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Computational statistics 1 — Solution exercise set 2 u

Exercise 1 (chapter 3.5): The accept-reject method is used to simulate from a distribution Fx (x) with
unnormalized density f% (z) by using the proposal density gx (z) and majorizing constant M. However,

the majorizing condition
fx(@) < Mgx (x)

does not hold in some region of the space. Consequently, the accept-reject method does not simulate from
the distribution corresponding to f%(z) but from another distribution. Write down the unnormalized

density for the distribution that is simulated by the accept—reject method.

Solution: The accept-reject method uses the following algorithm

Simulate X’ ~ gx and U ~ Unif(0,1)
Compute Y = Mgx (z")U
Accept X" if Y < fx(2') and set X = X"

The pair (X',Y) is uniformly distributed under the graph of Mgx. Upon acceptance of X', the distribu-
tion of (X,Y") is uniform under the graph of min(f%, Mgx). If the majorizing condition does not hold in
some region of the space, then the marginal distribution of X is described by the unnormalized density
min(f%, Mgx) instead of f%.

Exercise 2 (chapter 3.5): Let {y;}.—, be conditionally independent observations from N(yi |0, 0’1),
where 6 > 0 is the reciprocal of the variance parameter. The prior of § is the half-Cauchy distribution.
The density of the half-Cauchy distribution is

2

= — >0.
(14 62) 620

p(0)

1. Find the normalized likelihood, that is, calculate the likelihood and normalize it so that it becomes

a familiar density.

2. Suppose that n = 1000 and y2 = n~' 31" | y? = 0.96. Draw a histogram from sample of the
posterior which you obtained by using the accept-reject method and normalized likelihood as the

proposal distribution.

3. It would also be feasible to use the prior as the proposal distribution, because the maximum-
likelihood estimate can be found analytically and the half-Cauchy distribution can be simulated
by taking the absolute value of a random number drawn from the ordinary Cauchy distribution.
However, the acceptance probability would be rather low: about 3.5% as compared to 48% from

the method of part 2. Can you explain why?



Solution: The likelihood is

which is the kernel of the density of a Gamma(n/2+ 1,3 " | y?/2) distribution. Since the prior density
p(0) is bounded, the least upper bound is
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< maxp(f) < M,

where p*(y | 0) is the normalized Gamma likelihood. The acceptance condition with M = maxp(f) = 2/x

is therefore

< P (y]0)p) p(0) 1

Mp*(y|0) — maxp(d) 1+ 62

yielding the following algorithm

Simulate 6 ~ Gamma(n/Q +1, n?/?) and U ~ Unif(0,1)

1
Accept 0iftU S m .

n <- 1000; ySquareBar <- 0.96 ; nSamples <- 10000 ; nProposed <- 0
x <- numeric( nSamples ); ii <- 0O
while( ii < nSamples ) {

nProposed <- nProposed + 1

xProposed <- rgamma( 1, 0.5 * n + 1, 0.5 * n * ySquareBar )

if( runif( 1) <1/ (1 + xProposed ~ 2 ) ) {

x[ ii <- ii + 1 ] <- xProposed

b
# Estimated acceptance probability: 0.4776
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The mode of the Gamma distribution and also the maximum-likelihood estimate of 8 is
éMLE =—0 =
B

Using the prior as the proposal distribution, the least upper bound is

_ p(y|0)p(0)

<p*(y|b <M.
(0) <p*(y|O0me) <

h(8)
The acceptance condition with M = p(y | fywg) is therefore

2
U< p*(y | 0)p(9) _ Gamma(@\n/?—i—l,ny /2)
- Mp(9) Gamma (éMLE [n/2 41, n?/Q)

yielding the following algorithm

Simulate 6 ~ Half-Cauchy distribution and U ~ Unif(0, 1)
Gamma(9 [n/2+1, n?/?)

Accept 0 if U < - — .
Gamma(GMLE [n/2+ 1, ny2/2>

normLikehood <- function( x ) { dgamma( x, 0.5 * n + 1, 0.5 * n * ySquareBar ) }
ySquareBar <- 0.96 ; mle <- 1 / ySquareBar ;
n <- 1000; nSamples <- 10000 ; nProposed <- 0O
x <- numeric( nSamples ); ii <- O
while( ii < nSamples ) {
nProposed <- nProposed + 1
xProposed <- abs( rcauchy( 1 ) )
if( runif( 1 ) < normLikehood( xProposed ) / normLikehood( mle ) ) {

x[ ii <- ii + 1 ] <- xProposed

b
# Estimated acceptance probability: 0.0352
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The acceptance probability is rather low, because the prior is flat and the unnormalized posterior density
highly peaked around the maximum likelihood estimate. This leads to a large amount of rejections and

a low acceptance probability.

n <- 1000 ; ySquareBar <- 0.96 ; mle <- 1 / ySquareBar

grid <- seq( 0.5, 1.5, by = 0.001 )

prior <- 2 / pi / (1 + grid =~ 2)

normLikehood <- dgamma( grid, 0.5 * n + 1, 0.5 * n * ySquareBar )

M <- dgamma( mle, 0.5 * n + 1, 0.5 * n * ySquareBar )

par( mar = ¢c( 3, 3, 2, 3 ), las = 1)

plot( grid, prior * normLikehood, type = 'l', ylim = c( 0, 5 ),
main = 'Unnormal. posterior vs. M * prior density' )

lines( grid, M * prior, col = 'red' )
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Exercise 3 (chapter 3.8): Let the random vector X = [X1,Xs,...,X,]" follow a d-dimensional
multivariate Student’s—¢ distribution Stq(x | p, X, v) with location parameter p, symmetric and positive
definite d x d scale matrix X and v > 0 degrees of freedom. The density of the multivariate Student’s—¢
distribution is

L((v+d)/2) 1 ~whd)2

Ix(x) = T2 (0 12 det(3) + ;(:c —w)'E Nz - p)

Suppose that the factorization X = AAT is available. Design an algorithm without using any other



matrix factorizations and in which random numbers are only drawn Gamma and (univariate) standard

normal distributions.

