

Exercise 1: (chapter 6.2) Let $\{Y_i\}_{i=1}^n$ be independent and identically distributed random variables that follow a Bernoulli distribution with parameter $0 \le \theta \le 1$. The probability mass function of the Bernoulli distribution is

$$p_Y(y) = \Pr(Y = y) = \theta^y (1 - \theta)^{1-y} \qquad y \in \{0, 1\}.$$

Let the prior on θ be improper with density $p(\theta) \propto \theta^{-1}(1-\theta)^{-1}$.

- 1. Find the posterior $p(\theta | y)$ and the corresponding normal approximation at its mode.
- 2. Show that the improper prior on θ is equivalent to a uniform prior on the logit $\beta = \log\{\theta/(1-\theta)\}$.
- 3. Find the posterior $p(\beta | y)$ and the corresponding normal approximation at its mode.
- 4. Is it more sensible to derive a normal approximation on the probability or logit scale?

Solution: The posterior density is

$$p(\theta | y) \propto \left[\prod_{i=1}^{n} \theta^{y_i} (1-\theta)^{1-y_i} \right] \theta^{-1} (1-\theta)^{-1} = \theta^{n\bar{y}-1} (1-\theta)^{n-n\bar{y}-1},$$

which is the kernel of the density of a $\text{Beta}(n\bar{y}, n - n\bar{y})$ distribution. The mode of the posterior density is

$$\frac{\mathrm{d}\log p(\theta\,|\,y)}{\mathrm{d}\theta} = \frac{n\bar{y}-1}{\theta} - \frac{n-n\bar{y}-1}{1-\theta} \stackrel{!}{=} 0 \Rightarrow \hat{\theta}_{\mathrm{MAP}} = \frac{n\bar{y}-1}{n-2}\,,$$

which is readily known from the properties of the Beta distribution as $(\alpha - 1)/(\alpha + \beta - 2)$. The observed Fisher information is

$$\mathcal{J}(\theta) = -\frac{\mathrm{d}^2 \mathrm{log}\, p(\theta \,|\, y)}{\mathrm{d}\theta^2} = \frac{n\bar{y}-1}{\theta^2} + \frac{n-n\bar{y}-1}{(1-\theta)^2}$$

At the mode, the observed Fisher information is

$$\mathcal{J}(\theta)|_{\theta = \hat{\theta}_{MAP}} = \frac{(n-2)^2}{n\bar{y} - 1} + \frac{(n-2)^2}{n - n\bar{y} - 1}.$$

The normal approximation to $p(\theta \mid y)$ is therefore

$$\theta \mid y \stackrel{\text{approx.}}{\sim} \operatorname{Normal}\left(\theta \mid \frac{n\bar{y}-1}{n-2}, \left[\frac{(n-2)^2}{n\bar{y}-1} + \frac{(n-2)^2}{n-n\bar{y}-1}\right]^{-1}\right).$$

The prior density on β is

$$p(\beta) = p(g(\beta)) \left| \frac{\theta}{\beta} \right| \propto \left(\frac{e^{\beta}}{1 + e^{\beta}} \right)^{-1} \left(1 - \frac{e^{\beta}}{1 + e^{\beta}} \right)^{-1} \frac{e^{\beta}}{(1 + e^{\beta})^2} = \frac{\left(1 + e^{\beta} \right)^2}{e^{\beta}} \frac{e^{\beta}}{(1 + e^{\beta})^2} = 1,$$

which is an improper uniform prior density. The posterior density is then

$$p(\beta \mid y) \propto \prod_{i=1}^{n} \left(\frac{e^{\beta}}{1+e^{\beta}}\right)^{y_i} \left(1 - \frac{e^{\beta}}{1+e^{\beta}}\right)^{1-y_i} = \frac{e^{\beta n\bar{y}}}{\left(1 + e^{\beta}\right)^n}$$

The mode of the posterior density is

$$\frac{\mathrm{d}\log p(\beta \mid y)}{\mathrm{d}\beta} = n\bar{y} - \frac{ne^{\beta}}{1+e^{\beta}} \stackrel{!}{=} 0 \Rightarrow \hat{\beta}_{\mathrm{MAP}} = \log\left\{\frac{\bar{y}}{1-\bar{y}}\right\}.$$

The observed Fisher information is

$$\mathcal{J}(\beta) = -\frac{\mathrm{d}^2 \mathrm{log} \, p(\beta \,|\, y)}{\mathrm{d}\beta^2} = \frac{n e^{\beta}}{\left(1 + e^{\beta}\right)^2}$$

At the mode, the observed Fisher information is

$$\mathcal{J}(\beta)|_{\beta=\hat{\beta}_{\mathrm{MAP}}} = n\bar{y}(1-\bar{y})\,.$$

The normal approximation to $p(\beta | y)$ is therefore

$$\beta \mid y \overset{\text{approx.}}{\sim} \operatorname{Normal}\left(\theta \mid \log\left\{\frac{\bar{y}}{1-\bar{y}}\right\}, \frac{1}{n\bar{y}(1-\bar{y})}\right).$$

The logit β ranges from $-\infty$ to ∞ . It could therefore be more sensible to approximate $p(\beta | y)$ by a normal approximation since the support and parameter space agree.

