LEAST SQUARES SOLUTION TRICKS

SAMULI SILTANEN

Contents

Least squares solution and minimum norm solution
 Computing the least squares solution
 Computing the minimum norm solution
 Appendix A. The singular value decomposition

1. Least squares solution and minimum norm solution

Let us define the least squares solution and minimum norm solution of the matrix equation $A\mathbf{x} = \mathbf{b}$, where

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n, \qquad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_k \end{bmatrix} \in \mathbb{R}^k,$$

and the matrix A has size $k \times n$.

Definition 1.1. A vector $\tilde{\mathbf{x}} \in \mathbb{R}^n$ is called a least-squares solution of the equation $A\mathbf{x} = \mathbf{b}$ if

(1.1)
$$||A\widetilde{\mathbf{x}} - \mathbf{b}|| = \min_{\mathbf{x} \in \mathbb{R}^n} ||A\mathbf{x} - \mathbf{b}||.$$

Furthermore, $\widetilde{\mathbf{x}}_0$ is called the minimum norm solution of $A\mathbf{x} = \mathbf{b}$ if

(1.2)
$$\|\widetilde{\mathbf{x}}_0\| = \min\{\|\mathbf{x}\| : \mathbf{x} \text{ is a least-squares solution of } A\mathbf{x} = \mathbf{b}\}.$$

The vector norm above is the Euclidean norm $\|\mathbf{x}\|^2 = x_1^2 + x_2^2 + \cdots + x_n^2$. In the next two sections we explain how to compute these solutions in practice.

Date: Version 1, October 30, 2015.

2. Computing the least squares solution

Consider the quadratic functional $Q: \mathbb{R}^n \to \mathbb{R}$ defined by

$$Q(\mathbf{x}) = ||A\mathbf{x} - \mathbf{b}||^2.$$

We want to find a minimizer $\widetilde{\mathbf{x}} \in \mathbb{R}^n$ for Q. In other words, we look for a vector $\widetilde{\mathbf{x}}$ for which it holds that

(2.1)
$$Q(\widetilde{\mathbf{x}}) = \min_{\mathbf{x} \in \mathbb{R}^n} Q(\mathbf{x}).$$

Note that Q is continuously differentiable in any variable x_j . Therefore, since $\tilde{\mathbf{x}}$ is a minimizer, we have

$$0 = \frac{d}{dt} \|A(\widetilde{\mathbf{x}} + t\mathbf{w}) - \mathbf{b}\|^2 \bigg|_{t=0}$$

for any $\mathbf{w} \in \mathbb{R}^n$. (Why?)

We use the notation $\langle \mathbf{x}, \mathbf{y} \rangle$ for the inner product between two vertical vectors $\widetilde{\mathbf{x}} \in \mathbb{R}^n$ and $\widetilde{\mathbf{y}} \in \mathbb{R}^n$. The definition is

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Note that

$$\langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^T \mathbf{x} = x_1^2 + x_2^2 + \dots + x_n^2 = ||\mathbf{x}||^2.$$

Also, use matrix algebra to see that

$$\langle A\mathbf{x}, \mathbf{b} \rangle = (A\mathbf{x})^T \mathbf{b} = (\mathbf{x}^T A^T) \mathbf{b} = \mathbf{x}^T (A^T \mathbf{b}) = \langle \mathbf{x}, A^T \mathbf{b} \rangle.$$

