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Exercise 1: Let the discrete random variable X be described by a probability mass function pX(x) =

Pr(X = x). The current state of a Metropolis–Hastings Markov chain is xt, which is generated from

the same distribution as X. Demonstrate that the next state xt+1 will also be drawn from the same

distribution as X.

Solution: Let’s assume the following labels for the states of the Markov chain: xt+1 = xb and xt = xa.

The Metropolis–Hastings ratio is

r(xb |xa) =
q(xa |xb)p(xb)
q(xb |xa)p(xa)

.

The joint probability that Xt+1 = xb and Xt = xa can be decomposed as

Pr(Xt+1 = xb, Xt = xa) = Pr(Xt+1 = xb |Xt = xa)Pr(Xt = xa) .

The Markov chain reaches state xb at time t+ 1 if this state is proposed and accepted. Let’s assume that

r(xb |xa) > 1 and consequently r(xa |xb) < 1 so that

Pr(Xt+1 = xb, Xt = xa) = min[1, r(xb |xa)]q(xb |xa)Pr(Xt = xa) = q(xb |xa)p(xa)

On the other hand,

Pr(Xt+1 = xa, Xt = xb) = Pr(Xt+1 = xa |Xt = xb)Pr(Xt = xb)

= min[1, r(xa |xb)]q(xa |xb)p(xb)

=
q(xb |xa)p(xa)

q(xa |xb)p(xb)
q(xa |xb)p(xb)

= q(xb |xa)p(xa)

= Pr(Xt+1 = xb, Xt = xa)

implying that Pr(Xt+1 = xb, Xt = xa) = Pr(Xt+1 = xa, Xt = xb). Marginalization of the joint distribu-

tion shows that Pr(Xt+1 = xb) = Pr(Xt = xb) and since Xt follows the same distribution as X, the next

random variable Xt+1 follows that distribution as well.

Exercise 2 (chapter 7.4): Let the random variable X follow a Laplace distribution with location µ = 0

and scale parameter σ = 2. The density of the Laplace distribution is

fX(x) =
1

2σ
exp

{
−|x− µ|

σ

}
σ > 0 .

1. Implement an independent Metropolis–Hastings sampler with a Normal
(
0, σ2

1

)
proposal distribu-

tion.

2. Implement a random walk Metropolis–Hastings sampler based on Normal
(
0, σ2

2

)
noise.
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3. Compare the performance of both samplers in terms of E[X] and V[X] for various values of σ2
1 and

σ2
2 . What value of σ2

2 is required to achieve an acceptance rate of about 40% in case of the random

walk Metropolis–Hastings sampler?

Solution: An implementation of the independent Metropolis–Hastings sampler in R is:

target <- function( x ) { -0.5 * abs( x ) }

proposal <- function( x, scale ) { dnorm( x, 0, scale, TRUE ) }

nSamples <- 10000 ; nAccepted <- 0

x <- numeric( nSamples ) ; sigma1 <- 6;

for( ii in seq( 2, nSamples ) ) {

x[ ii ] <- rnorm( 1, 0, sigma1 )

alpha <- exp(

proposal( x[ ii - 1 ], sigma1 ) + target( x[ ii ] ) -

proposal( x[ ii ], sigma1 ) - target( x[ ii - 1 ] )

)

if( runif( 1 ) > alpha ) {

x[ ii ] <- x[ ii - 1 ]

} else {

nAccepted <- nAccepted + 1

}

}

An implementation of the random walk Metropolis–Hastings sampler in R is:

target <- function( x ) { -0.5 * abs( x ) }

nSamples <- 10000 ; nAccepted <- 0

x <- numeric( nSamples ) ; sigma2 <- 6

for( ii in seq( 2, nSamples ) ) {

x[ ii ] <- rnorm( 1, x[ ii - 1 ], sigma2 )

alpha <- exp( target( x[ ii ] ) - target( x[ ii - 1 ] ) )

if( runif( 1 ) > alpha ) {

x[ ii ] <- x[ ii - 1 ]

} else {

nAccepted <- nAccepted + 1

}

}

A comparison of both samplers for different values of σ2
1 and σ2

2 is shown below. In case of the random

walk Metropolis–Hastings sampler, the acceptance rate is high for small values of σ2
2 (first trace plot).

