LEAST SQUARES SOLUTION TRICKS

SAMULI SILTANEN

Contents

1. Least squares solution and minimum norm solution 1
2. Computing the least squares solution 2
3. Fitting a linear model to noisy data 3
4. Computing the minimum norm solution 4

Appendix A. The singular value decomposition

1. Least squares solution and minimum norm solution

Let us define the least squares solution and minimum norm solution of the matrix equation $A \mathbf{x}=\mathbf{b}$, where

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n}, \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{k}
\end{array}\right] \in \mathbb{R}^{k},
$$

and the matrix A has size $k \times n$.
Definition 1.1. A vector $\widetilde{\mathbf{x}} \in \mathbb{R}^{n}$ is called a least-squares solution of the equation $A \mathbf{x}=\mathbf{b}$ if

$$
\begin{equation*}
\|A \widetilde{\mathbf{x}}-\mathbf{b}\|=\min _{\mathbf{x} \in \mathbb{R}^{n}}\|A \mathbf{x}-\mathbf{b}\| . \tag{1.1}
\end{equation*}
$$

Furthermore, we give a special name for the shortest least-squares solution (in general there may be many least-squares solutions). A vector $\widetilde{\mathbf{x}}_{0}$ is called the minimum norm solution of $\mathrm{Ax}=\mathrm{b}$ if $\widetilde{\mathrm{x}}_{0}$ is a least-squares solution of $A \mathbf{x}=\mathbf{b}$ and additionally satisfies

$$
\begin{equation*}
\left\|\widetilde{\mathbf{x}}_{0}\right\|=\min \{\|\widetilde{\mathbf{x}}\|: \widetilde{\mathbf{x}} \text { is a least-squares solution of } A \mathbf{x}=\mathbf{b}\} . \tag{1.2}
\end{equation*}
$$

The vector norm above is the Euclidean norm $\|\mathbf{x}\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$.
In the next two sections we explain how to compute these solutions in practice.

[^0]
2. Computing the least squares solution

Consider the quadratic functional $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by

$$
Q(\mathbf{x})=\|A \mathbf{x}-\mathbf{b}\|^{2}
$$

We want to find a minimizer $\widetilde{\mathbf{x}} \in \mathbb{R}^{n}$ for Q. In other words, we look for a vector $\widetilde{\mathbf{x}}$ for which it holds that

$$
\begin{equation*}
Q(\widetilde{\mathbf{x}})=\min _{\mathbf{x} \in \mathbb{R}^{n}} Q(\mathbf{x}) . \tag{2.1}
\end{equation*}
$$

Note that Q is continuously differentiable in any variable x_{j}. Therefore, since $\widetilde{\mathbf{x}}$ is a minimizer, we have

$$
0=\left.\frac{d}{d t}\|A(\widetilde{\mathbf{x}}+t \mathbf{w})-\mathbf{b}\|^{2}\right|_{t=0}
$$

for any $\mathbf{w} \in \mathbb{R}^{n}$. (Why?)
We use the notation $\langle\mathbf{x}, \mathbf{y}\rangle$ for the inner product between two vertical vectors $\widetilde{\mathbf{x}} \in \mathbb{R}^{n}$ and $\widetilde{\mathbf{y}} \in \mathbb{R}^{n}$. The definition is

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

Note that

$$
\langle\mathbf{x}, \mathbf{x}\rangle=\mathbf{x}^{T} \mathbf{x}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=\|\mathbf{x}\|^{2} .
$$

Also, use matrix algebra to see that

$$
\langle A \mathbf{x}, \mathbf{b}\rangle=(A \mathbf{x})^{T} \mathbf{b}=\left(\mathbf{x}^{T} A^{T}\right) \mathbf{b}=\mathbf{x}^{T}\left(A^{T} \mathbf{b}\right)=\left\langle\mathbf{x}, A^{T} \mathbf{b}\right\rangle
$$

