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Chapter 1

Why stochastic integration is
needed ?

1.1 Introduction

Let x; and y; measurable functions R — R, where z; has finite variation and
y¢ is bounded on every compact interval.
A function of finite variation has a representation

xt:xo+x§9—x?,

where ¥, 2 are non-decreasing functions with 51389 = zoe = 0. We can always
choose a representation where the corresponding measures z®(dt), z°(dt) are
mutually singular. Then, the variation of the function x over the interval [0, ¢]
is defined as
v(x) i= 2P + 2P = sup Z | T, — 4, ]
t; €11

where in the left side the supremum is taken over all finite partitions of [0, ¢]
M=0=ty<t; <---<t, =t) with n € N. For example when z; has almost
everywhere a derivative &y,

t t t
2 = / (#,)*ds, a7 = / (#5)7ds and vi(z) = / &:]ds
0 0 0

where ¥ := max(+x,0).
We have learned from the Probability Theory or Real Analysis courses that
in such case the integral
t
I = / Ysdxs
0

is well defined as a Lebesgue Stieltjes integral. When the integrand y; is piece-
wise continuous or it has finite variation this is a Riemann Stieltjes integral
defined as limit of Riemann sums.

I frd 1 Y . —_— .
R T MACHEES



6 CHAPTER 1. WHY STOCHASTIC INTEGRATION IS NEEDED ?

whereH:{O:t0§30§t1§51§t2§~~~§tn_1§sn§tn:t}isa
partition of [0,¢] and A(II) := max;<n(t; — ti—1)

This Riemann-Stieltjes integral does not depend on the sequence of parti-
tions and the choice of the middle point.

When f € CY(R — R), we have the change of variable formula of differential
calculus

F@) = fla) = / F(w2)da,

In 1900, Louis Bachelier |in his Ph.D. thesis Theorie de la speculation in-
vented a new probabilistic model to descibe the behaviour of the stock exchange
in Paris. This is a stochastic process (B;(w))scr+, defined in continuous time
as follows:

Definition 1. 1. By =0, and the increments (Bi(w) — Bs(w)) are stochat-
ically independent over disjoint intervals, and have Gaussian distribution
with 0 mean and variance (t — s).

2. for (P-almost) all w the trajectory t — Bi(w) is continuous.

In 1905 [Albert Einstein introduced independently the very same mathemati-
cal model and results to explain the thermal motion of pollen particles suspended
in a liquid, which haad been observed by the botanist Brown.

Unfortunately, the importance of the work of Bachelier was not recognized
at his times, so that B; is called Brownian motion or Wiener process, after
Norbert Wiener | who started the theory of stochastic integration. In textbooks
it is also denoted by W;. In honour of Bachelier we like to use the B; notation.

In fact, although | A.N. Kolmogorov [(1933) showed that the paths B;(w) are
almosty surely Holder continuous that is the random quantity

au{ 1B8) Bl

n B :0<s,t,<T, s #t} < oo P — almost surely
— s

for all 0 < @ < 1/2 in every compact [0.7], and with probability 1 the paths are
nowhere differentiable and have infinite variation.

For integrand paths hg(w) of finite variation using the integration by parts
formula we define for every w

/ hs(w)dBy(w) := By(w)hi(w) — ho(w)Bo(w) — / Bs(w)dhs(w)
0 0

This trick does not work for the integral

/ ' By(w)dB(w)

It was in 1944 that Kyoshi Ito extended Wiener integral to the class of non-
anticipative integrand processes. This was the beginning of modern stochastic
analysis.


http://en.wikipedia.org/wiki/Louis_Bachelier
http://en.wikipedia.org/wiki/Albert_Einstein
http://en.wikipedia.org/wiki/Norbert_Wiener
http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Kiyoshi_Ito
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For the history, in 1940 the german-french mathematician Wolfgang Doe-
blin/ fighting on the french side was surrounded by the nazis and, before com-
miting suicide, sent to the french academy of sciences a letter to be opened 60
years later. This letter, published in year 2000, contained many of the ideas on
stochastic differential equations that Ito was developing.

1.1.1  Quadratic variation and Ito-Follmer calculus

In 1979 Hans Follmer published a short paper with title “Ito calculus without
probabilities”, where he showed how the stochastic calculus invented by Ito,
using convergence in of Riemann sums in L?(£2, P) sense, applies surprisingly
also pathwise for some non-random functions, using some special sequences of
finite partitions.

We choose to start our journey into stochastic analysis from the modern
pathwise result of Féllmer, which is rather minimalist.

Later in the following chapters we develop the classical Ito calculus based
on martingales.

Note that in the real world is often the case that a random process say
(Bi(w) : t € ]0,1]) is realized only once, and convergence in mean square sense or
in probability remain rather abstract and unsatisfactory concepts, while almost
sure convergence results are the most meaningful, since we are mainly interested
in that single realized path.

This approach is also discussed by Dieter Sondermann in his book Introduc-
tion to stochastic calculus for finance .

Let (x;) be the integrator and (y;) integrand funktions
When (z) has finite variation , that is z; = (27 — 27), where 2% 2° are
non-decreasing (and therefore Borel-measurable), and (y;) is Borel measurable

and bounded, the Lebesgue-Stieltjes integral is well defined

t t t
/ ysdxs = / ysdxg3 - / ysdxse
0 0 0

When y, is also piecewise continuous, or it has finite variation on compacts,
the Lebesgue-Stieltjes and Riemann-Stieltjes integrals coincide. The differential
calculus is first order: for F(-) € C'(R),

F(xy) = F(xo) —|—/0 F.(zs)dzs + Z{F(ms) — F(zs—) — Fp(as—)(zs — xs,)}

s<t

with correction terms appear at the discontinuities of x;.
What happens when the integrator is x; has infinite total variation ? Can
we make sense of the limit of Riemann sums for some class of integrands ?

For a path x; of infinite total variation we can do the following:
by summing p-powers of small increments for some p > 1 and taking supre-
mum we define the p-power variation of a continuous path x; as

’Ut(p) (;[;) = Slrllp Z |1’ti+1 — xt,;

t;€ll

p



http://en.wikipedia.org/wiki/Wolfgang_Doeblin
http://en.wikipedia.org/wiki/Wolfgang_Doeblin
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Since the increments are small, there is a chance that vt(p ) (x) < oo even in the

case were the total variation v, (x) = vgl)(m) = 0.

In Ito calculus we consider p = 2 but we use a weaker notion of p-variation,
where instead of taking a supremum over all finite partitions II, we take the
limit under a given sequence of partitions.

Consider a sequence of partitions {II,,} where
I, ={0=t{ <t} <...,<tf <...}, limt =00, Vn,
k—o00

vt >0, A(L,,t)= sup {tf At—tZ At} =0 forn—oco.
ell,

Ly
t A s := min{t, s}. Usually we will use dyadic partitions
D,={t} =k27": keN}, neN

Definition 2. A continuous function x : [0,00) — R has pathwise quadratic
variation [z,z]; among the sequence {Il,}, when

nll_}n;lo 21; (Tt nt — Teone)® = [2,2]p Yt < o0 (1.1)
tiell,

and t — [z, x]; is continuous.

Remark For each n the approximating function

Enlt) = Z (Tt ont — Teont)”

t;€ll,

is continuous since ¢t — x; is continuous. However in order to show that the limit
[x, z]; would be continuous, we would need the stronger uniform convergence of
&n(t) to [z, z]; on compact intervals, which is not guaranteed, if nothing else is
known about the continuous path x;, that’s why we need to include continuity
in the definition of [z, z];.

Lemma 1. When it exists, t — [z, z]; is non-decreasing with [x,z]o = 0. For a
constant ¢, [cx,cx]y = [z, x];. In particular, the quadratic variation is reflec-
tion invariant: [—x, —x]; = [z, x];.

Let u < v and for each n large enough , let i,, < j, such that

th g <u<ty <t} _<ov<t]_,

Then
Jn—1
§n(v) = &n(u) =(x, — ﬂftyn_l)2 — (Tu — JCt;}n_l)2 + Z (@i, — wtyk_l)z + (xy — Tn
k=i, +1

)2

As n — oo where the last expression vanishes since x is uniformly continuous
on compact intervals, and [z, z], > [z, ], O

> (i, — iy, _,)? (o — g

in—1
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Lemma 2. (Characterization): A continuous path t — x; has quadratic vari-
ation [z, x]; among the sequence {Il,} if and only if the sequence of discrete
measures

gn(dt) = Z (xtH—l - xti)zéti (dt)
t; €Ty

converges weaklgﬂ on compact intervals to a Radon measureE| &(dt) without
atoms, which means that £({t}) = 0 Vt.

Proof (Sufficiency) Consider a continuous integrand y,. Since y is uniformly
continuous on the compact [0, 1], Ve > 0, there are k,m,71,..., 7, such that
the piecewise constant function

Yy (s) = Zyrjl(rj,rj+1](5) satisfies  sup|y®(s) —y(s)| <e
j=1

s<t
It follows
t
Z Yt (xt?+1 - xt;")Q _/ ysd[xax]s <
ti €t <t 0
t
Z Yi, (It?+1 - 17t7;)2 —/ ysdlz, z]s| + € Z (Sﬂtmr1 - fl?tg)2
ti Emn it <t 0 t; €Ty
m t
= ZyTj Z (xt?+1 - xt?)Q _/ ySd[x"T}S t+e Z (mt?_,_l - xt?)
j=1 trEmn T <tP<Tjt1AL 0 t;€my

—

+ e[z, x];

m t
S e, ([, 2yt — [ 2y 00) — / yadlz, 2],
j=1 0

+elx,x]y asn— 0.

-1/ (0 — w2l

and as € — 0, from the definition of Riemann-Stieltjes integral it follows

t

nILH;O Z yti(ft{‘+1 *»Tt,;)z :/0 ysd[z, z]s
ti €Ty

and in the definition we have assumed that the non-decreasing function ¢t —
[x, z]; is continuous, the corresponding measure £(dt) has no atoms.