Successive states of the Markov chain are very similar which results in a slow exploration of the distribution

and convergence to it. If σ2
2 is too large (second trace plot), then the proposed states are likely in regions

with low probability density which also results in a slow exploration of the distribution and convergence

to it.

The value of σ2
2 has to be between 25 and 100 to achieve an acceptance rate of about 40%. Since V[X] = 8,

σ2
2 = 2.382 · 8 ≈ 45 (chapter 7.4.3) results in an acceptance rate of about 40%.
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# E[X] (RW) Var[X] (RW) Accepted (RW) E[X] (IND) Var[X] (IND) Accepted (IND)

# 0.01 -0.081406 2.287 0.9798 0.03763 0.04949 0.4255

# 25 -0.059631 7.860 0.4610 -0.02733 7.62242 0.5550

# 100 -0.101546 7.929 0.2756 -0.05885 7.75144 0.3074

# 2500 -0.008731 8.329 0.0677 -0.03320 7.49225 0.0603

# 10000 -0.050212 6.848 0.0295 -0.23956 7.13693 0.0311
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Exercise 3 (chapter 7.4): Let {Yi}3i=1 be independent and identically distributed random variables

that follow a Cauchy distribution with location µ and scale parameter σ = 1. The density of the Cauchy

distribution is

fY (y) =
1

π

[
σ

σ2 + (y − µ)
2

]
σ > 0 .

The prior density of the location parameter is p(µ) ∝ exp
{
−µ2/100

}
.

1. Show that the posterior density has three modes when Y1 = 0, Y2 = 5 and Y3 = 9.

2. Implement a random walk Metropolis–Hastings sampler based on Cauchy
(
0, σ2

1

)
and Normal

(
0, σ2

2

)
noise.

3. Compare the performance of both samplers in terms of E[µ | y1, y2, y2] and monitor convergence

using cumulative average plots.

Solution: Trimodality could be checked visually.
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An implementation of both random walk Metropolis–Hastings samplers in R is:

target <- function( mu, y ) {

-mu ^ 2 / 100 -

log( 1 + ( y[ 1 ] - mu ) ^ 2 ) -

log( 1 + ( y[ 2 ] - mu ) ^ 2 ) -

log( 1 + ( y[ 3 ] - mu ) ^ 2 )

}

nSamples <- 10000 ;

x <- matrix( 0, nSamples, 2 ) ; y <- c( 0, 5, 9 ) ; sigma <- 0.01

for( ii in seq( 2, nSamples ) ) {

x[ ii, 1 ] <- rnorm( 1, x[ ii - 1, 1 ], sigma )

x[ ii, 2 ] <- rcauchy( 1, x[ ii - 1, 2 ], sigma )

alpha <- c(

exp( target( x[ ii, 1 ], y ) - target( x[ ii - 1, 1 ], y ) ),

exp( target( x[ ii, 2 ], y ) - target( x[ ii - 1, 2 ], y ) )

)

if( runif( 1 ) > alpha[ 1 ] ) {

x[ ii, 1 ] <- x[ ii - 1, 1 ]

}

if( runif( 1 ) > alpha[ 2 ] ) {

x[ ii, 2 ] <- x[ ii - 1, 2 ]

}

}

Cauchy noise works well in terms of convergence and posterior mean estimation regardless of the value

of σ2
1 . Conversely, normal noise only works for σ2

2 = 10. For σ2
2 = 0.01 and σ2

2 = 0.5, convergence does

not occur during the number of iterations or posterior mean approximation is too biased.
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Exercise 4: Let X and Y be discrete random variables with support {x1, . . . , xn} and {y1, . . . , ym}.
Denote the joint probability mass function of X and Y by pX,Y (x, y) = Pr(X = x, Y = y). Using a

Gibbs sampler, assume that convergence to the distribution of (X,Y ) has occurred. Demonstrate that

the next state (xt+1, yt+1) will also be drawn from the same distribution as (X,Y ).

Solution: By the law of total probability,

Pr(Xt+1 = xt+1, Yt+1 = yt+1) =
∑
i,j

[
Pr(Xt+1 = xt+1, Yt+1 = yt+1 |Xt = xi, Yt = yj)

Pr(Xt = xi, Yt = yj)
]
.

