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1. Least squares solution and minimum norm solution

Let us define the least squares solution and minimum norm solution of
the matrix equation Ax = b, where

x =


x1

x2
...
xn

 ∈ Rn, b =


b1
b2
...
bk

 ∈ Rk,

and the matrix A has size k × n.

Definition 1.1. A vector x̃ ∈ Rn is called a least-squares solution of
the equation Ax = b if

(1.1) ‖Ax̃− b‖ = min
x∈Rn
‖Ax− b‖.

Furthermore, we give a special name for the shortest least-squares solu-
tion (in general there may be many least-squares solutions). A vector x̃0

is called the minimum norm solution of Ax = b if x̃0 is a least-squares
solution of Ax = b and additionally satisfies

(1.2) ‖x̃0‖ = min{‖x̃‖ : x̃ is a least-squares solution of Ax = b}.

The vector norm above is the Euclidean norm ‖x‖2 = x2
1+x2

2+ · · ·+x2
n.

In the next two sections we explain how to compute these solutions
in practice.
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2. Computing the least squares solution

Consider the quadratic functional Q : Rn → R defined by

Q(x) = ‖Ax− b‖2.

We want to find a minimizer x̃ ∈ Rn for Q. In other words, we look
for a vector x̃ for which it holds that

(2.1) Q(x̃) = min
x∈Rn

Q(x).

Note that Q is continuously differentiable in any variable xj. There-
fore, since x̃ is a minimizer, we have

0 =
d

dt
‖A(x̃ + tw)− b‖2

∣∣∣∣
t=0

for any w ∈ Rn. (Why?)
We use the notation 〈x,y〉 for the inner product between two vertical

vectors x̃ ∈ Rn and ỹ ∈ Rn. The definition is

〈x,y〉 = xTy = x1y1 + x2y2 + · · ·+ xnyn.

Note that

〈x,x〉 = xTx = x2
1 + x2

2 + · · ·+ x2
n = ‖x‖2.

Also, use matrix algebra to see that

〈Ax,b〉 = (Ax)Tb = (xTAT )b = xT (ATb) = 〈x, ATb〉.

Now use the linearity of the inner product to compute

0 =
d

dt
‖A(x̃ + tw)− b‖2

∣∣∣∣
t=0

=
d

dt
〈Ax̃ + tAw − b, Ax̃ + tAw − b〉

∣∣∣∣
t=0

=
d

dt

{
‖Ax̃‖2 + 2t〈Ax̃, Aw〉+ t2‖Aw‖2

− 2t〈b, Aw〉 − 2〈Ax̃,b〉+ ‖b‖2
}∣∣∣∣

t=0

=
{

2〈Ax̃, Aw〉+ 2t‖Aw‖2 − 2〈b, Aw〉
}∣∣∣∣

t=0

=2〈Ax̃, Aw〉 − 2〈b, Aw〉
=2〈ATAx̃,w〉 − 2〈ATb,w〉.
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We conclude that the identity 〈ATAx̃,w〉 = 〈ATb,w〉 holds for any
nonzero w ∈ Rn. Therefore, the minimizing vector must satisfy

(2.2) ATAx̃ = ATb.

The identity (2.2) is called the normal equation. Now if the n×n ma-
trix ATA happens to be invertible, we can compute the least squares
solution as

(2.3) x̃ = (ATA)−1ATb.

If ATA is not invertible, there is no unique minimizer for Q and we
cannot use formula (2.3). But even in that case we can compute the
minimum norm solution!

3. Fitting a linear model to noisy data

Consider the following linear model describing the relationship between
two scalar quantities x ∈ R and x ∈ R:

(3.1) y = a0x + b0,

where a0, b0 ∈ R are parameters.
Assume given noisy data y′1, y

′
2, . . . , y

′
n at points x1, x2, . . . , xn. More

precisely,

(3.2) y′j = axj + b + εj,

where εj is some unknown error in the measurement.
We can solve for the parameters a, b ∈ R that give the model of the

form (3.1) that best fits the data in the least-squares sense. Namely,
write

A =


x1 1
x2 1
...

...
xn 1

 ∈ Rn, y′ =


y′1
y′2
...
y′n

 ∈ Rn,

and consider the linear system of equations defined by

(3.3) A

[
a
b

]
= y′.