Proof of necessity: We approximate pointwise the indicator 1(g (s) by piece-
wise linear continuous functions

1 s<t 1 s<t—e
Y (s)=q14+(t—s)le t<s<t+e, y(s)=K(t—s))e t—e<s<t
0 s>t+e 0 s>t

1 Weak convergence on compacts (also called vague convergence) of &, — £ means that for
all continuous functions s — ys with compact support

[ wentas) =+ [ vestas)

2 A Radon measure £ lives on the Borel o-algebra of an Hausdorff space, and it is locally
finite (every point has neighbourhood of finite measure) and it is inner regular, that is £(A) =
sup{&(K) : compact K C A}.
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such that
Y=(s) < 1p0,(s) < y°(s), (1.2)

which implies

[o6atds) < €0.6) < [ (e)6a(as)
Asn — o0
[ ve(o)din, . < timint €,(0.4) < limsup &, (0.6) < [ 4 (s)dle 2],
which implies Ve > 0

limnsupgn([(),t]) — limninfén([(),t]) < /(yg(s) —ye(8))d[z,x]s <E(t—e,t+¢]) Ve>0
= hmnsup gn([ovt]) - hmnlnfgn([ovt]) < 5({t}) =0

since by assumption the measure £(dt) has no atoms [J

Remark 1. Note that for s <t < u,
|ty — xs| < |2y — 4| + |20 — 25

but

2= (2 —2)? + (2 — 25)2 4+ 2(20 — ) (24 — 25)

(Tu — )
which is not necessarily smaller than (z, — x¢)? + (v — x5)2.
The quadratic variation behaves differently than the first variation, by refin-
ing the partition the approximating sum is not necessarily non-increasing.
That’s the reason while in the definition of first variation we can take the
supremum over all partitions, while with this definition of quadratic variation
we follow a given sequence of partitions.

Remark 2. When x; is continuous with finite total variation in [0,t], it follows
that [z, xz]; = 0:

Z ‘xti-ﬁ — T,

ti€mn ity <t

2
E (‘Tti-u - ‘rti) < sup |'Tti+1 — Tt;
ti€mniti <t ti€mpiti St

< sup |a ve(x) = 0 kun n — oo,

ti€mn it <t

i1 Tty

where vi(x) < oo is the first variation of the path. If for some sequence of
partitions {11, } exists strictly positive quadratic variation [z, z); > 0, necessarily
the first variation is vi(x) = oo.

We show that for continuous paths with quadratic variation a second order
differential calculus holds.

Proposition 1. (Féllmer 1979): Let t — x4 a continuous path with pathwise
quadratic variation among {I1,,} with A(Il,,,t) — 0 Vt, and let F(x) € C*(R).
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Then Ito formula holds:

F(xy) =F(aco)+/0 FI(xs)dstr%/o Fop(zs)dz,z]s, t>0 (1.3)

where the pathwise Ito-Follmer integral with respect to x exists as the limit of
Riemann sums among the sequence {II,,}.

t
/ Fy(x)d2 s = lim > Fulze) (@, — 21,
0 t>t;€mn
This is also called pathwise forward integral.
Proof: take telescopic sums
F(zy) = F(z0) = lim > (Flar.,) = F(ay,))
tZtiEﬂ'n

and use Taylor expansion

Z (F(mti+1) - F(xtz)) =

tztieﬂ'n
1
Z F$(xti)(‘rti+l - xti) + 5 Z F1$(xti)(‘rti+l - xti>2 + Z r(xti’xti+1)<xti+1

where by the middle-point theorem

(T, T, ,) = (Fa:x(l’:) - wa(“‘n))

for some z} € (xy,,2¢,,,]. Note that
Ry (t) :==sup{r(z,,2¢,,,): t; €, N[0, 8]} — 0 (1.4)

uniformly as A(II,,) — 0 since the map ¢ — F,, () is uniformly continuous on
compacts.

As n 1 oo, by definition of quadratic variation the second Riemann sums
converges towards

;/tEm(xs)d[z,x]s

0

and the remainder term is dominated by

R, (t) Z (T4, —71,)* = 0 [x,2]; when n — o00.
ti€mp,te <t

Therefore the limit of Riemann sums among {II,,} exists, and it is given by

/0 Fx(ms)d?s = liTILn Z Fo(xy,) (@, — 24,)

t>t;Emp

— Play) — Flag) — %/0 Foo(zs)dlz,a], O

- mti)2
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Remark 3. 1. In general the existence and the value of such pathwise for-
ward integral may depend on the particular sequence of partitions. When
[, 2] exists for all {11, }-sequences with A(Il,) — 0 and its value does
not depend on the particular sequence,the forward integral [ Fz(xs)d7s 18
well defined independently of the sequence of partitions.

2. The existence of quadratic variation in the sense of weak convergence on
compacts was the minimal assumption which we used to derive Ito formula.

3. We have the following extension of Ito formula: if F(x,a) € C*' and
t — ay is continuous with finite variation, then

/F Lo, as)d T —hm Z Folwe,,ae,) (e, — 4,)

t>t;, ey,

¢ 1 st
= F(xt,a¢) — Fxo,a0) — / Fy(zs,as)das — 5/ Fro(zs,as)d[z, z]s O
0 0

4. When F € C*(R) and z is continuous with pathwise quadratic variation
among {II,,}, then the function w, := F(x¢) has also quadratic variation
among {IL,} given by

t
[wvw]t = / Fz(xs)2d[x7x]s
0
Proof: by Taylor expansion and Lemma[%:

2
S (g - P} = X Ao, - )

themn t} <t

+ Z (@, e, gct;;l - xt?)2 —>/ Fo(zs)?d[z,z]s asn — oo
0

where for some ;™ € [t} 17 ],

r(we, wey, ) = Fulegn)? = Fo(zg)? — 0,

uniformly on the compact interval [0,t] since s — Fy(xs)? is uniformly
continuous.

5. If xy and a; are continuous, a; has finite first variation on compacts and
x¢ has quadratic variation [z, x]; among (II"™), then y; = (v + at) has also
quadratic variation among (II") with [y, y]; = [z, z];. Proof

Z(Ax + Aa) = (Az)? + (Aa)? + 2AaAx
Therefore

Z (yt?/\t - yt;;lAt)Q

tneln

= Z (l‘t;mt - ib”t;l_lAt)Q + Z (at;l/\t - at?_l/\t>2 +2 Z (-'L't?/\t - xt?_l/\t)(at?/\t - Gtg_l/\t)

trelin tpeln tpelIn
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, where since a has first variation vi(a) < oo, [a,al; =0 and

Z (Jﬁt;mt - xt?_l/\t)(at?/\t - aty_lAt)

< max|xt?At - xt?_l/\t‘vt(a) — 00
3

trern

T

6. Note that since

1

o= [ Puw)dd, = Fla) = Plao) =5 [ Fasla)dlo.al,

(zt — f(xy)) has finite variation on compacts and it follows that
¢
e = @)l = [ Flodlo.al.
0

7. We have defined the pathwise forward integral

t
/ ysd 2
0

for integrands y; = F(x4,2;) with F € C*' and 2z of finite variation.
What about more general integrands ?

Let (IL,,) a sequence of partitions with A(IL,) — 0 and y € C([0,¢],R). Note
that

Itn(y) = Z Y, (‘Tti+1 - 9%-)
t>t,€myp

is a linear operator. When x; has infinite total variation, in particular when
[z, x]; > 0 among the sequence (II,,), the integral operator

t

Mw:/Wﬂs (1.5)

0

it is not well defined for all continuous integrands, (I mean in the case y; has
infinite variation but it not of the form f(x;,t) with f € C1), and it is not a
continuous operator on (C([0,t],R),] - |co)-

Proposition 2. (From Protter book) If for all y € C(R) exists
Ii(y) = lim I{*(y),
it follows that xy has finite first variation and therefore [x,xz]; = 0.
Proof: Vn there is a continuous function y,,(t) such that
yn(t;) = sign(wy,,, —xy,) Vi € Ty,

and |y, oo = 1.
For the operator norm

” L, H2 |In(yn)| = Z Sign(xtwrl - xti)(xti+1 - mti) = Z |wti+1 — Tt;

t>t; ey, t>t; €
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and

sup || I [|= v(@)¢,
n

since

vt(x) = nlggo Z |xti+1 — Ty,
t>t, €My

for any sequence of partitions with A(IL,) — 0.

If Vy € C(R) there exists I(y) = lim, I,,(y) < oo among {II,}, necessar-
ily sup,, |In(y)| < oo, and by the Banach Steinhaus theorenﬁ from functional
analysis it follows that sup,, || I, ||< oo, which means v(z); < co.

1.1.2 TIto-Follmer calculus for random paths

Definition 3. Let (X;(w) : t > 0) a stochastic process with almost surely con-
tinuous paths defined on the probability space (2, F,P). We say that X has
stochastic quadratic variation process ([X, X]¢(w) : t > 0) when for all sequence
of finite partitions {I1,,} with A(Il,,,t) — 0

P
Z (Xtrone — Xeoa)® = [X, X,
t;ell,

with convergence in probability

It follows that for any sequence of finite partitions {II,,} with A(II,) — 0
there is a deterministic subsequenceﬂ {IL,,(m)} such that (first for all £ € QN
[0,00) and then by continuity of [X, X] for all ¢ > 0)

Z (X4, (W) — Xt, (w))*—[X, X]¢(w) P-almost surely w (1.6)
t>t, €11, (n)

i.e. the stochastic quadratic variation and the pathwise quadratic variation
among {II,,(,,)} coincide P-almost surely. We also obtain a stochastic Ito for-
mula where the stochastic forward integral is defined as limit in probability of
Riemann sums:

Proposition 3. Let X;(w) be a stochastic process which has continuous paths P-
almost surely and with stochastic quadratic variation in the sense of convergence
in probability. Then Ito formula hold where the stochastic forward integral

3 Let’s recall Banach-Steinhaus theorem: Let (I, : v € J) a family of linear continuous
operators, I, : X1 — X2, where (X;,|-|x;), ¢ = 1,2 are normed-spaces. If Vy €x,,

sup |1 (y)|x, < oo,
veld

then sup || I, [|< oo, where || I, ||:= sup{|L,(y)|x,/lylx, : ¥ € X1} is the strong operator-
vedJ
norm.