Now use the linearity of the inner product to compute

$$
\begin{aligned}
0= & \left.\frac{d}{d t}\|A(\widetilde{\mathbf{x}}+t \mathbf{w})-\mathbf{b}\|^{2}\right|_{t=0} \\
= & \left.\frac{d}{d t}\langle A \widetilde{\mathbf{x}}+t A \mathbf{w}-\mathbf{b}, A \widetilde{\mathbf{x}}+t A \mathbf{w}-\mathbf{b}\rangle\right|_{t=0} \\
= & \frac{d}{d t}\left\{\|A \widetilde{\mathbf{x}}\|^{2}+2 t\langle A \widetilde{\mathbf{x}}, A \mathbf{w}\rangle+t^{2}\|A \mathbf{w}\|^{2}\right. \\
& \left.\quad-2 t\langle\mathbf{b}, A \mathbf{w}\rangle-2\langle A \widetilde{\mathbf{x}}, \mathbf{b}\rangle+\|\mathbf{b}\|^{2}\right\}\left.\right|_{t=0} \\
= & \left.\left\{2\langle A \widetilde{\mathbf{x}}, A \mathbf{w}\rangle+2 t\|A \mathbf{w}\|^{2}-2\langle\mathbf{b}, A \mathbf{w}\rangle\right\}\right|_{t=0} \\
= & 2\langle A \widetilde{\mathbf{x}}, A \mathbf{w}\rangle-2\langle\mathbf{b}, A \mathbf{w}\rangle \\
= & 2\left\langle A^{T} A \widetilde{\mathbf{x}}, \mathbf{w}\right\rangle-2\left\langle A^{T} \mathbf{b}, \mathbf{w}\right\rangle
\end{aligned}
$$

We conclude that the identity $\left\langle A^{T} A \widetilde{\mathbf{x}}, \mathbf{w}\right\rangle=\left\langle A^{T} \mathbf{b}, \mathbf{w}\right\rangle$ holds for any nonzero $\mathbf{w} \in \mathbb{R}^{n}$. Therefore, the minimizing vector must satisfy

$$
\begin{equation*}
A^{T} A \widetilde{\mathbf{x}}=A^{T} \mathbf{b} . \tag{2.2}
\end{equation*}
$$

The identity (2.2) is called the normal equation. Now if the $n \times n$ matrix $A^{T} A$ happens to be invertible, we can compute the least squares solution as

$$
\begin{equation*}
\widetilde{\mathbf{x}}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b} \tag{2.3}
\end{equation*}
$$

If $A^{T} A$ is not invertible, there is no unique minimizer for Q and we cannot use formula (2.3). But even in that case we can compute the minimum norm solution!

3. Fitting a Linear model to noisy data

Consider the following linear model describing the relationship between two scalar quantities $x \in \mathbb{R}$ and $x \in \mathbb{R}$:

$$
\begin{equation*}
y=a_{0} x+b_{0} \tag{3.1}
\end{equation*}
$$

where $a_{0}, b_{0} \in \mathbb{R}$ are parameters.
Assume given noisy data $y_{1}^{\prime}, y_{2}^{\prime}, \ldots, y_{n}^{\prime}$ at points $x_{1}, x_{2}, \ldots, x_{n}$. More precisely,

$$
\begin{equation*}
y_{j}^{\prime}=a x_{j}+b+\varepsilon_{j}, \tag{3.2}
\end{equation*}
$$

where ε_{j} is some unknown error in the measurement.
We can solve for the parameters $a, b \in \mathbb{R}$ that give the model of the form (3.1) that best fits the data in the least-squares sense. Namely, write

$$
A=\left[\begin{array}{cc}
x_{1} & 1 \\
x_{2} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right] \in \mathbb{R}^{n}, \quad \mathbf{y}^{\prime}=\left[\begin{array}{c}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{n}^{\prime}
\end{array}\right] \in \mathbb{R}^{n}
$$

and consider the linear system of equations defined by

$$
A\left[\begin{array}{l}
a \tag{3.3}\\
b
\end{array}\right]=\mathbf{y}^{\prime}
$$