Exercise 2 (chapter 6.2): Let $\{Y_i\}_{i=1}^n$ be independent and identically distributed random variables that follow a Poisson distribution with rate parameter $\lambda > 0$. The probability mass function of the Poisson distribution is

$$p_Y(y) = \Pr(Y = y) = \frac{\lambda^y}{y!} \exp\{-\lambda\} \qquad y = 0, 1, \dots$$

Assume that $\mathbb{E}[\lambda] = 2$ and $\Pr(\lambda > 3) = 0.01$.

- 1. Describe the prior on λ by a normal distribution and find the posterior $p(\lambda | y)$.
- 2. Derive a normal approximation to the posterior $p(\lambda | y)$ at its mode using 100 Poisson observations

ſ	y_i	0	1	2	3	4	5	≥ 6
	#	18	32	27	15	6	2	0

and compute the posterior probability $\Pr(\lambda > 2 | y)$.

- 3. Although $\lambda > 0$, the support of the normal prior on λ is unconstrained. Which reparameterization under the bijection $\theta = g(\lambda) \Leftrightarrow \lambda = h(\theta)$ would yield an unconstrained parameter? Describe the prior on θ by a normal distribution using $\mathbb{E}[\theta] = \log 2$ and $\Pr(\theta > \log 3) = 0.01$ and find the posterior $p(\theta | y)$.
- 4. Derive a normal approximation to the posterior $p(\theta | y)$ at its mode using same data as above and

compute the posterior probability $Pr(\lambda > 2 | y)$ by translating back to the original parameter space (you may use R to find the mode and observed Fisher information).

Solution: It is know that $\mathbb{E}[\lambda] = 2$ and $\Pr(\lambda > 3) = 0.01$ so that

$$\Pr(\lambda > 3) = \Pr\left(\frac{\lambda - 2}{\sigma} > \frac{3 - 2}{\sigma}\right) = \Pr\left(Z > \frac{1}{\sigma}\right) = 0.01 \Rightarrow \frac{1}{\sigma} = \Phi^{-1}(0.99) = 2.33$$

The parameters of the Normal prior on λ are thus $\mu = 2$ and $\sigma^2 = 0.18$. The posterior density is

$$p(\lambda | y) \propto \left[\prod_{i=1}^{n} \lambda^{y_i} \exp\{-\lambda\}\right] \exp\{-2.63(\lambda - 2)^2\} = \lambda^{n\bar{y}} \exp\{-2.63\lambda^2 + (10.52 - n)\lambda\}$$

The mode of the posterior density is

$$\frac{d\log p(\lambda \mid y)}{d\lambda} = \frac{n\bar{y}}{\lambda} - 5.24\lambda + 10.52 - n \stackrel{!}{=} 0$$

$$\Rightarrow \hat{\lambda}_{MAP} = \frac{-(n - 10.52) + \sqrt{(n - 10.52)^2 + 4(5.24)(n\bar{y})}}{2(5.24)} \qquad \text{since } \lambda > 0$$

For the above data, the mode is $\hat{\lambda}_{MAP} = 1.67$. The observed Fisher information is

$$\mathcal{J}(\lambda) = -\frac{\mathrm{d}^2 \mathrm{log} \, p(\lambda \mid y)}{\mathrm{d}\lambda^2} = \frac{n\bar{y}}{\lambda^2} + 5.24 \,.$$

At the mode, the observed Fisher information is $\mathcal{J}(\lambda)|_{\lambda=\hat{\lambda}_{MAP}} = 63.78$. The normal approximation to $p(\lambda | y)$ is therefore

$$\lambda \mid y \stackrel{\text{approx.}}{\sim} \operatorname{Normal}(\lambda \mid 1.67, 63.78^{-1})$$

with $Pr(\lambda > 2) = 0.0042$. A possibly sensible reparameterization is $\theta = \log \lambda$. It is know that $\mathbb{E}[\theta] = \log 2$ and $Pr(\theta > \log 3) = 0.01$ so that

$$\Pr(\theta > \log 3) = \Pr\left(\frac{\theta - \log 2}{\psi} > \frac{\log 3/2}{\psi}\right) = \Pr\left(Z > \frac{\log 3/2}{\psi}\right) = 0.01 \Rightarrow \frac{1}{\psi} = \frac{\Phi^{-1}(0.99)}{\log 3/2} = 5.74.$$