4 Recall that &, Eo (in probability) if and only if for every subsequence (ny) there is
a further subsequence (ny,) such that &nn, (w) — 0 P-almost surely. The P-null set where
convergence fails may depend on the subsequence.
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is defined as limit in probability of Riemann sums for any sequence of partitions
(I1™) with A(II™,t) — 0:

P—nli_)ﬁgo Z Fm(Xt;‘_l)(Xt;L/\t —Xty_l/\t) (1.7)
tnelln
t 1 t
:/ Fo(X)dX s = F(X;) — F(Xo) — 5/ Fon(X,)d[X, X], (1.8)
0 0

Proof For any sequence of partitions (II"), and any subsequence (ny), there
is a further subsequence ny, such that P-almost surely

Z (Xti/\t - Xti_l/\t)z — [X, X];.
t; €I ke

in pathwise sense. With probability (P = 1) Ito formula (1.3) holds pathwise
where the pathwise forward integral

Zli>I£l<1 Z Fac(Xti,l)(Xti/\t _Xtifl/\t)
t, €Il ke

1

= [ RCegaR. = POt - P ) - b [ Pt X0,

is defined with respect to the sequence of partitions (H”’W , and it does not
depend on the partitions (II"). The stochastic Ito formula ([1.7) follows by the
subsequence characterization of the convergence in probabiity [

Consider dyadic partitions
D,={ty =k27": k=0,...,n2"}

Proposition 4. ( by Paul Lévy ) Brownian motion has P-almost surely pathwise
quadratic variation [B, Bly =t among the dyadic sequence {D,,}, which is also
the stochastic quadratic variation in the sense of convergence in probability.

Proof: the variance of the approximating sums is
2
n n n n n n 2
E({Z(BtZH - B )? = (4 — tk)} ) = Z E({(Biy,, = Bf)? = (ti —t)})
tn<t tn<t

( since increments are independent the cross-product terms have zero expecta-
tion).

= > {E({ABy YY) + (Af)? —2(At)E({ABy )} =

tp<t

23 (tpy, —tp)? =2[12")27 < 227"

tn<t
Let ¢ > 0 and

A= {w it = YO (BL, (@) = BlL()*] > ¢}

tn<t


http://en.wikipedia.org/wiki/Paul_Pierre_Levy
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by Chebychev inequality
P(AS) < 2t27 e
Therefore

D P(A;) < et < oo

Applying Borel Cantelli lemma, Ve > 0
P (lim sup Ai) =0
n
Taking € = 1/m, m € N and countable intersection of the complements
P(nUNarr) =1
m>0k>0n>k

which is the probability that the path ¢ — B;(w) has pathwise quadratic varia-
tion [B, B]; =t when we take the limit among the dyadic sequence.

Remark 4. 1. Essentially we used

Z(Z(t;;“ —t};)2> < 00

n SMp<t

In order to obtain almost sure convergence starting from convergence in
probability, it is enough to have

D A(IL, 1) < oo

neN

2. The set of measure zero where convergence fails may well depend on the
sequence of partitions. Since the collection of partition sequences is un-
countable, we don’t get almost sure convergence if we take supremum over
partitions.

3. By a backward martingale argument his theorem extends to refining se-
quences of partitions with I, C 41, A(I,,t) = 0 when n — oo ( you
find in the book by Revuz and Yor, Continuous martingales and Brownian
motion, Proposition 2.12 ) .

1.1.3 Cross-variation

Definition 4. Let x;,y; continuous paths with pathwise quadratic variations
[z, x]; and [y, y]: among the sequence of partitions (II™) with A(II™,t) = 0 Vt.

We define their pathwise cross-variation among the sequence of partitions
(I1"™) as

[z, y]e = [y, 2]y = lim Z (@ipat — Tez At) Yepae — Y At)
tnern

when it exists and t — [z,y]s is continuous.
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Lemma 3. When the continuous paths (z; + y¢) and (x¢ — y;) have pathwise
quadratic variation among the sequence of partitions (II") , their cross variation
among (II") exists and it is given by the polarization formula.

1
ool = (e t+y ety —[p—ye—yh). (1.9)
Therefore the cross-variation has finite variation on compacts since it is the
difference of two non-decreasing functions.

Proof Observe that (1.9) for the approximating sums before taking limits,
since

AzAy = %((Aw + Ay)? — (Az — Ay)?)

Lemma 4. The continuous path x¢, yr have cross-variation [z,y]: among (II"),
the sequence of measures

" (dt) Z bep (dt)(zepne — e ae) (Yo ne — Yer  at)
t,€ll,
converges vaguely to the measure £(dt) with £((s,t]) = [z, y]t — [z, Y]s-
Proof By polarization and Lemma [2}

Proposition 5. When x,y; are continuous with pathwise qudratic variations
[, x]¢,[y, y]: and cross variation [x,yl; among the sequence of partitions (II™)
and f(r,s) € C*2, the following Ito Féllmer formula holds:

t
o) = o) + [ Vi) (§7)
/ f:mc xsays {EZ’ / fz:c xsays xx / fmy xsyys [.’ﬂ y]

where

/Ot VF(2s,ys) <Z§> = (/Ot fol@s, ys)d @ s +/Ot fy(xs,ys)d75> _

Jim 3 {fx(f”t?uyt?l)(xt? — @)+ fy@n e ) (e - yt:u)}

tnetln

Remark Note that at this stage we are not able to define separately the
pathwise integrals

/ fo(0ry2)d T, and / Fo(@ery)dT s
0 0

when [z][y]: > 0, but their sum is well defined.
Proof As before, use a telescopic sums and a second order Taylor approxi-
mation, together with Lemma [4 O

Proposition 6. Let B; and W; independent Brownian motions. Then P-almost
surely their pathwise cross-variation among the dyadic partitions (D™) exists,
and [B,W]; = 0.

Proof By definition (B; + W;)/v/2 and (B; — W;)/v/2 are Brownian mo-
tions, and [B+ W, B + W], = [B — W, B — W]; = 2t and the result follows by
polarization.
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1.1.4 Pathwise Stratonovich calculus

If in the approximating Riemann sums we evaluate the integrand at the mid-
point rather than in the left point we obtain

Z FI(B(ti+1+t7‘,)/2)(Bti+1 - Btl)

t; €D, t; <t

= Fuo(Bi)(Biy, — Bi) + > (Fe(Btyi4t2) — Fe(Br))(Br,., — Bt,)
=D Fa(B)(Briy = Bi) + Y Fuo(Be)(Biiyy v /2 — Be) By, — Bi)+
+ Z T(Btiyy+t:)/2 Bt: ) (Btiyy+t0) /2 — Be.) (B, — Bt,;)

= Z Fo(By,)(By, ., — By,) + Z Foo(Bt,) Bty 402 — Bi,)*+

+ Z Foo(Bt,) (Bt +t)/2 — Bt ) (Btiyy — Bityi4t,)/2)+

+ Z T( Bty +t:)/20 Bt: ) (Bt +t0) /2 — Be.) (B, ., — Bt,)

Lemma 5. For the Brownian path

1 1
Z (B(ti+1+ti)/2 - Bti)Q - i[B?B]t = it ) (110)
ti€Dyit; <t
Z (B(ti+1+ti)/2 - Bti)(Bti+1 - B(ti+1+ti)/2) =0, (1'11)
ti€Dp:t; <t

Proof: Hint: among the lines of Proposition (4.

It follows that the Riemannin sums among the dyadics converge P-a.s.
among the dyadics (D,,) to the pathwise Stratonovich integral

t t 1 t
/Fm(Bs)odBS ;:/ Fm(Bs)dﬁeri/ Fuo(Bs)ds
0 0 0

I I

0 0
which follows the ordinary first order calculus. By evaluating in the Riemann
sums the integrand at the right point we obtain the pathwise backward integral

¢
/Fx(Bs)d§s= lim Z Fy(Byy, )(Bip, at — Bir)
0

n
n— o0 i+1
tneD,

:F(Bt)—F(BO)Jr%/O Fm(Bs)ds:/O Fx(Bs)d§s+/0 Fyu(B,)ds

Proof: exercise.

References H. Follmer, {‘Calcul d Ito sans probabilites” (1980). Séminaire
de Probabilités XV, pp 143-149 Springer

D. Sondermann, “ Intoduction to stochastic calculus for finance ” Springer.


http://www.numdam.org/numdam-bin/item?id=SPS_1981__15__143_0

Chapter 2

Paul Lévy’s construction of
Brownian motion

2.0.1 Preliminaries on Gaussian random variables

Definition 5. A random vector X = (X1,...,X,) with values in R™ is jointly
Gaussian iff there is a p € R™ and a non-negative definite matrix K such that
the joint characteristic function is given by

ox(0) := E(exp(if - X)) = exp(iQu — %HKGT)
where y - x is the usual scalar product. Equivalently the joint density is given by
pe(e) = (20) /2 det(K) 2 exp( =50 = K6 - )T
Lemma 6. Let G(w) € R a standard Gaussian random variable with E(G) =
0, B(G?) =1.

|
Ep(G?") = (2n)! Ep(G*™™) =0 VneN

nl2n’

Since LP(P) D L*™(P) for p < 2n, it follows that G € LP(P) V0 < p < 00.

Proof: Hint: by using the moment generating function

dr dr
T xp(12/2) = S Ep (exp(tG)) = Ep(G™ exp(iG)) = Ep(G) at t =0
where you need to justify interchanging the order of derivation and integration.
By expanding the exponential at t = 0

dm e tQk

BG") = g 2 o
=0

t=0

we see that only the term with 2k = n contributes giving the result [J

When the limit of a Gaussian random variable exists, it is necessarly Gaus-
sian:

19
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Lemma 7. Let {&,} be a sequence of Gaussian r.v. with respective distributions
N (pin,02), defined possibly on different probability spaces, together with a r.v.

& Ifg, A ¢ (convergence in distribution) then £ is Gaussian N (u,0?) where

the limits p = lim, p, and o2 = lim, UEL exist.

When o% = 0, we agree that the constant random variable p is Gaussian
with zero variance.

Proof Since convergence in distribution is equivalent to the convergence of
characteristic functions, it follows that

1
be, (0) = exp (iunG - 2920721> — ¢e(0) VO
where V6

66, 0) = exp 3802 ) > [66(0)] = exp - 30%0?)
Arg(¢e, (0)) = pnb — Arg(de(6)) =

therefore
1
¢e(6) = exp <z’u0 - 20202) O

Corollary 1. In particular if {&,} are Gaussian random variables on the same

probability space with &, L & in probability, then & is Gaussian and &, — & in
LP(2) Vp < 0.

Obviously |&, — &P i 0, and the family {|¢, — &|P : n € N} is uniformly
integrable, since it is bounded in LP*¢ for & > 0:

sup [| &n = & llpe< 2sup || &n [lp+e< 00
n n

which follows since j,, — i, 02 — o2, and Gaussian random variables have all
moments.

Remark We can replace convergence in distribution the lemma [7] with
stronger convergence in probability or in LP convergence,

Corollary 2. If X,, — 0 in probability and X,, ~ N (pn,02), then pin, 02 — 0
and X,, = 0 in LP(QQ) for all p < oco.

