BRIEF INTRODUCTION TO FOURIER SERIES

Samuli Siltanen, November 27, 2015
Parametrize the boundary of the unit circle as

$$
\{(\cos \theta, \sin \theta) \mid 0 \leq \theta<2 \pi\} .
$$

We will use the Fourier basis functions

$$
\begin{equation*}
\varphi_{n}(\theta)=(2 \pi)^{-1 / 2} e^{i n \theta}, \quad n \in \mathbb{Z} \tag{1}
\end{equation*}
$$

We can approximate 2π-periodic functions $f: \mathbb{R} \rightarrow \mathbb{R}$ following the lead of the great applied mathematician Joseph Fourier (1768-1830). Define cosine series coefficients using the L^{2} inner product

$$
\widehat{f}_{n}:=\left\langle f, \varphi_{n}\right\rangle=\int_{0}^{2 \pi} f(\theta) \overline{\varphi_{n}(\theta)} d \theta, \quad n \in \mathbb{Z}
$$

Then, for nice enough functions f, we have

$$
f(\theta) \approx \sum_{n=-N}^{N} \widehat{f}_{n} \varphi_{n}(\theta)
$$

with the approximation getting better when N grows.
Note that the functions φ_{n} are orthogonal:

$$
\left\langle\varphi_{n}, \varphi_{n}\right\rangle=\delta_{n m} .
$$