Now use the linearity of the inner product to compute

$$\begin{split} 0 &= \frac{d}{dt} \|A(\widetilde{\mathbf{x}} + t\mathbf{w}) - \mathbf{b}\|^2 \bigg|_{t=0} \\ &= \frac{d}{dt} \langle A\widetilde{\mathbf{x}} + tA\mathbf{w} - \mathbf{b}, A\widetilde{\mathbf{x}} + tA\mathbf{w} - \mathbf{b} \rangle \bigg|_{t=0} \\ &= \frac{d}{dt} \Big\{ \|A\widetilde{\mathbf{x}}\|^2 + 2t \langle A\widetilde{\mathbf{x}}, A\mathbf{w} \rangle + t^2 \|A\mathbf{w}\|^2 \\ &- 2t \langle \mathbf{b}, A\mathbf{w} \rangle - 2 \langle A\widetilde{\mathbf{x}}, \mathbf{b} \rangle + \|\mathbf{b}\|^2 \Big\} \bigg|_{t=0} \\ &= \Big\{ 2 \langle A\widetilde{\mathbf{x}}, A\mathbf{w} \rangle + 2t \|A\mathbf{w}\|^2 - 2 \langle \mathbf{b}, A\mathbf{w} \rangle \Big\} \bigg|_{t=0} \\ &= 2 \langle A\widetilde{\mathbf{x}}, A\mathbf{w} \rangle - 2 \langle \mathbf{b}, A\mathbf{w} \rangle \\ &= 2 \langle A^T A\widetilde{\mathbf{x}}, \mathbf{w} \rangle - 2 \langle A^T \mathbf{b}, \mathbf{w} \rangle. \end{split}$$

We conclude that the identity $\langle A^T A \widetilde{\mathbf{x}}, \mathbf{w} \rangle = \langle A^T \mathbf{b}, \mathbf{w} \rangle$ holds for any nonzero $\mathbf{w} \in \mathbb{R}^n$. Therefore, the minimizing vector must satisfy

$$(2.2) A^T A \widetilde{\mathbf{x}} = A^T \mathbf{b}.$$

The identity (2.2) is called the *normal equation*. Now if the $n \times n$ matrix $A^T A$ happens to be invertible, we can compute the least squares solution as

(2.3)
$$\widetilde{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b}.$$

If A^TA is not invertible, there is no unique minimizer for Q and we cannot use formula (2.3). But even in that case we can compute the minimum norm solution!

3. Computing the minimum norm solution

We need a method for computing minimum norm solutions. For this, write A in the form of its SVD $A = UDV^T$ as explained in Section A. Recall that the singular values are ordered from largest to smallest as shown in (A.4), and let r be the largest index for which the corresponding singular value is nonzero:

(3.1)
$$r = \max\{j \mid 1 \le j \le \min(k, n), \ d_j > 0\}.$$

The definition of index r is essential in the following analysis, so we will be extra-specific:

$$d_1 > 0$$
, $d_2 > 0$, \cdots $d_r > 0$, $d_{r+1} = 0$, \cdots $d_{\min(k,n)} = 0$.

Of course, it is also possible that all singular values are zero, in which case r is not defined and A is the zero matrix, or none of the singular values may be zero.

The next result gives a method to determine the minimum norm solution.

Theorem 3.1. Let A be a $k \times n$ matrix and denote by $A = UDV^T$ the singular value decomposition of A. The minimum norm solution of the equation $A\mathbf{x} = \mathbf{b}$ is given by $A^+\mathbf{b}$ where

$$A^+\mathbf{b} = VD^+U^T\mathbf{b},$$

and where

$$D^{+} = \begin{bmatrix} 1/d_{1} & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1/d_{2} & & & & \vdots \\ \vdots & & \ddots & & & & \\ & & & 1/d_{r} & & & \\ & & & & 0 & & \\ \vdots & & & & \ddots & \vdots \\ 0 & \cdots & & & \cdots & 0 \end{bmatrix} \in \mathbb{R}^{n \times k}.$$

Proof. Write the singular matrix V in the form $V = [V_1 \ V_2 \ \cdots \ V_n]$ and note that the column vectors V_1, \ldots, V_n form an orthogonal basis for \mathbb{R}^n . We write $\mathbf{x} \in \mathbb{R}^n$ as a linear combination $\mathbf{x} = \sum_{j=1}^n a_j V_j = V \mathbf{a}$, and our goal is to find such coefficients a_1, \ldots, a_n that \mathbf{x} becomes a minimum norm solution.