Definition 6. A family of real valued random variables {& :t € T} is a Gaus-
sian process if ¥V n, t1,...,tn € T the law of (&,,...,&, ) is jointly Gaussian.

Lemma 8. (Gaussian integration by parts and tail probabilities)

o The standard Gaussian density

satisfies
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e For a standard Gaussian random variable G(w) with E(G) =0, E(G) =1
we have the Gaussian integration by parts formula:

£ (@@ ) = £0( F@)GHE) - 16

In particular for h(z) = 1
£ (1)) = Br( 66
o Forz >0 we have the upper bound
PG>0 = [Cotar< [ Lot =1 [T o way-
o) - 600} = Lo(a)

2.1 Paul Lévy’s construction

We have defined Brownian motion but we haven’t yet shown that such stochastic
process exists.
We construct recursively the Brownian motion on the dyadics D,, C [0, 1].
Given the values (B; : t € D,,), we obtain by linear interpolation a continuous

path (B{"(w) : t € [0,1]).
Then we show that Bt(") (w) converges uniformly for ¢t € [0, 1].
More precisely, let (G4(w) : d € D) ii.d. standard Gaussian random vari-
ables, where the dyadics D = J,, .y D» are countable.
At level n =0, for Dy = {0,1} set
By(w) =0, Bi(w) = Go(w),
and by linear interpolation Bt(o) (w) :=tB1(w), t €[0,1]
Define the increasing sequence of o-algebrae G,, = 0(Bg : d € D,,).
Let d € D, \ Dy,_1 and d~,d" € D,,_1 withd~ <d < d" and d* —d~ =
2n=1 g% are the nearest neighbours of d at the previous level (n — 1).
Since the increments of (B;) are independent,

P(By € dz|Gn_1) = P(By € dz|By-, By+)
which is a Gaussian law with mean (By- + Bg+)/2 and variance
(d=d )+ (d" —a)y )"t =270

We check this: it follows from Bayes’ formula, that for a jointly Gaussian
vector, the conditional expectation of a coordinate given the other coordinates
coincides with the best linear estimator in L?(P), and we have
(Ba+ — E(Bat|Ba-))Cov(Ba, Ba+ |Ba-)

Var(Ba|Bg-)
=B4_ + (Bd+ — Bd_)Q(n_l)Q_n = (Bd* + Bd+)/2
. COV(Bd7 Bd+ |Bd,)2
Var(Bg|Ba-)

E(B4|By-, Bg+) = E(B4|Bg_) +

Var(Bd|Bd_ s Bd+) = Var(Bd\Bd,) =9 _ 27271 anl _ 27(n+1)
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We define inductively for d € D,, \ D,, and corresponding d*¥ € D,_4

By- (w) + Ba+ (w)

By(w) == 5

+ Gg(w)2~(n+1)/2 (2.1)

We show that, for ¢t € D

Bifw) = 3 Gatw)mlt) = 3 Galw) [ ia(s)ds = (22

deD deD

= Y Gawyma(t) = Y Ga(w) /0 na(s)ds, whente D,  (2.3)

d€Dy deD,,

where 7)9(s) = 0, 91(s) := 1j0,1)(s) and for d € D,, \ Dy,—1, n > 0,

na(s) = {l[d,d)(s) - 1[d,d+)(5)}2(n1)/2

and d* are the nearest neighbours of d € D,, \ D,,_; at level (n — 1).

To visualize the function ¢ — Bi(w), is the infinite sums of sawtooth function
each with support on some dyadic interval [k27", (k4 1)27™) with independent
Gaussian weights.

Note that for d € Dy \ Dy_1 with neighbours d_,ds € Dy_1,

1 dt
[ us2as = [ atopds = (20702) @ ) =1
0 _
1 d+
0:/0 ﬁd(s)ds:/7 N4(s)ds

t
/ Na(s)ds =0
0
forall t € (d_,d). Since Dy_1 N (d_,ds) = 0 necessarily

/Ot na(s)ds =0

for d € Dy \ Dy-1 and t € Dy_;. This shows that B, has a finite series
expansion when t € D.

The functions (74 : d € D) are orthogonal in L([0, 1], d¢) and form the Haar
system : when d # d' € D, either both d,d’ € Dy \ Dy_; for some N, and

so that

/ Nq ()N (s)ds =0
0

since they have joint support, or d € Dy \ Dy_1 and d' € Dy_; for some N
(or the other way around), and orthogonality follows since 7)), is constant on the
support of 7, (the constant is zero when the supports are disjoint).



2.1. PAUL LEVY’S CONSTRUCTION 23

Let’s show that for each ¢ € D the series expansion ([2.2)) satisfies the recur-

sion step (2.1).

Note first that for ¢t € [0,1],Vn € N, there is one and only one d € D, \ D,,_1
such that ¢ € support(ng).
Assume that ¢ € Dy \ Dy_1 with neighbours t_,¢t, € Dy_;.
Then
By- (@) + Bis ()
2

Ni > Gd<w>;</0t 7'7d(s>ds+/0t+ ﬁd(s>ds) + Gi(w) /Ot i (s)ds

n=0 deD,,

B, = + Gy(w)2 N TD/2 =

where for t € Dy \ Dy—_1, n¢(s) > 0 with maximum

t t
nt(t) = / nt(g)ds = / nt(s)dg = 2_N2(N_1)/2 = 2_(N+1)/2
0

and Vd € Dy_1,t € Dy \ Dpy_1,

;(/Ot Ma(s)ds + /Ot+ ﬁd(s)ds> = /Ot na(s)ds

since when d € Dy_1, n4(s) is constant in the interval (t—,t+). We have
obtained the series expansion of Bi(w).

We show that for P-almost surely the infinite series representation of B;(w)
is converging uniformly on ¢ € [0, 1],

We use the Gaussian tail estimates: given ¢ > 0 for n > (27) 7 1c™2? | G4 ~

N(0,1)

P(|Ga| > cv/n) <

P(w:3d € D, \ Dyp_y with |Ga(w)| > cy/n) < > P(|Gal > ev/n)
n€ED\Dyp_1
2

< on—1 exp(—%) < exp(—an)

when ¢ > /2a + 21log2 > +/2log 2, for some « > 0.
For such ¢, since

Zexp(—an) = (1 —exp(—a))™! <
n>0

by Borel Cantelli lemma
P<w : AN (w) with |G4(w)| < ev/n, Vn > N(w), d € D, \ Dn_1> =1

Therefore for P-almost all w and n > N(w), and V¢ € [0, 1]

Z Ga(w) /0 Na(s)ds

deDp,\Dy—1

S c\/ﬁ2—(n+1)/2
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since for d € D,, \ D,,_1, with neighbours d~,d" € D,,_;

/Ot na(s)ds =0

when ¢t ¢ (d~,d"), and for t € (d—,d")

¢ d
0< / Na(s)ds < / na(s)ds = 2-(FD/2
0 0

It means that, P-almost surely and uniformly in [0, 1], the series

> Y Gulw) [ ulds = lim B(w)

n>0deD,\Dn_1

is absolutely convergent. Note: by computing the series: for 0 < p < ¢ < 1,
> /np™ < oo, since for n large enough /n < (¢/p)" and > ¢" < oco. This
n n

means that P-almost surely {t — Bt(") (w) : n € N} is a Cauchy sequence on the
space of continuous functions C([0, 1], R) equipped with the uniform norm. By
completeness, for P-almost all w a continuous limiting function ¢ — B;(w) exists.

The random process (Bg(w) : d € D) is a Brownian motion on the dyadics,
since by construction at every dyadic level D,, the distribution of (By : d € D,,)
coincides with the finite dimensional distribution of the Brownian motion.

Let’'sfix k> 0and 0=ty <t1 < -+ <t < 1.
We find a sequence (™, ... ,t,(cn)) C D, such that nax 11 — 1 < 2m,

For P-almost all w the path ¢ — B;(w) is continuous, and
(Bt(n) (w), ey Bt(n) (w)) — (Bt1 (w), A 7Btk (w))
1 k

Since (Bt;"> (W) ..., Btﬁc") (w)) is a jointly Gaussian vector and almost sure con-
vergence implies convergence in distribution, by the multivariate version of
lemma [7 it follows that the limit is a Gaussian random vector.

Morever since the increments are bounded in L?()

s E<(Bt(.") - Bt(."L>1)(Bt(,") - Bt(.")l)> = lim d;; (tgn) - tz(‘r—L)1)
i i— J J—

n—oo n—00

= 8yt —ti1) = E<(Btl. — By, ) (B, — Btj_1)>

where since Gaussian variables have moments of all order, in the last equality
we can pass the limit inside the expectation by uniform integrability. Since
we have shown that the increments of B;(w) over disjoint intervals are jointly
Gaussian and uncorrelated, with E((B; — Bs)?) = (t — s), we conclude that
(By(w) : t € [0,1]) is a Brownian motion.
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2.2  Wiener integral, isonormal Gaussian pro-
cesses, and white noise

Definition 7. Define the Cameron-Martin space of absolutely continuous func-
tions with square integrable derivative

H= {t — h(t) = /Ot h(s)ds : h € L*([0, 1],dt)}

For h,f € H with h(t) = fot h(s)d fo s)ds we define the scalar
product

1
(P = (e Freony = [ B f(s)ds
0
H equipped with the scalar product is an Hilbert space. || h||g:=/(h,h) g is a

norm.

The functions {n4(s) : d € D} used in Lévy construction form the Haar
system, which is a complete orthonormal basis of the Hilbert space L?([0, 1], dt),
meaning that

1
(nars nar )i = (ar s M) L2 (j0,1]) = /O ar (8)Nar (8)ds = dar,ar

and every h € L2([0,1],dt) has expansion

Z Z 14 (t) (g, )L2([0,1])

n>0deD,

where the series converges in L?([0, 1], dt)-sense.
Equivalently the primitives

t
t—ny(t) = / Na(s)ds
0
form a complete orthonormal basis in H, so that every h € H has the expansion

Z Z na(t)(na, b

n>0deD,
converging in || - || g norm.