Assume that the next state (xt+1, yt+1) is generated by first drawing from the conditional distribution

Y |X and subsequently from X |Y . In that case

Pr(Xt+1 = xt+1, Yt+1 = yt+1 |Xt = xi, Yt = yj) = Pr(Xt+1 = xt+1 |Yt+1 = yt+1)×

Pr(Yt+1 = yt+1 |Xt = xi) .

The joint probability that Xt+1 = xt+1 and Yt+1 = yt+1 is therefore

Pr(Xt+1 = xt+1, Yt+1 = yt+1) = Pr(Xt+1 = xt+1 |Yt+1 = yt+1)×∑
i,j

Pr(Yt+1 = yt+1 |Xt = xi)Pr(Xt = xi, Yt = yj)

=
p(xt+1, yt+1)

p(yt+1)

∑
i,j

p(xi, yt+1)

p(xi)
p(yj |xi)p(xi)

=
p(xt+1, yt+1)

p(yt+1)

∑
i

p(xi, yt+1)
∑
j

p(yj |xi)

= p(xt+1, yt+1) ,

which shows that (Xt+1, Yt+1) follows the same distribution as (X,Y ).

Exercise 5 (chapter 7.5): Let the vector X = [X1, X2]
T

follow a bivariate Normal distribution with
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zero mean vector and covariance matrix

[
1 ρ
ρ 1

]
with |ρ| < 1.

1. Implement Monte Carlo simulation and Gibbs sampling to compute marginal expectations and

variances.

2. Use ρ = 0 and generate 500 samples. Compare both methods in terms of bias.

3. Use ρ = 0.5, 0.9, 0.99, 0.999 and generate again 500 samples. Create trace plots and explain how

the correlation affects Gibbs sampling.

4. Repeat 2. and 3. by generating 10 000 samples. Explain how Gibbs sampling improves in terms of

bias when generating more samples.

Solution: The conditional density of X1 given X2 = x2 is

fX1|X2
(x1 |x2) =

fX1,X2(x1, x2)

fX2
(x2)

=
1

2π
√

1− ρ2
exp

{
−x

2
1 − 2ρx1x2 + x22

2(1− ρ2)

}/
1√
2π

exp

{
−x

2
2

2

}

=
1√

2π(1− ρ2)
exp

{
− (x1 − ρx2)

2

2(1− ρ2)

} ,

which can be recognized as the density of a Normal
(
ρx2, 1− ρ2

)
distribution. Inversely, the conditional

distribution of X2 given X1 = x1 is Normal
(
ρx1, 1− ρ2

)
. An implementation of Monte Carlo simulation

and Gibbs sampling in R is:

rho <- 0.5 ; Sigma <- matrix( c( 1, rho, rho, 1 ), 2, 2 ) ;

scale <- sqrt( 1 - rho ^ 2 ) ; nSamples <- 10000 ;

x <- array( 0, c( nSamples, 2, 2 ) )

x[, , 1 ] <- mvtnorm::rmvnorm( nSamples, sigma = Sigma )

for( ii in seq( 2, nSamples ) ) {

x[ ii, 1, 2 ] <- rnorm( 1, rho * x[ ii - 1, 2, 2 ], scale )

x[ ii, 2, 2 ] <- rnorm( 1, rho * x[ ii - 1, 1, 2 ], scale )

}

For ρ = 0 and 500 samples, the performance of both methods in terms of bias is:

# Expectations (MC): -0.01832 0.08145

# Expectations (Gibbs): -0.00554 0.06355

# Variances (MC): -0.06087 -0.07836

# Variances (Gibbs): 0.02799 0.07053

Monte Carlo simulation and Gibbs sampling are equivalent for ρ = 0, because the conditional distributions

reduce to marginals and generating from the bivariate distribution is equivalent to drawing from the

marginals due to independence. For ρ = 0.5, 0.9, 0.99, 0.999, the performance of both methods is:
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# E[X1] (MC) E[X2] (MC) Var[X1] (MC) Var[X2] (MC)

