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Computational statistics 1 — Solution exercise set 2

Exercise 1 (chapter 3.5): The accept–reject method is used to simulate from a distribution FX(x) with

unnormalized density f∗X(x) by using the proposal density gX(x) and majorizing constant M . However,

the majorizing condition

f∗X(x) ≤MgX(x)

does not hold in some region of the space. Consequently, the accept–reject method does not simulate from

the distribution corresponding to f∗X(x) but from another distribution. Write down the unnormalized

density for the distribution that is simulated by the accept–reject method.

Solution: The accept–reject method uses the following algorithm

Simulate X ′ ∼ gX and U ∼ Unif(0, 1)

Compute Y = MgX(x′)U

Accept X ′ if Y < f∗X(x′) and set X = X ′ .

The pair (X ′, Y ) is uniformly distributed under the graph of MgX . Upon acceptance of X ′, the distribu-

tion of (X,Y ) is uniform under the graph of min(f∗X ,MgX). If the majorizing condition does not hold in

some region of the space, then the marginal distribution of X is described by the unnormalized density

min(f∗X ,MgX) instead of f∗X .

Exercise 2 (chapter 3.5): Let {yi}ni=1 be conditionally independent observations from N
(
yi | 0, θ−1

)
,

where θ > 0 is the reciprocal of the variance parameter. The prior of θ is the half–Cauchy distribution.

The density of the half-Cauchy distribution is

p(θ) =
2

π(1 + θ2)
θ ≥ 0 .

1. Find the normalized likelihood, that is, calculate the likelihood and normalize it so that it becomes

a familiar density.

2. Suppose that n = 1000 and y2 = n−1
∑n
i=1 y

2
i = 0.96. Draw a histogram from sample of the

posterior which you obtained by using the accept–reject method and normalized likelihood as the

proposal distribution.

3. It would also be feasible to use the prior as the proposal distribution, because the maximum-

likelihood estimate can be found analytically and the half–Cauchy distribution can be simulated

by taking the absolute value of a random number drawn from the ordinary Cauchy distribution.

However, the acceptance probability would be rather low: about 3.5% as compared to 48% from

the method of part 2. Can you explain why?
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Solution: The likelihood is

p(y | θ) =

n∏
i=1

√
θ

2π
exp

{
−θ

2
y2i

}
∝ θn/2 exp

{
−θ

2

n∑
i=1

y2i

}
,

which is the kernel of the density of a Gamma
(
n/2 + 1,

∑n
i=1 y

2
i /2
)

distribution. Since the prior density

p(θ) is bounded, the least upper bound is

h(θ) =
p∗(y | θ)p(θ)
p∗(y | θ)

≤ max p(θ) ≤M ,

where p∗(y | θ) is the normalized Gamma likelihood. The acceptance condition with M = max p(θ) = 2/π

is therefore

U ≤ p∗(y | θ)p(θ)
Mp∗(y | θ)

=
p(θ)

max p(θ)
=

1

1 + θ2

yielding the following algorithm

Simulate θ ∼ Gamma
(
n/2 + 1, ny2/2

)
and U ∼ Unif(0, 1)

Accept θ if U ≤ 1

1 + θ2
.

n <- 1000; ySquareBar <- 0.96 ; nSamples <- 10000 ; nProposed <- 0

x <- numeric( nSamples ); ii <- 0

while( ii < nSamples ) {

nProposed <- nProposed + 1

xProposed <- rgamma( 1, 0.5 * n + 1, 0.5 * n * ySquareBar )

if( runif( 1 ) < 1 / ( 1 + xProposed ^ 2 ) ) {

x[ ii <- ii + 1 ] <- xProposed

}

}

# Estimated acceptance probability: 0.4776
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The mode of the Gamma distribution and also the maximum-likelihood estimate of θ is

θ̂MLE =
α− 1

β
=

1

y2
.

Using the prior as the proposal distribution, the least upper bound is

h(θ) =
p∗(y | θ)p(θ)

p(θ)
≤ p∗(y | θ̂MLE) ≤M .