Definition 8. An isonormal Gaussian space {B(h) : h € H} is a collection of
zero mean jointly Gaussian random variables such that the covariance structure
matches the scalar product in H

E(BMB(f) = (h, )i = / (s) f(s)ds

forh, f € H.
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In particular we have the isometry between the subspace {B(h) : h € H} of
L*(Q, F,P) and H

| B 220 = E(B(h)?) = / i(s)2ds =|| h |4

Note that if (h,, : n € N) C H is a Cauchy sequence in H-norm, then by the
isometry the Gaussian variables (B(h,) : n € N) C L2(Q, P) form a Cauchy se-
quence, and since L? is complete necessarily it has a limit in L? sense. Moreover
the limit must be Gaussian, since limits in distribution of Gaussian variables are
Gaussian, and L?-convergence is stronger than convergence in probability which
implies convergence in distribution. )

In this way we define stochastic integrals of functions h(s) € L?([0,1],dt):

We approximate h(s) by piecewise constant functions

ha(s) = Y Wil am(s)

e,

in L2([0,1],dt), for some (hi,...,hy) and IL,, finite partition of [0,1] The saw-
tooth function

t t
hi (%) :/0 hn(s)ds approzimates h(t) :/0 h(s)ds

is an element of the Cameron Martin space H, is in correspondance with its
piecewise constant derivative hy(s).

For a piecewise constant integrand hn (s) we define the stochastic integral as
the Riemann sum

1
B(hy) ::/0 hn(s)dB, = Z W (Byrpr — Ber_ a1)
t?enn

we check that this satisfies the isometry, which then is used to define the stochas-
tic integral

1
B(h) = /O h(s)dBs

as the limit in L?(Q, P) of the Cauchy sequence (B(hy,)).

This was historically the first construction of a stochastic integral with deter-
ministic integrands and it is due to Norbert Wiener. Using martingales, Kiyoshi
Ito extended the construction to a much wider class of random integrand pro-
cesses.

These Gaussian variables are identified with the Wiener integrals
1 .
B(h) :/ h(s)dBs, he€eH
0

Let {G4(w) : d € D} ii.d. standard Gaussian variables on the probability
space (€, F, P). We construct the isonormal Gaussian space indexed by h € H
as follows:
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For the elements of the Haar basis, define

1
/ ﬁd(s)st = Gd, deD
0

For h € H By using the Haar expansion,

B(h) :/O h(s)dB, = Z Z Ga(w)(h,0a) L2 ((o,1))

n>0deDy\Dp_1

where the infinite sum converges in L3(Q, F, P).
In particular for ¢ € [0,1] and h(s) = 1jg4(s)

1 t
B(h) :/0 1(,11(s)dBs :/o dB, = B, =
Z Z Gd(“)/o na(8)1j0,4(s)ds

n>0deDy\Dp_1

=Y Y Gaw) /0 7a(s)ds

n>0deD,\Dpn_1

where the convergence is in L(Q, F, P).

Note this is exactly the series expansion used in Paul Lévy construction
of Brownian motion, and it was shown that it converges P-almost surely in
the Banach space of continuous functions equipped with uniform norm, which
implied that P-almost surely ¢ — B;(w) is continuous.

This construction works also by replacing the Haar system with any another
complete orthonormal system in L?([0, 1], dt).

Another insight is given by using white noise. Let {B,(w) : t € [0,1]} a
zero-mean Gaussian generalized process with the covariance defined formally as
the generalized function

where dg(t — s) is the Dirac delta function of distribution theory, meaning that
for t # s By and By are uncorrelated while B; has infinite variance. Such object
does not exists pointwise since there are not Gaussian variables with infinite

variance.

Formally B, = dﬁf is the derivative of Brownian motion (whose paths are

almost surely is nowhere differentiable as we will see ).
Define for h € H

B(h):/ol h(s)stz/ol h(s)dfg%zs:/ol h(s)B(s)ds

= (h,B)p1(o,1)) = (h. B)mr

Note that (h, B)g is not defined w-wise but it will be well define in L?(12, P)
sense as the limit of the smooth truncated series
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We see using Fubini that

E(B(h)B(f))_E</ dB/f dBt)_ </1h(s)B(s)ds/1f(t)Btdt>
[ [ty [ flic
= i [ Fwnte - syar)as =

[ i) 5)ds = s Fyraonsan = (b D
0
Note that for the Haar system {74 : d € D}

)= > Galwils)

n>0deD,

(t)do(t — s)dtds =

satisfies formally the definition of white noise, since

(Z Ganal(s Z Gana(t > Z Z na(s)na () E(GaGa)

deD d’'eD deDd'eD

=" ia(s)ia(t) E(G2) = > ia(s)ia(t)

deD deD

and by the Plancharel identity

[ (S ool 5 somsow) ([ o)

deD
= Z Foia) ez o (s i) 2oy = (F+ ) 22 (0,17)
deD

_/Olf(t) t)dt = //f $)6o(t — s)dtds

which shows that formally the covariance is the Dirac delta function

=Y fa(s)ia(t) = do(t — 5)

deD

Conclusion the white noise B; introduced formally as the derivative of
Brownian motion is a generalized random process which does not exist pointwise
but it makes sense to integrate a test function against it.

2.3 Holder continuity of Brownian paths

Here we explain some ideas from Paul Malliavin book Stochastic analysis, chap-
ter 1. Let (H,(-,-)m) be a separable Hilbert space, with an orthonormal basis
{en : n € N} C H. This means that (en,em)n = dp,m, and

H= LinearSpan(en 'n e N)

where we take closure in || - || g-norm. It also implies that, if for h € H we have
(h,en)m =0 Vn € N, necessarly h = 0.
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Proposition 7. If H is infinite dimensional, a Gaussian measure v(dw) on
the space (H,B(H)) such that the variables &, (w) := (en,w) are i.i.d. standard
normal under v does not exist.

Proof Otherwise

w= Z(en,w)en

n

]l = Z(enaw)Qnen”%{ = Zﬁn(w)z =00 , v(dw) almost surely

n

by applying Borel Cantelli lemma.
In other words, if {¢,} is a sequence of ii.d. standard normal random

variables on a probability space (€2, F, P), then P-almost surely ,(Z fnen) o4
n=1
H.

Proposition 8. Let U : H — H be a self-adjoint operator of Hilbert-Schmidt
class, which means that there is an orthonormal basis of eigenvalues {e,} C H
with respective real eigenvectors {\,} with Ue, = Ape, such that

Zx\i<oo

Equip H with the scalar product (h,g)p = (U(h),U(g))g and denote by B = H
the completement of H under this norm.

Then <Z fnen> converges P-almost surely in |- | norm to a random ele-

n
ment of B.

- 5 )2
Proof since (e;,¢e;)p = 0;;A7,

S| =Y e
k=1 k=1

Now Y, a submartingale with decomposition

2
Y, = =

B

Yo=Y A+ (- = A, + M,

k<n k<n

Now M, is a martingale bounded in L? since

E({Z(g,ﬁ - 1)A,§}2>: 2) X < 22)\% <00

k<n k<n

It follows that M, is an uniformly integrable martingale since it is bounded in
L?(Q, P) and therefore as n — oo the limits M, and Yy, exist P-almost surely.

Therefore P-almost surely (22:1 fkek) is a Cauchy sequence in B and by
completeness it has a limit.
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By construction H is dense in B with respect to the |.|p norm.

For h € H and w € B, P-almost surely exist the limit

W(h)(w) =Y (en,h)r&n =Y (en, @) (en, h) := (h, W ()(w))m
because

B (Xlennta) = Flens =

n n

Z(en, h)ey,

n

= [1Alla
H

This can be interpreted as an extension of the scalar product (h,w)y which is
well defined for h € H and P almost all w € B.

Definition 9. We say that {B(h) : h € H} C L*(Q, P) is the isonormal gaus-
sian process indexed by H.

The map h — B(h) is an isometry from (H, (-,-)) g to L*(Q, P) with B(h) ~
N, [ h %) and Ep(B(h)B(g)) = (h.g)n. h.g € H.

We extend this construction following the ideas of Paul Malliavin, to show
the following:

Take H = L?([0,1],dt) which is identified with the Cameron-Martin space
H' of the Brownian motion (B; : t € [0,1]). Let {¢,,} be an orthogonal basis in
L?([0,1],dt), and (&,) a sequence of i.i.d. standard normal random variables,
then

B.(t) ;Z;gk /0 ér(s)ds

P-almost surely converges in supremum norm |- | to a random element B(t,w)

of Co([0, 1]).

Definition 10. A Radonifying norm | -| on H is a norm such that there
is a countable family of dense (in the original H-norm) mutually orthogonal
finite dimensional subspaces 6, C H with respective dimensions d,,, such that if
(ef,...,eq ) is an orthonormal basis of the subspace 0, w.r.t. (-,-)m, for

T, = (e’? T egnffjn) we have

> P(Tn>n"?) < o0

where (§7') is a sequence of i.i.d. standard normal random variables.

Proposition 9. Let |- | a Radonifying norm for H , and let {6,} and {T',} as
in the definition. Denote by B the completion of H under | -|.

Then P-almost surely (Z Fn) converges in (B, |- |), where B is the com-
n=1

pletement of H under the |- | norm.
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Proof By Borel Cantelli lemma, almost surely |',,| < n=2 for all n large
enough, which implies )", |I',,| < co. Therefore ), . T’ is a Cauchy sequence
w.r.t. the |- | norm and it has a limit in B. O -

We have seen that the original Hilbert norm | - |y is never a Radonifying
norm (Proposition [7)) when H is infinite dimensional.

Consider the Cameron-Martin space of Brownian motion,

¢
H' = { functions h defined on [0, 1] with h(t) = / h(s)ds where h € L*([0,1], dt)}
0

with (h, ) o= (b, §)£2(0,1),a0)-
Let {é,(¢)} be an orhonormal basis of L%([0, 1], dt), (for example in the Lévy
construction of Brownian motion we use the Haar basis), then

{en(t) = /0 én(s)ds :n € N}

is an orthonormal basis in H! by taking limit in L?(Q, F, P) we construct the
gaussian process

Wiw) = &w)en(t) =D &nlw) /O én(s)ds

where &, ~ N (0,1) are i.i.d. real gaussian r.v.

(Wi(w) : t € [0,T)) are jointly gaussian r.v.

We show that (WW;) is a Brownian motion by computing the covariance: by
using independence and Parseval identity

1 E(&nék) (/Ot én(u)du> </OS ék(v)dv> _

> E(€2)(ény 1jo.) 20,1 (€ns Lo, 220,11 = (Lot Lo,s) ) L2(o.a)) = EA S
n=1

oo

Ep(WiWo) = >
n=1k=

Theorem 1. The supremum norm | - | is a Radonifying norm for H*.

Proof Denote by H]} the subspace of functions which are piecewise linear
on the dyadic intervals (k27" (k + 1)27™).