Solution: A pair (X,Y) with X = [Xq,... ,Xp]T being a p-dimensional random vector follows a mul-
tivariate Normal-Gamma distribution with location parameter p, symmetric and positive definite d x d
scale matrix X and v > 0 degrees of freedom, if X |Y ~ MVNy(u, ¥/y) and Y ~ Gamma(v/2,v/2).

The marginal distribution of X is a multivariate Student’s—¢ distribution because

fx(w)==t/an|Y(w|y)fy(y)dy

x /y(”*d)/g’1 exp{— [V +o(—p) E (- u)} y} dy

1 T —(v+d)/2
x |14 2w e )

which is the kernel of a multivariate Stq(x|p, X, v) distribution. Simulation from the multivariate

Student’s—t distribution can be implemented by using the composition rule

Simulate y ~ Gamma(v/2,v/2)
Simulate [Z71, ..., Zp] xd Normal(0, 1)

Set [X1,...,X4)" = p+AZ/VY .

mu <- c( 5, 10 ) ; Sigma <- matrix( c( 1, 0.5, 0.5, 1 ), 2, 2 ) ; nu <- 6
A <- t( chol( Sigma ) )
nSamples <- 1000
x1 <- mvtnorm::rmvt( nSamples, Sigma, nu, mu )
x2 <- matrix( O, nSamples, 2 )
for( ii in seq_len( nSamples ) ) {
y <= rgamma( 1, 0.5 * nu, 0.5 * nu )
x2[ ii, ] <= mu + A %*% rnorm( 2 ) / sqrt( y )

Multivariate Student's—t
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Exercise 4 (chapter 5.4): Instead of the Inverse Gamma distribution, many authors use the scaled



inverse chi-square distribution for a variance parameter o2 of a Normal distribution. See for instance the
book by Gelman et al. with the title ”Bayesian Data Analysis”. The authors define the scaled inverse

chi-square distribution Inv—y? (02 |v, 57(2)) with scale parameter o3 > 0 and degrees of freedom v > 0 as

Y = — when X ~ x2.
The density of the scaled inverse chi-square distribution is

v/2
(O'%l//2) yfu/Qfl exp 7@
I(v/2) 2y |

1. Derive the density of Y from X.

fy(y) =

2. If the variance parameter o follows a scaled inverse chi-square distribution Inv—x?(0? | 63, v), then
the precision parameter 1) = 1/0? follows a Gamma distribution. What are its (hyper)parameters?

Remember that if X ~ x2 and a > 0, then X/a has a certain Gamma distribution.
Solution: The density of Y = 1/X is

__ 1 o\ [ adv\ady
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dx

fr(y) = fx(x) dy

which is the density of an InversefGamma(V/ 2,08v/ 2) distribution. The density of 1) = 1/0? is

_ do?| (‘73”/2)”/2 1\ /! o2y 1
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which is the density of a Gamma(v/2, 03v/2) distribution.

Exercise 5 (chapter 5.5): Consider the simple linear regression model, where

p(y|B,7) = MVN, (y| XB,77'I)
p(B,7) = MVN, (8|, Q")Gamma(r | a,b) .
Here X is a known n x p matrix of explanatory variables, 7 > 0 a scalar precision parameter of the error

distribution and 3 a coefficient vector of length p. Note that 8 and 7 are assumed to be independent in

their joint prior distribution.

1. Write down the joint density p(y, 3, 7) including all normalizing constants. Notice that det(cA) =

c"det(A) for a scalar ¢ and n x n matrix A.



2. Derive the full conditional distribution p(3| 7, y) either from first principles or by using the theory
in chapter 5.5.2.

3. Derive the full conditional distribution p(7|B,vy) by finding a useful formula when starting from
first principles or alternatively by extending the theory of chapter 5.4.2 to the present situation.

Solution: The joint density is proportional to

p(y, B,7) x (2m) "/ 27m/2 exp{—g(y - XB8)"(y - Xﬁ)} X

(2m) 72 @Q) exp{ (8- QB - ) b

I'(a)

7% Lexp{—br}
The full conditional density of 3 is
pB17.9) x oxp{ 5 [rly - XB)"(w - XB) + (6~ 0" QB - ] }.

where the quadratic form is equal to

¢=7(y—-XB) (y-XB)+(B-1)' QB-p)
=" XTXB-28Tr X"y +3TQB — 28T Qu + const.
=B"QB - 28" Q1 + const.

with Q = Q+7XTX and n= Q! (Qu + TXTy). The full conditional of 3 is therefore a MVN,, (ﬂ, Q)

distribution. The full conditional density of 7 is
_ 1
1oy o7 el ot S - X0 - X o}

which is the kernel of a Gamma (a +n/2,b+ (y — Xﬁ)T(y — Xﬁ)) distribution.



