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Exercise 1: (chapter 6.2) Let {Yi}ni=1 be independent and identically distributed random variables

that follow a Bernoulli distribution with parameter 0 ≤ θ ≤ 1. The probability mass function of the

Bernoulli distribution is

pY (y) = Pr(Y = y) = θy(1− θ)1−y y ∈ {0, 1} .

Let the prior on θ be improper with density p(θ) ∝ θ−1(1− θ)−1.

1. Find the posterior p(θ | y) and the corresponding normal approximation at its mode.

2. Show that the improper prior on θ is equivalent to a uniform prior on the logit β = log{θ/(1− θ)}.

3. Find the posterior p(β | y) and the corresponding normal approximation at its mode.

4. Is it more sensible to derive a normal approximation on the probability or logit scale?

Solution: The posterior density is

p(θ | y) ∝

[
n∏
i=1

θyi(1− θ)1−yi

]
θ−1(1− θ)−1

= θnȳ−1(1− θ)n−nȳ−1
,

which is the kernel of the density of a Beta(nȳ, n− nȳ) distribution. The mode of the posterior density

is

d log p(θ | y)

dθ
=
nȳ − 1

θ
− n− nȳ − 1

1− θ
!
= 0⇒ θ̂MAP =

nȳ − 1

n− 2
,

which is readily known from the properties of the Beta distribution as (α− 1)/(α+ β − 2). The observed

Fisher information is

J (θ) = −d2log p(θ | y)

dθ2
=
nȳ − 1

θ2
+
n− nȳ − 1

(1− θ)2
,

At the mode, the observed Fisher information is

J (θ)|θ=θ̂MAP
=

(n− 2)2

nȳ − 1
+

(n− 2)2

n− nȳ − 1
.

The normal approximation to p(θ | y) is therefore

θ | y approx.∼ Normal

(
θ

∣∣∣∣ nȳ − 1

n− 2
,

[
(n− 2)2

nȳ − 1
+

(n− 2)2

n− nȳ − 1

]−1
)
.

The prior density on β is

p(β) = p(g(β))

∣∣∣∣ θβ
∣∣∣∣ ∝ ( eβ

1 + eβ

)−1(
1− eβ

1 + eβ

)−1
eβ

(1 + eβ)
2 =

(
1 + eβ

)2
eβ

eβ

(1 + eβ)
2 = 1 ,
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which is an improper uniform prior density. The posterior density is then

p(β | y) ∝
n∏
i=1

(
eβ

1 + eβ

)yi(
1− eβ

1 + eβ

)1−yi
=

eβnȳ

(1 + eβ)
n .

The mode of the posterior density is

d log p(β | y)

dβ
= nȳ − neβ

1 + eβ
!
= 0⇒ β̂MAP = log

{
ȳ

1− ȳ

}
.

The observed Fisher information is

J (β) = −d2log p(β | y)

dβ2
=

neβ

(1 + eβ)
2 .

At the mode, the observed Fisher information is

J (β)|β=β̂MAP
= nȳ(1− ȳ) .

The normal approximation to p(β | y) is therefore

β | y approx.∼ Normal

(
θ

∣∣∣∣ log

{
ȳ

1− ȳ

}
,

1

nȳ(1− ȳ)

)
.

The logit β ranges from −∞ to ∞. It could therefore be more sensible to approximate p(β | y) by a

normal approximation since the support and parameter space agree.

Exercise 2 (chapter 6.2): Let {Yi}ni=1 be independent and identically distributed random variables

that follow a Poisson distribution with rate parameter λ > 0. The probability mass function of the

Poisson distribution is

pY (y) = Pr(Y = y) =
λy

y!
exp{−λ} y = 0, 1, . . .

Assume that E[λ] = 2 and Pr(λ > 3) = 0.01.

1. Describe the prior on λ by a normal distribution and find the posterior p(λ | y).

2. Derive a normal approximation to the posterior p(λ | y) at its mode using 100 Poisson observations

yi 0 1 2 3 4 5 ≥ 6
# 18 32 27 15 6 2 0

and compute the posterior probability Pr(λ > 2 | y).

3. Although λ > 0, the support of the normal prior on λ is unconstrained. Which reparameterization

under the bijection θ = g(λ) ⇔ λ = h(θ) would yield an unconstrained parameter? Describe

the prior on θ by a normal distribution using E[θ] = log 2 and Pr(θ > log 3) = 0.01 and find the

posterior p(θ | y).