The parameters of the Normal prior on θ are thus $\omega = 0.69$ and $\psi^2 = 0.03$. The posterior density is

$$p(\lambda \mid y) \propto \left[\prod_{i=1}^{n} e^{\theta y_i} \exp\{-e^{\theta}\}\right] \exp\{-16.67(\theta - \log 2)^2\} = \exp\{-16.67\theta^2 + (n\bar{y} + 23.11)\theta - ne^{\theta}\}$$

Using the above data and R, the mode of the posterior density is $\hat{\theta}_{MAP} = 0.53$ and observed Fisher information at the mode is $\mathcal{J}(\theta)|_{\theta=\hat{\theta}_{MAP}} = 203.71$. The normal approximation to $p(\lambda | y)$ after transforming back to the original parameter space is therefore

 $\lambda \mid y \stackrel{\text{approx.}}{\sim} \operatorname{Normal}(\log \lambda \mid 0.53, 203.71^{-1}) \lambda^{-1}$

with $\Pr(\lambda > 2 | y) = 0.0055.$

Exercise 3 (chapter 6.2): Let $\{Y_i\}_{i=1}^n$ be independent and identically distributed random variables

that follow an Exponential distribution with rate parameter $\lambda > 0$. The density of the Exponential distribution is

$$f_Y(y) = \lambda \exp\{-\lambda y\}$$
 $y > 0$.

Assume that the prior on λ can be described by the following density

$$p(\lambda) \propto \exp\left\{-20(\lambda - 0.25)^2\right\} \qquad \lambda > 0$$

- 1. Find the posterior $p(\lambda | y)$ and an expression for the normalizing constant.
- 2. Derive a normal approximation to the posterior at its mode using n = 10 and $\bar{y} = 0.5$. Plot the normal approximation together with the true posterior density.

Solution: The posterior density is

$$p(\lambda \mid y) \propto \left[\prod_{i=1}^{n} \lambda \exp\{-\lambda y_i\}\right] \exp\{-20(\lambda - 0.25)^2\} = \lambda^n \exp\{-20\lambda^2 + (10 - n\bar{y})\lambda\}.$$

The normalizing constant of the posterior density is

$$c^{-1} = \int_0^\infty \lambda^n \exp\{-20\lambda^2 + (10 - n\bar{y})\lambda\} \,\mathrm{d}\lambda\,.$$

The mode of the posterior density is

$$\frac{\mathrm{d}\log p(\lambda \mid y)}{\mathrm{d}\lambda} = \frac{n}{\lambda} - 40\lambda + 10 - n\bar{y} \stackrel{!}{=} 0$$
$$\Rightarrow \hat{\lambda}_{\mathrm{MAP}} = \frac{-(n\bar{y} - 10) + \sqrt{(n\bar{y} - 10)^2 + 4(40)(n)}}{2(40)} \qquad \text{since } \lambda > 0$$

For the above data, the mode is $\hat{\lambda}_{MAP} = 0.57$. The observed Fisher information is

$$\mathcal{J}(\lambda) = -\frac{\mathrm{d}^2 \log p(\lambda \mid y)}{\mathrm{d}\lambda^2} = \frac{n}{\lambda^2} + 40.$$

At the mode, the observed Fisher information is $\mathcal{J}(\lambda)|_{\lambda=\hat{\lambda}_{MAP}} = 70.78$. The normal approximation to $p(\lambda | y)$ is therefore

$$\lambda \mid y \overset{\text{approx.}}{\sim} \operatorname{Normal}(\lambda \mid 0.57, 70.78^{-1})$$

Exercise 4: Let $\{Y_i\}_{i=1}^n$ be independent and identically distributed random variables that follow an Normal distribution with location μ and precision parameter $\tau > 0$. The density of the Normal distribution with precision parameter τ is

$$f_Y(y) = \sqrt{\frac{\tau}{2\pi}} \exp\left\{-\frac{\tau}{2}(y-\mu)^2\right\}.$$

Assume that $\mu \mid \tau \sim \text{Normal}(0, \tau^{-1})$ and $\tau \sim \text{Gamma}(1, 1)$.