# 0.5 -0.04728 -0.05681 1.0927 1.0393

# 0.9 -0.01116 -0.01935 0.9589 0.9952

# 0.99 0.09452 0.09711 0.9814 0.9792

# 0.999 0.02218 0.02219 0.9756 0.9757

# E[X1] (Gibbs) E[X2] (Gibbs) Var[X1] (Gibbs) Var[X2] (Gibbs)

# 0.5 -0.003253 0.05215 0.9698 1.0500

# 0.9 0.020826 0.01506 0.8167 0.8190

# 0.99 0.124466 0.13561 0.4741 0.4731

# 0.999 -0.282552 -0.28126 0.0935 0.0936
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The performance of the Gibbs sampler in terms of bias decreases as the correlation ρ between X1 and

X2 gets larger. Note the underestimation of the variances for large values of ρ. The decrease in accuracy

is due to the large correlation betweens subsequent Gibbs draws. This behavior can be seen from the

cumulative average plot: a large value of ρ results in a smooth graph.

For ρ = 0 and 10000 samples, the performance of both methods in terms of bias is:

# Expectations (MC): 0.0122 0.007333

# Expectations (Gibbs): -0.01249 -0.006557

# Variances (MC): -0.01316 0.008621

# Variances (Gibbs): 0.01814 0.008486

For ρ = 0.5, 0.9, 0.99, 0.999, the performance of both methods is:

# E[X1] (MC) E[X2] (MC) Var[X1] (MC) Var[X2] (MC)

# 0.5 0.001906 -0.004195 1.001 0.9984

# 0.9 -0.003444 -0.001229 1.004 1.0026

# 0.99 -0.009029 -0.008474 1.003 1.0048

# 0.999 0.002127 0.001981 1.008 1.0089

# E[X1] (Gibbs) E[X2] (Gibbs) Var[X1] (Gibbs) Var[X2] (Gibbs)

# 0.5 0.002819 0.001682 1.0080 1.0056

# 0.9 0.013091 0.012947 1.0093 1.0095

# 0.99 0.055644 0.055629 1.0287 1.0289

# 0.999 -0.234236 -0.234031 0.7897 0.7898
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The performance of both methods increases with the number of generated draws. However, for very large

values of ρ, Gibbs sampling is still very biased and convergence diagnostics are necessary.

Exercise 6 (chapter 7.5): Let {y}ni=1 be observations from a counting process where

yi |µ1, µ2, λ ∼

Poisson(µ1) if i ≤ λ

Poisson(µ2) if i > λ

and λ denotes a changepoint. Let the priors be

µ1 ∼ Gamma(α1, β1)

µ2 ∼ Gamma(α2, β2)

λ ∼ Uniform(1, 2, . . . , n)

.

1. Find the likelihood and joint posterior density for the changepoint model.

2. Find all full conditional densities to implement a Gibb sampler.

3. Use the Gibbs sampler and the following data to perform changepoint detection:

4, 4, 3, 1, 3, 2, 1, 0, 11, 11, 12, 4, 4, 7, 9, 6, 9, 12, 13, 15, 12, 10, 10, 6, 6, 7, 12, 11,

15, 5, 11, 8, 11, 7, 11, 12, 14, 12, 8, 11, 9, 10, 6, 14, 14, 8, 4, 7, 10, 3, 14, 10, 17, 7,

16, 9, 12, 11, 7, 11, 5, 11, 13, 9, 7, 9, 7, 11, 12, 13, 6, 9, 10, 13, 8, 18, 6, 16, 8, 4, 16,

8, 9, 5, 7, 9, 10, 11, 13, 12, 9, 11, 7, 9, 6, 7, 6, 11, 8, 5

Solution: The likelihood and posterior density are

p(µ1, µ2, λ | y) ∝ p(y |µ1, µ2, λ)p(µ1)p(µ2)p(λ)