4. Derive a normal approximation to the posterior p(θ | y) at its mode using same data as above and
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compute the posterior probability Pr(λ > 2 | y) by translating back to the original parameter space

(you may use R to find the mode and observed Fisher information).

Solution: It is know that E[λ] = 2 and Pr(λ > 3) = 0.01 so that

Pr(λ > 3) = Pr

(
λ− 2

σ
>

3− 2

σ

)
= Pr

(
Z >

1

σ

)
= 0.01⇒ 1

σ
= Φ−1(0.99) = 2.33 .

The parameters of the Normal prior on λ are thus µ = 2 and σ2 = 0.18. The posterior density is

p(λ | y) ∝

[
n∏
i=1

λyi exp{−λ}

]
exp
{
−2.63(λ− 2)

2
}

= λnȳ exp
{
−2.63λ2 + (10.52− n)λ

}
The mode of the posterior density is

d log p(λ | y)

dλ
=
nȳ

λ
− 5.24λ+ 10.52− n !

= 0

⇒ λ̂MAP =
−(n− 10.52) +

√
(n− 10.52)2 + 4(5.24)(nȳ)

2(5.24)
since λ > 0

For the above data, the mode is λ̂MAP = 1.67. The observed Fisher information is

J (λ) = −d2log p(λ | y)

dλ2
=
nȳ

λ2
+ 5.24 .

At the mode, the observed Fisher information is J (λ)|λ=λ̂MAP
= 63.78. The normal approximation to

p(λ | y) is therefore

λ | y approx.∼ Normal
(
λ | 1.67, 63.78−1

)
with Pr(λ > 2) = 0.0042. A possibly sensible reparameterization is θ = log λ. It is know that E[θ] = log 2

and Pr(θ > log 3) = 0.01 so that

Pr(θ > log 3) = Pr

(
θ − log 2

ψ
>

log 3/2

ψ

)
= Pr

(
Z >

log 3/2

ψ

)
= 0.01⇒ 1

ψ
=

Φ−1(0.99)

log 3/2
= 5.74 .

The parameters of the Normal prior on θ are thus ω = 0.69 and ψ2 = 0.03. The posterior density is

p(λ | y) ∝

[
n∏
i=1

eθyi exp
{
−eθ

}]
exp
{
−16.67(θ − log 2)

2
}

= exp
{
−16.67θ2 + (nȳ + 23.11)θ − neθ

}

Using the above data and R, the mode of the posterior density is θ̂MAP = 0.53 and observed Fisher infor-

mation at the mode is J (θ)|θ=θ̂MAP
= 203.71. The normal approximation to p(λ | y) after transforming

back to the original parameter space is therefore

λ | y approx.∼ Normal
(
log λ | 0.53, 203.71−1

)
λ−1

with Pr(λ > 2 | y) = 0.0055.

Exercise 3 (chapter 6.2): Let {Yi}ni=1 be independent and identically distributed random variables
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that follow an Exponential distribution with rate parameter λ > 0. The density of the Exponential

distribution is

fY (y) = λ exp{−λy} y > 0 .

Assume that the prior on λ can be described by the following density

p(λ) ∝ exp
{
−20(λ− 0.25)

2
}

λ > 0 .

1. Find the posterior p(λ | y) and an expression for the normalizing constant.

2. Derive a normal approximation to the posterior at its mode using n = 10 and ȳ = 0.5. Plot the

normal approximation together with the true posterior density.

Solution: The posterior density is

p(λ | y) ∝

[
n∏
i=1

λ exp{−λyi}

]
exp
{
−20(λ− 0.25)

2
}

= λn exp
{
−20λ2 + (10− nȳ)λ

}
.

The normalizing constant of the posterior density is

c−1 =

∫ ∞
0

λn exp
{
−20λ2 + (10− nȳ)λ

}
dλ .

The mode of the posterior density is

d log p(λ | y)

dλ
=
n

λ
− 40λ+ 10− nȳ !

= 0

⇒ λ̂MAP =
−(nȳ − 10) +

√
(nȳ − 10)2 + 4(40)(n)

2(40)
since λ > 0

For the above data, the mode is λ̂MAP = 0.57. The observed Fisher information is

J (λ) = −d2log p(λ | y)

dλ2
=

n

λ2
+ 40 .

At the mode, the observed Fisher information is J (λ)|λ=λ̂MAP
= 70.78. The normal approximation to

p(λ | y) is therefore

λ | y approx.∼ Normal
(
λ | 0.57, 70.78−1

)
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Exercise 4: Let {Yi}ni=1 be independent and identically distributed random variables that follow an Nor-

mal distribution with location µ and precision parameter τ > 0. The density of the Normal distribution

with precision parameter τ is

fY (y) =

√
τ

2π
exp
{
−τ

2
(y − µ)2

}
.

