Application of Markov chains to market analysis

Samuli Siltanen

October 30, 2013

Consider a market of four telecommunications service providers. Denote by horizontal vector $x=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ the market shares of the four companies:

$$
\begin{aligned}
& x_{1}=\text { Market share of TNT, } \\
& x_{2}=\text { Market share of Tomera, } \\
& x_{3}=\text { Market share of Kaviolinja, } \\
& x_{4}=\text { Market share of Oranki. }
\end{aligned}
$$

Every element of x satisfies $0 \leq x_{j} \leq 1$, because each company has a nonnegative percentage of the market. Additionally we have $x_{1}+x_{2}+x_{3}+x_{4}=1$, since we assume that these four companies are the only choices for customers.

Assume that on each day the following happens:

- Each customer of TNT moves to Tomera with probability $\frac{1}{2}$, to Kaviolinja with probability $\frac{1}{3}$, and to Oranki with probability $\frac{1}{6}$.
- Each customer of Tomera moves to TNT with probability 0 , to Kaviolinja with probability $\frac{1}{4}$ and to Oranki with probability $\frac{1}{4}$. Each customer will stay with Tomera with probability $\frac{1}{2}$.
- Each customer of Kaviolinja moves to TNT with probability $\frac{1}{4}$, to Tomera with probability $\frac{1}{4}$, and to Oranki with probability $\frac{1}{4}$. Each customer will stay with Kaviolinja with probability $\frac{1}{4}$.
- Each customer of Oranki moves to TNT with probability $\frac{1}{10}$ and stays with Oranki with probability $\frac{9}{10}$.
Let us define probabilities $p_{i j}$ as follows:
$p_{i j}=$ probability to switch from operator i to operator j.

Use Matlab to construct the matrix $P=\left[p_{i j}\right]$. Check that the sum of the elements in each row is one (use command P ' to traspose P and the command sum to calculate the sum). This is an example of a stochastic matrix.

Assume that the market shares are initially $x^{(0)}=\left[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right]$. This means that all the four companies have the same number of customers. Then we can compute the next day's market shares using the formula

$$
x^{(1)}=x^{(0)} P
$$

(Why?) Furthermore, the market shares on the following day are given by the vector $x^{(2)}=x^{(1)} P=x^{(0)} P P$, and after n days by the vector $x^{(n)}=\cdots=x^{(0)} P^{n}$. Use Matlab to calculate a few of the first members in the sequence

$$
x^{(0)}, x^{(1)}, x^{(2)}, x^{(3)}, \ldots
$$

What do you observe?