These are finite dimensional subspaces, H, has dimension 2" and H} >
H! . Let d,, be the orthogonal complement of H! | in H}:

6, ={neH} nk2=""V)=0 vk}

5, has dimension 2"~!. We can take as orthonormal basis in §, the Haar
functions {n}(¢)} with

t
0 () = / i (s)ds where
0

i (s) = 27D2 (1 gp0-n (opr1)2-7)(8) — L(aksr2-n (2hr2)2-(5))
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Let

2711 1

Z SMG

where {£}'} are i.i.d. standard normal. Note that for a fixed dyadic level n, the
functions 7 (t),k = 0,...,2"~! — 1, have disjoint support.

(2k+1)27

ITyloo = sup [T (t)] = sup €] ip(s)ds = 27D/ 2 sup ||
te(0,1] k 2k2-" k

2n71
PAE e > 072) = (U {lgg] > n220e072) )
k=1
< 2n71P(‘§| > n722(n+1)/2) _ 2np(£ > n722(n+1)/2) < 2np(é~ > 2n/4)
when n is large enough, since 2"/* = o(n=22("+1)/2),
By the integral criteria of convergence of series,

D 2"P(¢ > 2" < oo = / 2°P(¢ > 2°/*)dx < o0
n 0

by changing variables, y = 2°/%, x = 4logy/ log 2

<:>/ P >y) (dx)dy<oo
dy
<:>/ P& > y)dy < oo

1 [ 1 3
= ( integrating by parts ) = 1/ y*P(€ € dy) < gE(g‘l) =3 < 00
1

The result follows by proposition [0} O

For o € (0, 1] introduce the Holder norm

ole = o)+ sup 12 =00
tsefo,1] [t —s|®

The space C,, of a-Holder continuous functions g form a Banach space C,
with norm | - |4-

The following result says that we can realize the Brownian motion as a
gaussian measure on C,, for every a € (0,1/2). All these realizations have the
same Cameron-Martin space H'.

Theorem 2. For a < 1/2 the norm | - |, is Radonifying. Consequently, P-
almost surely the series > &, (w)e, converges in | - |, norm. This means that

n
almost surely the paths of the Brownian motion are Hélder continuous of order
a, for all a < %
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Proof We construct I',,(¢) as in the proof of Theorem 1.1. and show that
| |o is @ Radonifying norm. We must bound the quantity

T sl

n 27(n+1)/22an n__ ¢n 27(n+1)/22(n71)a k—h) @
omax, {(e )V, max_ (It - & (k — b)=2)

since at every dyadic level n, the functions 77 (t),k = 0,...,2""1 — 1, have
disjoint support. Now

P(Tpla >n"?) =
P( U AllgrrE=22=n2bo |J {lg-gle 92 %-n > ”2}>
k=0,...,2n—1-1 h=0,...,k—1

.....

k—1

3 P<B,‘Z?,2)}

k=0

on—1l_q k—1 on—1_1
p< U {A;n)UUB;ij,g}) <y {p<A;">>+
k=0 k=0

k=0

To show that the Holder norm is Radonifying, is enough to check that

0o 2n—1_q oo 2" -1k—1
% PAM Y S S PBM) <
n=0 k=0 n=0 k=0 h=0

For the first sum we proceed as in Theorem 1.1, using the assumption that
(1/2 — @) > e >0, it is enough to check that for a standard Gaussian r.v. &

> 1
32 Pl > 2) < oo o= [ pere > oo = 20 < oo

which holds since the standard Gaussian random variable £ has all moments.
Recall that by Fubini,

/OOO xP(|Y| > x)dx = /OOO /ODQ 1(y > z)P(|Y] € dy)zdx = /OOO (/Oy xdm)P(|Y| € dy) =
1

o 1
5/ y*P(Y| € dy) = 5EP(Y?) .
0
and we have used this for Y = |£|'/¢. For the second term, note first that for

k# h, (& — &) = €V2. We get

co 2" 1k—1 oo 2" _1k—1
P(lgl2 G027k —h) ™ > n?) <O+ Y Y D P(lE(k— )T > 2m)
n=0 k=0 h=0 n=0 k=0 h=0

fore some finite constant C, since for 0 < ¢ < (1/2 — «), and n large enough

one < p—29n(z—a)ga
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Using the integral criterium for the convergence of the series

/OO /2z /yp(|§|(y e 2“)dzdydx _ /oo /02m /OyP(|§z_°‘ > 2rs)dzdydx =
1og2/ dwf/ dy/ (1€]=" > wF)d=

o w-z,
d -« dz <
log2 : w/o P(l¢]z7* > wf)dz <
dw v-
10g2 0 0

P(¢z"% > w®)dz =

1 oo 1
P - S —
log2/0 dw ; uwP (€| (wu) ™ > w®)wdu

1 1 S]
/ u wP([¢Ju™ > w)dwdu =
o Jo

log 2
1 1 oo
/ u wP(\§|1/(6+a)ufa/(E+a) > w)dwdu =
log2 Jo  Jo
1 ! (e+ )
_ L e/ et / (e—a)/(e+a) gy, — EH ) o 2/(eta)
S ) [ w= EE i) < oo

since (e —a)/(e+ o) > -1 0



Chapter 3

Stochastic process:
Kolmogorov’s construction

3.1 Kolmogorov’s extension

We skipped this section during the lectures since we have used Lévy’s
construction

We prove first Daniell-Kolmogorov extension theorem which tells when a
stochastic process (X;) indexed by a time parameter ¢ € T' exists as collection
of random variables.

Whether this collection of random variables can be combined together into
a random path with some continuity properties with respect to the parameter,
is the content of Kolmogorov’s continuity theorem.

Definition 11. Let (Q, F, P) be a probability triple. A stochastic process is a
collection of random variables (X;(w))ier with values in (RY, B(RY) with pa-
rameter set T.

In these lectures we will consider 7' = N, Z, R, R*, Q but some other index
sets may appear.

Definition 12. Let X = (X;(w))ter and X' = (X} (w))ter R-valued stochastic
processes on the respective probability spaces (2, F, P) and (', F', P"). We say
that X and X' are versions the same process if their finite dimensional laws
coincide: Vk € N, ty....t,, € T By,... By € B(RY)

P(th GBl,...,th, 6Bk> :P/<X£1 EBl,...,Xt/k EBk>

Definition 13. Let X = (Xy(w))ier and Y = (Yi(w))ier R-valued stochastic
processes on the same probability space (2, F,P) We say that X and Y are
modifications of each other if Vt € T

P(X;=Y:) =1

35
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Definition 14. Let X = (X;(w))ter and Y = (Yi(w))ier R-valued stochastic
processes on the same probability space (2, F,P) We say that X and Y are
indistinguishable when

Plw: Xy(w) =Y (w)VteT) =1

Exercise 1. When X and Y are indistinguishable, they are modification of each
other. When X andY are each others’ modifications, they share the same finite
dimensional laws. Show a simple example of a X,Y which are modfication of
each other but not indistinguishable.

Definition 15. We say that the family of finite dimensional distributions

e, BR™) —[0,1], withnéeNty,....t, €T

----- n

is consistent , when

Ptlv---vtn (Al X X An) = Pt'rr(l)7"'t7r('n.) (At'rr(l) e X Atw(n))
VneN Ay,... A, € BR),t1,...,t, € T, V permutation =

Ptl,...,t"(Al X - X An) = Pt1,~-7t7“tn+1 (A1 X+ X An,R)

Theorem 3. (Daniell-Kolmogorov,1933) Let

(Pt:te GT")

n=1

a consistent family of finite dimensional probability distributions with arbitrary
index set T'.

There exist a unique probability measure P on the product space = RT
equipped with the cylinder o-algebra generated by the product topology, such that
Yn € N, ty,...,t, € N, B, € B(R"),

P<w ERT : (Wi, . wy,) € Bn> =Py, ...+, (Byn) (3.1)

Proof

The elements of 2 = RT are functions t — w;. o(C) coincides with the small-
est o-algebra on 2 = RT which makes the canonical evalutions w — X;(w) = w;
measurable for all t € T.

We define the cylinders’ algebra C with typical elements

C= {wERT:(wtl,...,wtn) eBn}

where n € N, #1,...,t, € N, B, € B(R").

We take as a definition of the map P : C — [0,1].

By using the consistency assumption you can check that P(C) does not
depend on the particular representation of a cylinder C' € C.
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Since every finite number of cylinders can be represented on a common
index set, since the finite dimensional distributions are probabilities, it is also
not difficult to check that P is finitely additive on C.

The next step is to use Charatheodory’s theorem to extend P to a og-additive
probability measure defined on the o-algebra o(C).

All we need to show is that P is o-additive on the algebra C, that is

If {C), : n € N} CC is a sequence of cylinders such that

Cp 2 Cpri1Vn, and m C, =0,

neN

necessarily lim,, ., P(C,) = 0.

We proceed by contradiction, assuming P(C,,) > & > 0 Vn and showing that

N Cn #0.
neN
By choosing the representations and eventually repeating the cylinders in

the sequence, we always find a sequence (t,) C T and a sequence of cylinders
{D,, : n € N} with representations

D, {wGRT (Wi, - .‘,wtn)eAn}

where A,, € B(R"), such that D,, D D, 1Vn, and for all m € N there is some n
such that D, = C,,.

It follows that P(D,,) > e >0 VYn and (,,cy Cn = (,en D

Now since P, ., is a probability measure on R", and A,, is Borel mea-
surable, there is a closed set E,, C A, with P, . (A, \ E,) < €27". By
o-additivity, intersecting FE,, with a ball large enough centered around the ori-
gin we find also a compact K, C A, with

(A, \ K,) < 27"

vvvvvvv

Consider the cylinders

F, = {w eRT : (wy,...,w,) € Kn}

Since these are not necessarily included into each other we take the intersections

n

F = ﬂ = {MERT S (W) EK;L}

m=1
where K/ C K,, are compacts. We have

Piy.1,(Kp) = P(Fy) = P(Dy) —P(Dn \ ) =

Povvoo (An) — Poo, ( U (A \ (Ko RH))
1

m=

> P (A~ Pa o, ( U (A \ Ko) x R”—M)

m=1

Zn:PD \ F) >a—252 m>e/2>0
m=1

m=1
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Therefore for each n, EI(:U&") ce x%")) € K] #0.
Since the sequence F is non-increasing, necessarily the sequence (zﬁ”)) C

K. By compactness, there is a convergent subsequence x(f”) — a7 € KJ.

The subsequence (x§’”)7 xén’)) C K}, and there is a convergent subsequence
with limit (z},z3) € KJ.
By induction, we find a sequence (z}) with (z7,...,z}) € K] Vn. The set

D*:{wERT:wtn:x:‘L Vn}CF,’LCDn Vn eN

is nonempty, and D* C (), F}, contradicting the hypothesis [J

Definition 16. A Borel space (S,S) is a measurable space which can be mapped
by a one-to-one measurable map f with measurable inverse to a Borel subset of
the unit interval ([0, 1], B([0,1])).