Now in general the equation (3.3) has no solutions because of the errors in (3.2). But if the matrix $\left(A^{T} A\right)$ is invertible, then we can use (2.3) to compute the least-squares solution as

$$
\left[\begin{array}{c}
\widetilde{a} \\
\widetilde{b}
\end{array}\right]=\left(A^{T} A\right)^{-1} A^{T} \mathbf{y}^{\prime}
$$

4. Computing the minimum norm solution

We need a method for computing minimum norm solutions. For this, write A in the form of its SVD $A=U D V^{T}$ as explained in Section A. Recall that the singular values are ordered from largest to smallest as shown in (A.4), and let r be the largest index for which the corresponding singular value is nonzero:

$$
\begin{equation*}
r=\max \left\{j \mid 1 \leq j \leq \min (k, n), d_{j}>0\right\} . \tag{4.1}
\end{equation*}
$$

The definition of index r is essential in the following analysis, so we will be extra-specific:

$$
d_{1}>0, \quad d_{2}>0, \quad \cdots \quad d_{r}>0, \quad d_{r+1}=0, \quad \cdots \quad d_{\min (k, n)}=0 .
$$

Of course, it is also possible that all singular values are zero, in which case r is not defined and A is the zero matrix, or none of the singular values may be zero.

The next result gives a method to determine the minimum norm solution.

Theorem 4.1. Let A be a $k \times n$ matrix and denote by $A=U D V^{T}$ the singular value decomposition of A. The minimum norm solution of the equation $A \mathbf{x}=\mathbf{b}$ is given by $A^{+} \mathbf{b}$ where

$$
A^{+} \mathbf{b}=V D^{+} U^{T} \mathbf{b},
$$

and where

$$
D^{+}=\left[\begin{array}{ccccccc}
1 / d_{1} & 0 & \cdots & 0 & & \cdots & 0 \\
0 & 1 / d_{2} & & & & & \vdots \\
\vdots & & \ddots & & & & \\
& & & 1 / d_{r} & & & \\
\vdots & & & & 0 & & \\
0 & \cdots & & & & \cdots & 0
\end{array}\right] \in \mathbb{R}^{n \times k} .
$$

Proof. Write the singular matrix V in the form $V=\left[\begin{array}{llll}V_{1} & V_{2} & \cdots & V_{n}\end{array}\right]$ and note that the column vectors V_{1}, \ldots, V_{n} form an orthogonal basis for \mathbb{R}^{n}. We write $\mathbf{x} \in \mathbb{R}^{n}$ as a linear combination $\mathbf{x}=\sum_{j=1}^{n} a_{j} V_{j}=V \mathbf{a}$, and our goal is to find such coefficients a_{1}, \ldots, a_{n} that \mathbf{x} becomes a minimum norm solution.

Set $\mathbf{b}^{\prime}=U^{T} \mathbf{b} \in \mathbb{R}^{k}$ and compute

$$
\begin{align*}
\|A \mathbf{x}-\mathbf{b}\|^{2} & =\left\|U D V^{T} V \mathbf{a}-U \mathbf{b}^{\prime}\right\|^{2} \\
& =\left\|D \mathbf{a}-\mathbf{b}^{\prime}\right\|^{2} \\
& =\sum_{j=1}^{r}\left(d_{j} a_{j}-\mathbf{b}_{j}^{\prime}\right)^{2}+\sum_{j=r+1}^{k}\left(\mathbf{b}_{j}^{\prime}\right)^{2} \tag{4.2}
\end{align*}
$$

where we used the orthogonality of U (namely, $\|U \mathbf{x}\|=\|\mathbf{x}\|$ for any vector $\left.\mathbf{x} \in \mathbb{R}^{k}\right)$. Now since d_{j} and \mathbf{b}_{j}^{\prime} are given and fixed, the expression (4.2) attains its minimum when $a_{j}=\mathbf{b}_{j}^{\prime} / d_{j}$ for $j=1, \ldots, r$. So any \mathbf{x} of the form

