Application of Markov chains to market analysis

Samuli Siltanen

October 30, 2013

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Consider a market of four telecommunications service providers. Denote by horizontal vector $x = [x_1, x_2, x_3, x_4]$ the market shares of the four companies:

- x_1 = Market share of TNT,
- x_2 = Market share of Tomera,
- x_3 = Market share of Kaviolinja,
- x_4 = Market share of Oranki.

Every element of x satisfies $0 \le x_j \le 1$, because each company has a nonnegative percentage of the market. Additionally we have $x_1 + x_2 + x_3 + x_4 = 1$, since we assume that these four companies are the only choices for customers.

うして ふゆう ふほう ふほう うらつ

Assume that on each day the following happens:

- Each customer of TNT moves to Tomera with probability ¹/₂, to Kaviolinja with probability ¹/₃, and to Oranki with probability ¹/₆.
- Each customer of Tomera moves to TNT with probability 0, to Kaviolinja with probability ¹/₄ and to Oranki with probability ¹/₄. Each customer will stay with Tomera with probability ¹/₂.
- Each customer of Kaviolinja moves to TNT with probability ¹/₄, to Tomera with probability ¹/₄, and to Oranki with probability ¹/₄. Each customer will stay with Kaviolinja with probability ¹/₄.
- Each customer of Oranki moves to TNT with probability ¹/₁₀ and stays with Oranki with probability ⁹/₁₀.

Let us define probabilities p_{ij} as follows:

 p_{ij} = probability to switch from operator *i* to operator *j*.

Use Matlab to construct the matrix $P = [p_{ij}]$. Check that the sum of the elements in each row is one (use command P' to traspose P and the command sum to calculate the sum). This is an example of a *stochastic matrix*.

Assume that the market shares are initially $x^{(0)} = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}]$. This means that all the four companies have the same number of customers. Then we can compute the next day's market shares using the formula

$$x^{(1)} = x^{(0)}P.$$

(Why?) Furthermore, the market shares on the following day are given by the vector $x^{(2)} = x^{(1)}P = x^{(0)}PP$, and after *n* days by the vector $x^{(n)} = \cdots = x^{(0)}P^n$. Use Matlab to calculate a few of the first members in the sequence

$$x^{(0)}, x^{(1)}, x^{(2)}, x^{(3)}, \dots$$

What do you observe?