- 1. Derive the variational densities $q^*(\mu | y) = \exp\{\mathbb{E}_{\tau}[\ln p(\mu, \tau, y)] \ln c_{\mu}\}$ and $q^*(\tau | y)$ under the mean-field assumption.
- 2. Implement a variational algorithm that refines the parameters of the variational distribution until convergence occurs.
- 3. Compare the variational algorithm to Gibbs sampling with respect to bias and speed using the following simulated data: set.seed(50) ; y <- rnorm(100)</p>

Solution: The variational density of μ is

$$\ln q^{\star}(\mu \mid y) = \mathbb{E}_{\tau}[\ln p(\mu, \tau, y)] + \text{const.}$$
$$= \mathbb{E}_{\tau}\left[\sum_{i=1}^{n} \ln p(y_i \mid \mu, \tau) + \ln p(\mu \mid \tau)\right] + \text{const.}$$
$$= -\frac{1}{2} \left\{ \mathbb{E}[\tau] \sum_{i=1}^{n} (y_i - \mu)^2 + \mathbb{E}[\tau] \mu^2 \right\} + \text{const.}$$
$$= -\frac{1}{2} \left\{ \mu^2 (n\mathbb{E}[\tau] + \mathbb{E}[\tau]) - 2\mu\mathbb{E}[\tau] \sum_{i=1}^{n} y_i \right\} + \text{const.}$$

Exponentiating $\ln q^*(\mu \mid y)$ indicates that the optimal variational density of μ is a normal densities, that is,

$$q^{\star}(\mu \mid y) = \operatorname{Normal}(\mu \mid \omega, \psi^{-1})$$

with precision

$$\psi = \mathbb{E}[\tau](n+1) = \frac{\alpha(n+1)}{\beta}$$

and location parameter

$$\omega = \frac{n\bar{y}}{n+1} \,.$$

The variational density of τ is

$$\ln q^{\star}(\tau \mid y) = \mathbb{E}_{\mu}[\ln p(\mu, \tau, y)] + \text{const.}$$

= $\mathbb{E}_{\mu}\left[\sum_{i=1}^{n} \ln p(y_i \mid \mu, \tau) + \ln p(\mu \mid \tau) + \ln p(\tau)\right] + \text{const.}$
= $\mathbb{E}_{\mu}\left[\frac{n}{2}\log \tau - \frac{\tau}{2}\sum_{i=1}^{n}(y_i - \mu)^2 + \frac{1}{2}\log \tau - \frac{\tau}{2}\mu^2 - \tau\right] + \text{const.}$
= $\left(\frac{n+1}{2} + 1 - 1\right)\log \tau - \left\{1 + \frac{1}{2}\left(\sum_{i=1}^{n} \mathbb{E}\left[(y_i - \mu)^2\right] + \mathbb{E}[\mu^2]\right)\right\}\tau + \text{const.}$

Exponentiating $\ln q^*(\tau \mid y)$ indicates that the optimal variational density of τ is a Gamma densities, that is,

$$q^{\star}(\tau \mid y) = \text{Gamma}(\tau \mid \alpha, \beta)$$

with shape

$$\alpha = 1 + \frac{n+1}{2}$$

and rate parameter

$$\beta = 1 + \frac{1}{2} \left(\sum_{i=1}^{n} \mathbb{E} \left[(y_i - \mu)^2 \right] + \mathbb{E} \left[\mu^2 \right] \right)$$

= $1 + \frac{1}{2} \left(\sum_{i=1}^{n} y_i^2 - 2\mathbb{E} [\mu] \sum_{i=1}^{n} y_i + \mathbb{E} \left[\mu^2 \right] [n+1] \right)$
= $1 + \frac{1}{2} \left(\sum_{i=1}^{n} y_i^2 - 2\omega \sum_{i=1}^{n} y_i + \left[\psi^{-1} + \omega^2 \right] [n+1] \right)$

An implementation of a variational algorithm in R is

} }

An implementation of Gibbs sampling in R is

```
sumY <- sum(y)
omega <- sumY / (n + 1); alpha <- 1 + 0.5 * (n + 1)
nSamples <- 10000;
x <- matrix(0, nSamples, 2); x[1,] <- 1
for( ii in seq(2, nSamples )) {
    x[ ii, 2 ] <- rgamma(
        1,
        alpha,
        1 + 0.5 * sum((y - x[ ii - 1, 1 ]) ^ 2) + 0.5 * (x[ ii - 1, 1 ]) ^ 2
    )
    x[ ii, 1 ] <- rnorm(1, omega, sqrt(1 / x[ ii, 2 ] / (n + 1)))
}</pre>
```

Both methods give equivalent results, but the variational algorithm is significantly faster than Gibbs sampling for 10 000 draws.