Lemma 9. In a Borel space, the o-algebra S is countably generated.

Corollary 3. Kolmogorov extensions theorem applies to processes (Xi(w))ier
taking vaues in a Borel space (S,S), (for example R?), without restrictions on
the parameter set T'.

Proof By using a measurable bijection f : S <> B € B([0, 1]), we define first
a stochastic process (Y;(w)) with values in [0, 1] and obtain X;(w) = f~}(V;(w))
with values in S.

Exercise 2. A separable metric space (S,d) equipped with the Borel o-algebra
generated by the open sets is a Borel space.

Hint: there is countable set {x,, } ey which is dense in S. Va € S there is a
subsequence {z,, }ren such that d(z,,,z) — 0.
Solution: We construct such subsequence explicitely as follows: let

ny = arg 1§rpni£2k{d(mm, z)}

where we use lexicographic order in case of ambiguity.
Since ny < 2F it has a binary expansion

k-1
ng = Z a®om k) ¢ 10,1}
m=0

so we can code ni by the word (xék), e ,a:,(cli)l) € {0,1}*, By concatenating

these words we obtain the binary expansion of some u € [0,1]. This map is
one-to-one, from u we can recover the subsequence and (x,, ) and the limiting
point zg. Although this map is not continuous, it is measurable with measurable
inverse: a ball centered around some x,, is mapped to a Borel set in [0, 1], and
the inverse image of a dyadic interval (k27" (k4 1)27"] is a Borel set in S.

Warning: Working with random processes taking values in non-separable
spaces can be tricky, since Kolmogorov theorem does not apply directly. During
this lecture course we will stay on the safe side.
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3.2 Continuity

We skipped also this section during the lectures since we have used
Lévy’s construction

So far we have constructed the probability measure P on (2 = RT,0(C))
such that the canonical process X;(w) = w; follows the specified family of fi-
nite dimensional distribution. Suppose T  is a topological space which is not
countable, for example T'= R. In such case, the set

A={w:tr w is continuous at all t € T' }

does not belong to ¢o(C) simply because to check continuity in an uncountable
set we need uncountably many evaluations of the function ¢ — w;. In other
words, 14(w) is not a random variable.

Theorem 4. (Kolmogorov’s continuity criterium,)
We denote the dyadic subsets of [0,1]¢ by

D= ) Dn where Dy, :={2""(k1,...,ka) :0<k; <27}, meN.
meN

Note that D is countable and dense in [0, 1]%.

On a probability space (Q, F, P), let (X; : t € T = [0,1]¢) a stochastic process
with values in a normed vector space (E,| - ||g) (for example E = R™) When
forp,r >0

B(1% = X 1) < le sl
forallt,s €T, then for all0 < a <r/p
| X¢(w) — Xs(w) |6< Ko(w)|t —s|% Vs,t €D
with Ko € LP(), in particular K, (w) < oo P-almost surely.

Proof
Let Ny, = {(s,t) € D : |s —t| =27™}, the set of nearest neighbors pairs
at level m.

Since #N,, = %ZSEDM #{neighbors of s} < 2712d(m+l)2q

E< sup || X — X, |P> < Z E(H X, — X, Hp) < (2d(m+1)d)(027m(d+r)) — 9dgeo—mr

(8,)€Nm (s,t)ENm,

(3.2)

For t € D let t,, the nearest element in D,,.

Either tp, 11 = tm O |tmi1r — tm| = 27D that is (tm, tmi1) € Npa1-
Define analogously (s,,) for s € D. Since t,s € D implies t, s € Dy, for some k
large enough, by using telescopic sums

Xt - Xs = (Xtm - X'S'm.) + Z (th+1 - th) - Z (X5k+l - Xsk)
k=m k=m

where we sum over finitely many non-zero terms. Note that if t,s € D, t # s,
necessarily 27 ("1 < |t — 5| < 27™ for some m € N. In such case, (£, — sm) =
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2™ that is t,, and s,, are neighbors in D,,, By starting the telescoping sum from
such m,

oo o0
I Xe = X 1< i = s |+ D0 1 X = X |1+ D0 1 Xopr = X |

k=m k=m

which gives

oo
sup{|| X; = X, |[P:t,s € D,270" D) < |t —s| <27} <3 sup || Xy, — Xy, |7

ke (t,8)ENm,
By the triangle inequality in LP (2, P, E) and (3.2)
1/p 00 1/p
E( sup | X — X, ||P> §3ZEP< sup || X¢ — X, ||P>
s, t€D:|s—t|<2—™ ke, (t,s)ENg
<ey 27kr/p = gommr/p
k=m

Fix a < (r/p). By taking union over disjoint sets

X — X, o\ 1/p e
E( sup { H t || } ) <e Z 2moz2—mr/p < 00
(s,t)ED:s#t |t - 5|a m=0

which implies

Ko e sy K@) =) |

p < oo P-almost surely (3.3)
(s,t)€D:s#t |t - S|

Note that w — K,(w) is measurable and K, € L?(2). By taking countable
intersections of these events with o, = %(#)7 almost surely 1} holds simul-
taneously for all « < r/p O

Corollary 4. Under the assumptions of Theorem[]}, when (E,|| - ||) is complete,

there is a modification Xy(w) of the process Xy(w) with a-Hélder continuous
trajectories for all 0 < a < r/p.

Proof It follows outside a measurable set N with P(N) = 0, the paths
t — X;(w) are uniformly continuous on the compact D.
Therefore for each ¢ € [0, 1]

Zw) ::{ lim X (w) weN¢

s—t,s€D
Zo weN

is well defined and measurable (zo € F is chosen arbitrarily).

This follows since, for w € N¢, if s,,s!, € D, are dyadic sequences with
sp, — t and s, — ¢, Ve > 0 In.(w) such that Vm,n > n.(w)

maX{II Xy (@) = Xg (@) [, | Xy (w) = X, (@) 5 ] X, (@) = X, (@) |} <e
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Therefore for w € N¢ X, (w) and X, (w) are Cauchy sequences in the complete
space E with a common limit.

Note that X,(w) = Xs(w) for s € D, and since (X,(w))sep is a-Holder
continuous when w € N¢ 0 < a < 2/p by construction ()Z'S(w))se[ul]d is -
Holder continuous Vw and all 0 < oo < 7/p.

From the hypothesis on increments’ moments, by Chebychev inequality we

get for fixed t € [0, 1]¢

ngXtass—M,seT

in probability. By starting with a dyadic sequence, we find a subsequence (s;) C
D such that s — t and P-almost surely

1i1£n X, (w) = Xy (w)

Since X,(w) = X,(w) Vs € D, it follows that V¢ € [0, 1)
P({w: Xi(w) = Xi(w)}) =1

that is X;(w) is a continuous modification of X;(w).
In particular X; and X; have the same finite dimensional distributions [

Note that this continuous modification is unique up to indistinguishability.
If X;(w) is another continuous modification of X;(w), necessarily

P(X (w) = X,(w) = X,(w) VseD)=1
— P(X;(w) = Xy(w) Vte[0,1]9) =1

Corollary 5. On the probability space (Q = (R)®, o(C)), there is a probability
measure Py ( the Wiener measure) and a stochastic process Bi(w) which sat-
isfies definition[1, Morover there is a modification which has locally a-Hélder
continuous paths t — Bi(w) Yw € Q for any 0 < a < 1/2.

Locally means that a-Hélder continuity holds on compacts.

Note by taking images, the Wiener measure Py is also defined on the spaces
C(RT;R),C*(RT;R) of continuous and locally a-Hélder continuous functions,
for 0 < a < 1/2. Under the Wiener measure, in these function spaces the
canonical process is a Brownian motion.

Proof We first take T = [0,1] @ = RI®! Definition |l| determines consis-
tently the family of finite dimensional distributions of Brownian motion. By
Kolmogorov extension theorem, there a probability measure Py on (Q,0(C))
consistent with the finite dimensional distributions’ specification. In particular
the canonical process X;(w) = w; has Gaussian increments (X;(w) — X5(w)) ~
N(0,t —s).

The Gaussian distribution has the following property: if G(w) is a Gaussian
random variable with E(G) = 0, then E(G?"*1) = 0 Vn, and there are constants
(cn) such that

E(G™) = ca{ E(G*)}"
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By the continuity theorem with d =1 and p = 2n,n € N we get
E(|1 Xy — Xs[*) = et — s|™ = calt — )T vpeN

from which it follows that (X;(w)) has a modification (B¢(w)) which is a-Hélder
continuous for all o with

(n-1)
<8 =1/2
S T

Let (Bt(n))te[o,u a sequence of independent copies of the Brownian motion
defined on the canonical space of continuous function ,, = C(]0, 1], R) equipped
with the Wiener measure. Note that since C([0, 1],R) is separable there is not
problem to apply Kolomogorov theorem to define the product measure on the
infinite product space.

By concatenating these independent copies into a single continuous path we
obtain a Brownian motion indexed by T' = [0, +00), or T' = R.



Chapter 4

Probability theory,
complements

4.1 Change of measure

For a random variable X (w) we say X € F, or X € L%(Q,F), when X is
F-measurable.

For X € F and X (w) > OVw denote X € F.

If X € Fand X(w) >0 P-as. denote X € LY (Q, F).

Let

X(w) = Z zila (W)

for z; € R and A; € F, n € N. We say that X is a simple r.v. and denote
X € YF. Denote also YFt =YFNFT.

On the probability space (2, F, P), let Z(w) > 0 P-a.s. with 0 < Ep(Z) <
00, which implies P({w : Z(w) > 0}) >0 .

We introduce a new probability measure @ : F — [0, 1]
_ Ep(Z14)

QU)i= =g 5" VAeT

Q is a probability: clearly it is additive and Q(Q2) = 1. It is also o-additive:
A, 1T Q, ( which means 4,, C A, 41 ja JA, = Q), also Z(w)ly, (w) T Z(w)

P-a.s. Using the monotone convergence t%eorem, it follows
Q(An)Ep(Z) = Ep(Z14,) 1 Ep(Z) = Q)EP(Z) = Q(An) 11

We can also use the normalized r.v.

