 1 w.p. dΛ(t) and dN(t) = 0 w.p. 1− dΛ(t).

◮ dM(t) = 1− dΛ(t) w.p. dΛ(t) and dM(t) = 0− dΛ(t) w.p.
1− dΛ(t).

◮ var(dM(t) | Ft−) = (1− dΛ(t))dΛ(t) ≈ dΛ(t)



Some insight

Conditional means and variances of increments of the counting
process N over small intervals both coincide with the conditional
local rate λ.

For a Poisson random variable, mean and variance coincide.

A counting process N behaves locally at time t, and conditional on
the past, just like a Poisson process with rate λ(t).



Estimation (1)

Statistical problem of nonparametric estimation of the cumulative
hazard rate A(t) =

∫
t

0 α(t)

dN(t) = dΛ(t) + dM(t) = Y (t)α(t)dt + dM(t)

dN(t)

Y (t)
= α(t)dt +

dM(t)

Y (t)
, provided Y (t) > 0,

J(t)

Y (t)
dN(t) = α(t)dt +

J(t)

Y (t)
dM(t),

where J(t) = 1{Y (t) > 0}.



Estimation (2)

dM(t) is a pure noise and so as (J(t)/Y (t))dM(t) and

E (
J(t)

Y (t)
dM(t) | Ft−) =

J(t)

Y (t)
E (dM(t) | Ft−) = 0,

var(
J(t)

Y (t)
dM(t) | Ft−) =

J(t)

Y (t)2
var(dM(t) | Ft−)

=
J(t)

Y (t)2
< M > (t).



Estimation (3)

Define

Â(t) =

∫
t

0

J(s)

Y (s)
dN(s)

=

∫
t

0
J(s)α(s)ds

︸ ︷︷ ︸

A∗(t)

+

∫
t

0

J(s)

Y (s)
dM(s)

︸ ︷︷ ︸

Z(t)

Z (t) = Â(t)− A∗(t)

E (dZ (t) | Ft−) = 0,

var(dZ (t) | Ft−) =
J(t)

Y (t)2
< M > (t).



Estimation (4)

Remarks:

◮ Â(t) is indeed the Nelson-Aalen estimator - sum over the
failure times up to and including t of the reciprocals of the
corresponding risk set sizes.

◮ A∗(t) is the same as A(t), we only omit contributions α(s)ds
where the risk set is empty.

◮

√
n(Â(t)− A∗(t)) =

√
nZ (t) goes to a zero-mean Gaussian

martingale with variation process < Z > (t), as n → ∞ and
Y (t)/n → y(t) where y(t) a deterministic function.