Set $\mathbf{b}' = U^T \mathbf{b} \in \mathbb{R}^k$ and compute

$$||A\mathbf{x} - \mathbf{b}||^{2} = ||UDV^{T}V\mathbf{a} - U\mathbf{b}'||^{2}$$

$$= ||D\mathbf{a} - \mathbf{b}'||^{2}$$

$$= \sum_{j=1}^{r} (d_{j}a_{j} - \mathbf{b}'_{j})^{2} + \sum_{j=r+1}^{k} (\mathbf{b}'_{j})^{2},$$
(3.2)

where we used the orthogonality of U (namely, $||U\mathbf{x}|| = ||\mathbf{x}||$ for any vector $\mathbf{x} \in \mathbb{R}^k$). Now since d_j and \mathbf{b}'_j are given and fixed, the expression (3.2) attains its minimum when $a_j = \mathbf{b}'_j/d_j$ for $j = 1, \ldots, r$. So any \mathbf{x} of the form

$$\mathbf{x} = V \begin{bmatrix} d_1^{-1} \mathbf{b}_1' \\ \vdots \\ d_r^{-1} \mathbf{b}_r' \\ a_{r+1} \\ \vdots \\ a_n \end{bmatrix}$$

is a least-squares solution. The smallest norm $\|\mathbf{x}\|$ is clearly given by the choice $a_j = 0$ for $r < j \le n$, so the minimum norm solution is uniquely determined by the formula $\mathbf{a} = D^+ \mathbf{b}'$.

Definition 3.1. The matrix A^+ is called the pseudoinverse, or the Moore-Penrose inverse of A.

APPENDIX A. THE SINGULAR VALUE DECOMPOSITION

We know from matrix algebra that any matrix $A \in \mathbb{R}^{k \times n}$ can be written in the form

$$(A.1) A = UDV^T,$$

where $U \in \mathbb{R}^{k \times k}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices, that is,

$$U^T U = U U^T = I, \quad V^T V = V V^T = I,$$

and $D \in \mathbb{R}^{k \times n}$ is a diagonal matrix. The right side of (A.1) is called the singular value decomposition (SVD) of matrix A, and the diagonal elements d_j are the *singular values* of A. The properties of d_j , and the columns u_i of U, and the columns V_i of V correspond to those of the SVE.

In the case k = n the matrix D is square-shaped: $D = \text{diag}(d_1, \ldots, d_k)$. If k > n then

(A.2)
$$D = \begin{bmatrix} \operatorname{diag}(d_1, \dots, d_n) \\ \mathbf{0}_{(k-n) \times n} \end{bmatrix} = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & & \vdots \\ \vdots & & \ddots & \\ 0 & \cdots & \cdots & d_n \\ 0 & \cdots & \cdots & 0 \\ \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 \end{bmatrix},$$

and in the case k < n the matrix D takes the form

(A.3)
$$D = [\operatorname{diag}(d_1, \dots, d_k), \mathbf{0}_{k \times (n-k)}]$$

$$= \begin{bmatrix} d_1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & d_2 & \vdots & \vdots & & \vdots \\ \vdots & & \ddots & \vdots & \vdots & & \vdots \\ 0 & \cdots & \cdots & d_k & 0 & \cdots & 0 \end{bmatrix}.$$

The diagonal elements d_i are nonnegative and in decreasing order:

(A.4)
$$d_1 \ge d_2 \ge \ldots \ge d_{\min(k,n)} \ge 0.$$

Note that some or all of the d_i can be equal to zero.

Recall the definitions of the following linear subspaces related to the matrix A:

$$\operatorname{Ker}(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = 0 \},$$

 $\operatorname{Range}(A) = \{ \mathbf{b} \in \mathbb{R}^k : \text{there exists } \mathbf{x} \in \mathbb{R}^n \text{ such that } A\mathbf{x} = \mathbf{b} \},$
 $\operatorname{Coker}(A) = (\operatorname{Range}(A))^{\perp} \subset \mathbb{R}^k.$