The acceptance condition with M = p(y | θ̂MLE) is therefore

U ≤ p∗(y | θ)p(θ)
Mp(θ)

=
Gamma

(
θ |n/2 + 1, ny2/2

)
Gamma

(
θ̂MLE |n/2 + 1, ny2/2

)
yielding the following algorithm

Simulate θ ∼ Half-Cauchy distribution and U ∼ Unif(0, 1)

Accept θ if U ≤
Gamma

(
θ |n/2 + 1, ny2/2

)
Gamma

(
θ̂MLE |n/2 + 1, ny2/2

) .

normLikehood <- function( x ) { dgamma( x, 0.5 * n + 1, 0.5 * n * ySquareBar ) }

ySquareBar <- 0.96 ; mle <- 1 / ySquareBar ;

n <- 1000; nSamples <- 10000 ; nProposed <- 0

x <- numeric( nSamples ); ii <- 0

while( ii < nSamples ) {

nProposed <- nProposed + 1

xProposed <- abs( rcauchy( 1 ) )

if( runif( 1 ) < normLikehood( xProposed ) / normLikehood( mle ) ) {

x[ ii <- ii + 1 ] <- xProposed

}

}

# Estimated acceptance probability: 0.0352
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The acceptance probability is rather low, because the prior is flat and the unnormalized posterior density

highly peaked around the maximum likelihood estimate. This leads to a large amount of rejections and

a low acceptance probability.

n <- 1000 ; ySquareBar <- 0.96 ; mle <- 1 / ySquareBar

grid <- seq( 0.5, 1.5, by = 0.001 )

prior <- 2 / pi / ( 1 + grid ^ 2 )

normLikehood <- dgamma( grid, 0.5 * n + 1, 0.5 * n * ySquareBar )

M <- dgamma( mle, 0.5 * n + 1, 0.5 * n * ySquareBar )

par( mar = c( 3, 3, 2, 3 ), las = 1 )

plot( grid, prior * normLikehood, type = 'l', ylim = c( 0, 5 ),

main = 'Unnormal. posterior vs. M * prior density' )

lines( grid, M * prior, col = 'red' )
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Exercise 3 (chapter 3.8): Let the random vector X = [X1, X2, . . . , Xn]
T

follow a d-dimensional

multivariate Student’s–t distribution Std(x |µ,Σ, ν) with location parameter µ, symmetric and positive

definite d× d scale matrix Σ and ν > 0 degrees of freedom. The density of the multivariate Student’s–t

distribution is

fX(x) =
Γ((ν + d)/2)

νd/2πd/2Γ(ν/2)det(Σ)
1/2

[
1 +

1

ν
(x− µ)

T
Σ−1(x− µ)

]−(ν+d)/2
.

Suppose that the factorization Σ = AAT is available. Design an algorithm without using any other
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matrix factorizations and in which random numbers are only drawn Gamma and (univariate) standard

normal distributions.

Solution: A pair (X, Y ) with X = [X1, . . . , Xp]
T

being a p-dimensional random vector follows a mul-

tivariate Normal–Gamma distribution with location parameter µ, symmetric and positive definite d× d
scale matrix Σ and ν > 0 degrees of freedom, if X |Y ∼ MVNd(µ,Σ/y) and Y ∼ Gamma(ν/2, ν/2).

The marginal distribution of X is a multivariate Student’s–t distribution because

fX(x) =

∫
fX |Y (x | y)fY (y) dy

∝
∫
y(ν+d)/2−1 exp

{
−
[
ν

2
+

1

2
(x− µ)

T
Σ−1(x− µ)

]
y

}
dy

∝
[
1 +

1

ν
(x− µ)

T
Σ−1(x− µ)

]−(ν+d)/2
,

which is the kernel of a multivariate Std(x |µ,Σ, ν) distribution. Simulation from the multivariate

Student’s–t distribution can be implemented by using the composition rule

Simulate y ∼ Gamma(ν/2, ν/2)

Simulate [Z1, . . . , Zp]
Ind∼ Normal(0, 1)

Set [X1, . . . , Xd]
T

= µ+AZ/
√
Y .

mu <- c( 5, 10 ) ; Sigma <- matrix( c( 1, 0.5, 0.5, 1 ), 2, 2 ) ; nu <- 6

A <- t( chol( Sigma ) )

nSamples <- 1000

x1 <- mvtnorm::rmvt( nSamples, Sigma, nu, mu )

x2 <- matrix( 0, nSamples, 2 )

for( ii in seq_len( nSamples ) ) {

y <- rgamma( 1, 0.5 * nu, 0.5 * nu )

x2[ ii, ] <- mu + A %*% rnorm( 2 ) / sqrt( y )

}
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Exercise 4 (chapter 5.4): Instead of the Inverse Gamma distribution, many authors use the scaled
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inverse chi-square distribution for a variance parameter σ2 of a Normal distribution. See for instance the

book by Gelman et al. with the title ”Bayesian Data Analysis”. The authors define the scaled inverse

chi–square distribution Inv–χ2
(
σ2 | ν, σ2

0

)
with scale parameter σ2

0 > 0 and degrees of freedom ν > 0 as

Y =
σ2
0ν

X
when X ∼ χ2

ν .