Now in general the equation (3.3) has no solutions because of the errors
in (3.2). But if the matrix (ATA) is invertible, then we can use (2.3)
to compute the least-squares solution as[

ã

b̃

]
= (ATA)−1ATy′.
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4. Computing the minimum norm solution

We need a method for computing minimum norm solutions. For this,
write A in the form of its svd A = UDV T as explained in Section
A. Recall that the singular values are ordered from largest to small-
est as shown in (A.4), and let r be the largest index for which the
corresponding singular value is nonzero:

(4.1) r = max{j | 1 ≤ j ≤ min(k, n), dj > 0}.

The definition of index r is essential in the following analysis, so we
will be extra-specific:

d1 > 0, d2 > 0, · · · dr > 0, dr+1 = 0, · · · dmin(k,n) = 0.

Of course, it is also possible that all singular values are zero, in which
case r is not defined and A is the zero matrix, or none of the singular
values may be zero.

The next result gives a method to determine the minimum norm
solution.

Theorem 4.1. Let A be a k×n matrix and denote by A = UDV T the
singular value decomposition of A. The minimum norm solution of the
equation Ax = b is given by A+b where

A+b = V D+UTb,

and where

D+ =



1/d1 0 · · · 0 · · · 0

0 1/d2
...

...
. . .

1/dr
0

...
. . .

...
0 · · · · · · 0


∈ Rn×k.

Proof. Write the singular matrix V in the form V = [V1 V2 · · · Vn]
and note that the column vectors V1, . . . , Vn form an orthogonal basis
for Rn. We write x ∈ Rn as a linear combination x =

∑n
j=1 ajVj = V a,

and our goal is to find such coefficients a1, . . . , an that x becomes a
minimum norm solution.
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Set b′ = UTb ∈ Rk and compute

‖Ax− b‖2 = ‖UDV TV a− Ub′‖2

= ‖Da− b′‖2

=
r∑

j=1

(djaj − b′j)
2 +

k∑
j=r+1

(b′j)
2,(4.2)

where we used the orthogonality of U (namely, ‖Ux‖ = ‖x‖ for any
vector x ∈ Rk). Now since dj and b′j are given and fixed, the expression
(4.2) attains its minimum when aj = b′j/dj for j = 1, . . . , r. So any x
of the form

x = V



d−11 b′1
...

d−1r b′r
ar+1

...
an


is a least-squares solution. The smallest norm ‖x‖ is clearly given by
the choice aj = 0 for r < j ≤ n, so the minimum norm solution is
uniquely determined by the formula a = D+b′. �

Definition 4.1. The matrix A+ is called the pseudoinverse, or the
Moore-Penrose inverse of A.

Appendix A. The singular value decomposition

We know from matrix algebra that any matrix A ∈ Rk×n can be written
in the form

(A.1) A = UDV T ,

where U ∈ Rk×k and V ∈ Rn×n are orthogonal matrices, that is,

UTU = UUT = I, V TV = V V T = I,

and D ∈ Rk×n is a diagonal matrix. The right side of (A.1) is called
the singular value decomposition (svd) of matrix A, and the diagonal
elements dj are the singular values of A. The properties of dj, and the
columns ui of U , and the columns Vi of V correspond to those of the
SVE.
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In the case k = n the matrix D is square-shaped: D = diag(d1, . . . , dk).
If k > n then

(A.2) D =

[
diag(d1, . . . , dn)

0(k−n)×n

]
=



d1 0 · · · 0

0 d2
...

...
. . .

0 · · · · · · dn
0 · · · · · · 0
...

...
0 · · · · · · 0


,

and in the case k < n the matrix D takes the form

D = [diag(d1, . . . , dk),0k×(n−k)]

=


d1 0 · · · 0 0 · · · 0

0 d2
...

...
...

...
. . .

...
...

...
0 · · · · · · dk 0 · · · 0

 .(A.3)

The diagonal elements dj are nonnegative and in decreasing order:

(A.4) d1 ≥ d2 ≥ . . . ≥ dmin(k,n) ≥ 0.

Note that some or all of the dj can be equal to zero.
Recall the definitions of the following linear subspaces related to the

matrix A:

Ker(A) = {x ∈ Rn : Ax = 0},
Range(A) = {b ∈ Rk : there exists x ∈ Rn such that Ax = b},
Coker(A) = (Range(A))⊥ ⊂ Rk.