$$
\mathbf{x}=V\left[\begin{array}{c}
d_{1}^{-1} \mathbf{b}_{1}^{\prime} \\
\vdots \\
d_{r}^{-1} \mathbf{b}_{r}^{\prime} \\
a_{r+1} \\
\vdots \\
a_{n}
\end{array}\right]
$$

is a least-squares solution. The smallest norm $\|\mathbf{x}\|$ is clearly given by the choice $a_{j}=0$ for $r<j \leq n$, so the minimum norm solution is uniquely determined by the formula $\mathbf{a}=D^{+} \mathbf{b}^{\prime}$.

Definition 4.1. The matrix A^{+}is called the pseudoinverse, or the Moore-Penrose inverse of A.

Appendix A. The singular value decomposition

We know from matrix algebra that any matrix $A \in \mathbb{R}^{k \times n}$ can be written in the form

$$
\begin{equation*}
A=U D V^{T} \tag{A.1}
\end{equation*}
$$

where $U \in \mathbb{R}^{k \times k}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, that is,

$$
U^{T} U=U U^{T}=I, \quad V^{T} V=V V^{T}=I
$$

and $D \in \mathbb{R}^{k \times n}$ is a diagonal matrix. The right side of (A.1) is called the singular value decomposition (SVD) of matrix A, and the diagonal elements d_{j} are the singular values of A. The properties of d_{j}, and the columns u_{i} of U, and the columns V_{i} of V correspond to those of the SVE.

In the case $k=n$ the matrix D is square-shaped: $D=\operatorname{diag}\left(d_{1}, \ldots, d_{k}\right)$. If $k>n$ then

$$
D=\left[\begin{array}{c}
\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \tag{A.2}\\
\mathbf{0}_{(k-n) \times n}
\end{array}\right]=\left[\begin{array}{cccc}
d_{1} & 0 & \cdots & 0 \\
0 & d_{2} & & \vdots \\
\vdots & & \ddots & \\
0 & \cdots & \cdots & d_{n} \\
0 & \cdots & \cdots & 0 \\
\vdots & & & \vdots \\
0 & \cdots & \cdots & 0
\end{array}\right]
$$

and in the case $k<n$ the matrix D takes the form

$$
\begin{align*}
D & =\left[\operatorname{diag}\left(d_{1}, \ldots, d_{k}\right), \mathbf{0}_{k \times(n-k)}\right] \\
& =\left[\begin{array}{ccccccc}
d_{1} & 0 & \cdots & 0 & 0 & \cdots & 0 \\
0 & d_{2} & & \vdots & \vdots & & \vdots \\
\vdots & & \ddots & \vdots & \vdots & & \vdots \\
0 & \cdots & \cdots & d_{k} & 0 & \cdots & 0
\end{array}\right] . \tag{A.3}
\end{align*}
$$

The diagonal elements d_{j} are nonnegative and in decreasing order:

$$
\begin{equation*}
d_{1} \geq d_{2} \geq \ldots \geq d_{\min (k, n)} \geq 0 \tag{A.4}
\end{equation*}
$$

Note that some or all of the d_{j} can be equal to zero.
Recall the definitions of the following linear subspaces related to the matrix A :

$$
\begin{aligned}
\operatorname{Ker}(A) & =\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=0\right\} \\
\operatorname{Range}(A) & =\left\{\mathbf{b} \in \mathbb{R}^{k}: \text { there exists } \mathbf{x} \in \mathbb{R}^{n} \text { such that } A \mathbf{x}=\mathbf{b}\right\} \\
\operatorname{Coker}(A) & =(\operatorname{Range}(A))^{\perp} \subset \mathbb{R}^{k}
\end{aligned}
$$

[^0]: Date: Version 2, November 4, 2015.