The density of the scaled inverse chi-square distribution is

fY (y) =

(
σ2
0ν/2

)ν/2
Γ(ν/2)

y−ν/2−1 exp

{
−σ

2
0ν

2y

}
.

1. Derive the density of Y from X.

2. If the variance parameter σ2 follows a scaled inverse chi–square distribution Inv–χ2
(
σ2 |σ2

0 , ν
)
, then

the precision parameter ψ = 1/σ2 follows a Gamma distribution. What are its (hyper)parameters?

Remember that if X ∼ χ2
ν and a > 0, then X/a has a certain Gamma distribution.

Solution: The density of Y = 1/X is

fY (y) = fX(x)

∣∣∣∣ dx

dy

∣∣∣∣ =
1

2ν/2Γ(ν/2)

(
σ2
0ν

y

)ν/2−1
exp

{
−σ

2
0ν

2y

}
σ2
0ν

y2

=

(
σ2
0ν/2

)ν/2
Γ(ν/2)

y−ν/2−1 exp

{
−σ

2
0ν

2y

}
y > 0 ,

which is the density of an Inverse–Gamma
(
ν/2, σ2

0ν/2
)

distribution. The density of ψ = 1/σ2 is

p(ψ) = p
(
σ2
)∣∣∣∣ dσ2

dψ

∣∣∣∣ =

(
σ2
0ν/2

)ν/2
Γ(ν/2)

(
1

ψ

)−ν/2−1
exp

{
−σ

2
0ν

2
ψ

}
1

ψ2

=

(
σ2
0ν/2

)ν/2
Γ(ν/2)

ψν/2−1 exp

{
−σ

2
0ν

2
ψ

}
ψ > 0 ,

which is the density of a Gamma
(
ν/2, σ2

0ν/2
)

distribution.

Exercise 5 (chapter 5.5): Consider the simple linear regression model, where

p(y |β, τ) = MVNn

(
y |Xβ, τ−1I

)
p(β, τ) = MVNp(β |µ,Q−1)Gamma(τ | a, b) .

Here X is a known n× p matrix of explanatory variables, τ > 0 a scalar precision parameter of the error

distribution and β a coefficient vector of length p. Note that β and τ are assumed to be independent in

their joint prior distribution.

1. Write down the joint density p(y,β, τ) including all normalizing constants. Notice that det(cA) =

cndet(A) for a scalar c and n× n matrix A.
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2. Derive the full conditional distribution p(β | τ,y) either from first principles or by using the theory

in chapter 5.5.2.

3. Derive the full conditional distribution p(τ |β,y) by finding a useful formula when starting from

first principles or alternatively by extending the theory of chapter 5.4.2 to the present situation.

Solution: The joint density is proportional to

p(y,β, τ) ∝ (2π)
−n/2

τn/2 exp
{
−τ

2
(y −Xβ)

T
(y −Xβ)

}
×

(2π)
−p/2

det(Q)
1/2

exp

{
−1

2
(β − µ)

T
Q(β − µ)

}
×

ba

Γ(a)
τa−1 exp{−bτ}

The full conditional density of β is

p(β | τ,y) ∝ exp

{
−1

2

[
τ(y −Xβ)

T
(y −Xβ) + (β − µ)

T
Q(β − µ)

]}
,

where the quadratic form is equal to

q = τ(y −Xβ)
T

(y −Xβ) + (β − µ)
T
Q(β − µ)

= βTτXTXβ − 2βTτXTy + βTQβ − 2βTQµ+ const.

= βTQ̃β − 2βTQ̃µ̃+ const. ,

with Q̃ = Q+τXTX and µ̃ = Q̃−1
(
Qµ+ τXTy

)
. The full conditional of β is therefore a MVNp

(
µ̃, Q̃

)
distribution. The full conditional density of τ is

p(τ |β,y) ∝ τa+n/2−1 exp

{
−
[
b+

1

2
(y −Xβ)

T
(y −Xβ)

]
τ

}
,

which is the kernel of a Gamma
(
a+ n/2, b+ 1

2 (y −Xβ)
T

(y −Xβ)
)

distribution.
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