=

[ λ∏
i=1

µyi1 exp{−µ1}
n∏

i=λ+1

µyi2 exp{−µ2}
][
µα1−1
1 exp{−β1µ1}

][
µα2−1
2 exp{−β2µ2}

]
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The full conditional density of µ1 is

p(µ1 |µ2, λ, y) ∝
λ∏
i=1

µyi1 exp{−µ1}µα1−1
1 exp{−β1µ1}

= µ
α1+(

∑λ
i=1 yi)−1

1 exp{−µ1(β1 + λ)} ,

which can be recognized as the density of a Gamma
(
α1 +

∑λ
i=1 yi, β1 + λ

)
distribution. The full condi-

tional density of µ2 is

p(µ2 |µ1, λ, y) ∝
n∏

i=λ+1

µyi2 exp{−µ2}µα2−1
2 exp{−β2µ2}

= µ
α2+(

∑n
i=λ+1 yi)−1

2 exp{−µ2(β2 + n− λ)} ,

which can be recognized as the density of a Gamma
(
α2 +

∑n
i=λ+1 yi, β2 + n− λ

)
distribution. The full

conditional (probability mass function) of λ is

p(λ |µ1, µ2, y) ∝
λ∏
i=1

µyi1 exp{−µ1}
n∏

i=λ+1

µyi2 exp{−µ2} λ = 1, 2, . . . , n .

An implementation of Monte Carlo simulation and Gibbs sampling in R is:

a1 <- b1 <- a2 <- b2 <- 1

n <- length( y ) ; nSamples <- 2000

x <- matrix( 0, nSamples, 3 ) ; x[ 1, 3 ] <- 10

grid <- seq_len( n )

for( ii in seq( 2, nSamples ) ) {

x[ ii, 1 ] <- rgamma(

1,

a1 + sum( y[ 1 : x[ ii - 1, 3 ] ] ),

b1 + x[ ii - 1, 3 ]

)

x[ ii, 2 ] <- rgamma(

1,

a2 + sum( y[ ( x[ ii - 1, 3 ] + 1 ) : n ] ),

b2 + n - x[ ii - 1, 3 ]

)

like1 <- cumsum( dpois( y[ grid ], x[ ii, 1 ], TRUE ) )

like2 <- dpois( y[ grid[ -1 ] ], x[ ii, 2 ], TRUE )

like2 <- sapply( 1 : length( like2 ), function( ii, nLike2 ) {

sum( like2[ ii : nLike2 ] ), nLike2 = length( like2 )

} )

probs <- like1 + c( like2, 0 )

maxProb <- max( probs )
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sumProbs <- maxProb + log( sum( exp( probs - maxProb ) ) )

probs <- exp( probs - sumProbs )

x[ ii, 3 ] <- sample( grid , 1, FALSE, probs )

}

Gibbs sampling using 10 000 draws resulted the following posterior mean estimates for the above data:

# mu1 mu2 lambda

# 2.110 9.524 8.000

The true parameter values are µ1 = 2, µ2 = 10 and λ = 8.

Exercise 7 (chapter 7.8): Let {Xi}ni=1 be correlated random variables with V[Xi] = σ2 for all

i = 1, . . . n and Cov[Xi, Xi+k] = σk for all i, k. Consider the sample mean X̄ = n−1
∑n
i=1Xi and find its

variance V
[
X̄
]
.

Solution: The variance of the sample mean is

V
[
X̄
]

= V

[
1

n

n∑
i=1

Xi

]

=
1

n2
V[X1 + (X2 + . . .+Xn)]

=
1

n2
(V[X1] + 2Cov[X1, X2 + . . .+Xn] + V[X2 + . . .+Xn])

=
1

n2
(
σ2 + 2[σ1 + . . .+ σn−1] + V[X2 + . . .+Xn]

)
.

Continuing in a similar manner with V[X2 + . . .+Xn] and all subsequent variances yields

V
[
X̄
]

=
1

n2
(
nσ2 + 2[(n− 1)σ1 + . . .+ σn−1]

)
=
σ2

n

(
1 + 2

[
(n− 1)σ1
nσ2

+ . . .+
σn−1
nσ2

])

=
σ2

n

1 + 2

n−1∑
j=1

[
n− j
n

]
σj
σ2


=
σ2

n

1 + 2

n−1∑
j=1

[
1− j

n

]
ρj



,

where ρj = σj/σ
2 is the correlation at lag j, that is, the correlation between Xi and Xi+k. Note that

the variance of the sample mean can be used in MCMC sampling to compute numerical standard errors.

These numerical standard errors help quantify the uncertainty on E[h(θ)] due to MCMC sampling. It

can also be used to determine the number of MCMC draws as it tends to 0 with increasing draws.
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