Assume that µ | τ ∼ Normal
(
0, τ−1

)
and τ ∼ Gamma(1, 1).

1. Derive the variational densities q?(µ | y) = exp{Eτ [ln p(µ, τ, y)]− ln cµ} and q?(τ | y) under the

mean–field assumption.

2. Implement a variational algorithm that refines the parameters of the variational distribution until

convergence occurs.

3. Compare the variational algorithm to Gibbs sampling with respect to bias and speed using the

following simulated data: set.seed( 50 ) ; y <- rnorm( 100 )

Solution: The variational density of µ is

ln q?(µ | y) = Eτ [ln p(µ, τ, y)] + const.

= Eτ

[
n∑
i=1

ln p(yi |µ, τ) + ln p(µ | τ)

]
+ const.

= −1

2

{
E[τ ]

n∑
i=1

(yi − µ)
2

+ E[τ ]µ2

}
+ const.

= −1

2

{
µ2(nE[τ ] + E[τ ])− 2µE[τ ]

n∑
i=1

yi

}
+ const.

Exponentiating ln q?(µ | y) indicates that the optimal variational density of µ is a normal densities, that

is,

q?(µ | y) = Normal
(
µ |ω, ψ−1

)
with precision

ψ = E[τ ](n+ 1) =
α(n+ 1)

β
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and location parameter

ω =
nȳ

n+ 1
.

The variational density of τ is

ln q?(τ | y) = Eµ[ln p(µ, τ, y)] + const.

= Eµ

[
n∑
i=1

ln p(yi |µ, τ) + ln p(µ | τ) + ln p(τ)

]
+ const.

= Eµ

[
n

2
log τ − τ

2

n∑
i=1

(yi − µ)
2

+
1

2
log τ − τ

2
µ2 − τ

]
+ const.

=

(
n+ 1

2
+ 1− 1

)
log τ −

{
1 +

1

2

(
n∑
i=1

E
[
(yi − µ)

2
]

+ E
[
µ2
])}

τ + const.

Exponentiating ln q?(τ | y) indicates that the optimal variational density of τ is a Gamma densities, that

is,

q?(τ | y) = Gamma(τ |α, β)

with shape

α = 1 +
n+ 1

2

and rate parameter

β = 1 +
1

2

(
n∑
i=1

E
[
(yi − µ)

2
]

+ E
[
µ2
])

= 1 +
1

2

(
n∑
i=1

y2
i − 2E[µ]

n∑
i=1

yi + E
[
µ2
]
[n+ 1]

)

= 1 +
1

2

(
n∑
i=1

y2
i − 2ω

n∑
i=1

yi +
[
ψ−1 + ω2

]
[n+ 1]

)

An implementation of a variational algorithm in R is

sumY <- sum( y ) ; sumYSquare <- sum( y ^ 2 )

omega <- sumY / ( n + 1 )

alpha <- 1 + 0.5 * ( n + 1 )

psi <- beta <- 1

tolerance <- 10 ^ -6

repeat {

psiOld <- psi ; betaOld <- beta

psi <- alpha * ( n + 1 ) / beta

beta <- 1 + 0.5 * ( ( n + 1 ) * ( 1 / psi + omega ^ 2 ) -

2 * omega * sumY + sumYSquare

)

if( all( abs( c( psiOld - psi, betaOld - beta ) ) < tolerance ) ) {

break
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}

}

An implementation of Gibbs sampling in R is

sumY <- sum( y )

omega <- sumY / ( n + 1 ) ; alpha <- 1 + 0.5 * ( n + 1 )

nSamples <- 10000 ;

x <- matrix( 0, nSamples, 2 ) ; x[ 1, ] <- 1

for( ii in seq( 2, nSamples ) ) {

x[ ii, 2 ] <- rgamma(

1,

alpha,

1 + 0.5 * sum( ( y - x[ ii - 1, 1 ] ) ^ 2 ) + 0.5 * ( x[ ii - 1, 1 ] ) ^ 2

)

x[ ii, 1 ] <- rnorm( 1, omega, sqrt( 1 / x[ ii, 2 ] / ( n + 1 ) ) )

}

Both methods give equivalent results, but the variational algorithm is significantly faster than Gibbs

sampling for 10 000 draws.
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