Sy Zw)
)= Ep(Z)

with Ep(Z) = 1, and write Q(A) = EP(ZIA).

43
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Theorem 5. VA € F P(A) =0 = Q(A) = 0. We say that Q is absolutely
continuous with respect to P, and denote QQ < P.

Proof P(A) =0 = Z(w)1la(w) =0 P as.

Theorem 6. When X € F*', (which means X (w) > 0 P-a.s. and F-measurable)

7

Eq(X) = %ﬁi(zz))

and X € LY(Q, F,Q) if and only if (XZ) € L' (2, F, P).

Proof: when X (w) is a simple random variable taking finitely many non-
negative values ( denote X € YFT), it follows straight from the definition
and linearity of the expectation. When X € F* there is monotone sequence
of simple random variables such that 0 < X, (w) 1T X(w) Vw. By applying
twice the monotonisen convergence theorem under () and under P, we see that
Eq(Xn) 1 Eq(X) and

_ Ep(Xn2) , Ep(XZ)

EolX)="Fo@y ' Ermy ©

Exercise 3. Elementary conditional probability
For B € F with P(B) > 0, we change the probabity measure using the r.v.
Z(w) = P(B)"'1p(w), obtaining

P(A|B) = Ep(Z1,) = Eplgl(g;w — P(lf(;f) . AcrF

The map P( - |B): Ae F— P(A|B) € [0,1] is a probability measure on (2, F),
which is called the conditional probability given the event B.
The chain rule

P(AN B) = P(B)P(A|B) = P(A)P(B|A)

is very useful to evaluate the probabilities of complicated events.
The conditional expectatio of X € L*(P) conditionally on B with P(B) > 0

L Ep(X1lp) [
=50 7/QX( )P(dw|B)

Ep(X|B)
Note that these elementary conditional probabilities are defined only when P(B) >
0 for the conditioning event. What about conditioning on P-null events ?

From an initial probability P on (2, F) We have built a probability measure
Q < P by using a random variable 0 > Z(w) € L'(P).

This works also in the opposite direction: when when ) < P are probability
measures on (£, F) there is a random variable 0 < Z(w) € L'(P) such that the
change of measure formula Q(A) = Ep(Z14) holds.

Theorem 7. (Radon-Nikodym) On a probability space (Q, F) let P, Q probabil-
ity measures (more in general P could be a o-finite measure), such that A € F
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and P(A) = 0 imply Q(A) = 0. (notation: Q <]; P). Then 30 < Z(w) €
LY(Q, F, P) with Ep(Z) = 1 such that
Q(A)=Ep(Z1x) VAeF
Z(w) is uniquely determined up to P-null sets. We denote
dQ
= ﬁ(w)

which is called likelihood ratio ( finnish:  uskottavuus-osamddrd ) or Radon-
Nikodym derivative

Z(w)

The proof will be given later by using martingales.

We write the change of measure formula as
d
Eo(X) = [ Xwlde) = [ X(w) To(w) Pldo)
Q Q

Definition 17. On a probability space (Q, F) the probabilities P and P’ are
singular (notation: P L P’), when there is A € F such that P(A) = 0 ja
P'(A)=P(Q) =1.
Exercise 4. On a probability space (2, F,P), let F = o(X) where X(w) is a
standard Gaussian r.v. with BE(X) =0, E(X?) =1, and
1 x?
P(X €dr) = —exp(——)dz
( )= 752 p(=75)

Let P’ another probability such that

(z _N)z)dx

1
Pl 7 == -
(X; € dx) Jon exp( 5

We compute the likelihood ratio

dP’ dP 1
=—5 (w) and Z(w)= dP/(w): 7

From the R-N theorem it follows that Z'(w) is o(X)-measurable. There is a
Borel-measurable function z : R — RY such that Z'(w) = 2/ (X (w)).
For all Borel measurable f(x) >0

1 (=2 - /
—= [ 1@ e (-G )i = B (7)) = Er(7()2)

Z'(w)

2

= Bp(f()7(X) = —= [ 1)</ (@) exp(= T )

which implies

Since Ep(Z') =1, it follows

Ep (exp(pX)) = exp(%ug)
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4.1.1 Lebesgue decomposition

Let P, P’ probabilities on (€, F).

Then Q := %(P + P’) is a probabilty measure which satisfies P < @ and
P'<QonF.

By the R-N theorem the likelihood-ratio processes

/
() i= o) Ja ) = o @),
do exist, non-negative and F-measurable.
Note that Vw
2dP 2dP’ d(P+ P)

(W) +{(w) = =2 J(w)=2.

ar+ PO arr Y T ar )

Since ¢(w) > 0,¢(w) > 0 it follows

(@) €20 <2 Qas, and Q(fw:((w) =0} {w: '(w) =0}) =0,
We define Vw € Q

_dp ) = C(w) AP (W) 1
dpP " (' (w)

Z(w) =P Y= ) T Zw)

and Z'(w)

where by convention 0/0 takes an arbitrary value, for example 0.
For X € F* we have the generalized change of measure formula

Ep(X) = Ep(XZ') + Ep(X1(¢ = 0))
Proof
Ep/(X)=Ep (X{1({ > 0)+1(¢=0)}) = Eq(X¢'1(¢ > 0)) + Ep/ (X1(¢ = 0))
= FEq (XC/§1(§ > 0)) + Ep (X1({ =0)) = Eq(XZ'¢) + Ep (X1(( =0))

¢
=Ep(XZ')+ Ep (X1((=0)) = Ep(XZ') + Ep.(X)

where
P (dw) := 1(¢(w) = 0)P'(dw) ,
Therefore
P'(dw) = 7'(@) P(dw) + 1({(w) = 0)P'(dw) = Z'(w)P(dw) + P (dw)
P ja P+ are singular, since for A := {w: ((w) =0}
P(A) =0 and P1(A) = PH(Q)
Since PH(Q)+Ep(Z') = P'({ = 0)+Ep(Z’) = 1, P+ is a probability measure if

and only if P L P’, (equivalently P+ = P’). Also Ep(Z') <1 and Ep(Z') =1
if and only if P’ < P, in such case P+ = 0.
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4.2 Conditional expectation

Let (2, F, P) a probability space and G C F a sub o-algebra. Let X (w) > 0 be
a random variable F > 0. A G-measurable random variable Y (w) is a version
of the conditional expectation Fp(X|G)(w) if VG € G

Ep(X1g) = Ep(Y1c)
More in general when X (w) = X+ (w) — X~ (w) with X*(w) > 0, we take define
Ep(X|9)(w) = Ep(X™|G)(w) — Ep(X~|G)(w)

the right hand side is well defined. Otherwise the conditional expectation does
not exists.

Altough in most of the textbooks it is assumed Ep(|X]) < oo, our extended
definition makes sense and could be useful.

For example, let Z(w) = | X (w)] € Z, the integer part of the random variable
X, and let G = o(2).

Then the random variable

[ xPx(dx)

Y(w) =3 Bt

- tez Px([Z’,Z + 1))

1(Z(w) = 2)

with the convention that 3 = 0, satisfies the definition of Ep(X|G)(w) even

when X in not integrable (in such case Y is also not integrable).
Lemma 10. X(w) >0 P a.s = Ep(X|G)(w) > 0.

Proof By contradiction, assume that Y (w) = Ep(X|G)(w) < 0 with positive
probability. Then In such that P(G) > 0, where

G={w:Y(w)<-1/n}

is G-measurable since Y is. Then by the definition of conditional expectation
1
0< Ep(X1lg)=Ep(Y1lg) < —EP(G) <0

which gives a contradiction since the last inequality is strict.

Proposition 10. These properties follow directly from the definition of condi-
tional expectation and positivity, when the conditional expectations do exist.

1. Linearity

2. Monotone convergence: if 0 < X, (w) T X(w) P a.s. = Ep(X,|G)(w) T
Ep(X|G)(w) P a.s.

3. Fatoulemma: 0 < X, (w) = Ep(liminf X,|G)(w) < liminf, Ep(X,|G)(w)
P a.s.

4. Dominated convergence: if | X, (w)| < Y(w) where Y(w) is G measurable
and X, (w) = X(w) P almost surely, then Ep(X,|G)(w) = Ep(X|G)(w)
P-almost surely.
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5. if Y is G measurable,
Ep(XY[G)(w) =Y(w)Ep(X|9)
6. when H C G C F are nested o-algebrae
Ep(X|H) = Ep(Ep(X|G)|H)
7. When H is independent from the o-algebra o(X) V G,
Ep(X|GVH) = Ep(X|G)

Hint: it is enough to use independence checking the definition of condi-
tional expectation for the sets {GNH : H € H,G € G} which generate the
o-algebra GV H.

8. Jensen inequality: if f(x) is a convex function (for example f(x) = |x|P
forp=>1),

f(Ep(X19)) < Ep(f(X)IG)
Theorem 8. When X € L*(Q,F,P) , then the conditional expectation Y =
Ep(X|G) exists as the orthogonal projection of X to the closed subspace L?(w, G, P).

Hint. By using completeness one shows the orthogonal projection is well
defined as the element of L?(w, G, P) minimizing

Ep((X - 2)%)
among all Z € L%(w, G, P). Since (Y +tZ) € L?*(w,G, P) for every t € R,
Ep((X —Y —t2)?) > Ep((X —Y)?) <= t*Ep(Z?) — 2tEp((X —Y)Z) > 0
for all ¢. Letting ¢ — 0 we see that necessarily Ep((X — Y)Z) = 0, so that
Y = Ep(X|G) according to the definition.

Corollary 6. When X € LY(Q, F, P) the conditional expectation Y = Ep(X|G)
exists in L*(Q, G, P)

Proof When X (w) > 0 take X(™(w) = (X(w) An) € L% By the pre-
vious theorem and positivity exists 0 < Y = Ep(X™|G) 1 Y (w), with G-
measurable limit. By using the monotone convergence theorem we then check
that Y (w) satisfies the definition of conditional expectation. More in general by
decomposing X (w) = (X (w) — X~ (w)) with X* = (+X,0) the result follows
from linearity.

4.3 Conditional expectation as Radon-Nykodim
derivative
Let X € L'(Q,F,P). We decompose X (w) = XT(w) — X~ (w) where 2t =

(£x) V0 > 0, and consider X*(w) separately. Without loss of generality, let
X(w)=XT(w) >0.
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We define a finite positive measure on (€2, F):

px(A)=Ep(X1as) VAEF

Note that ux(A) = 0 when P(A) = 0, so that px <}% P (ux is dominated
by P o-algebra F), and X (w) = dé‘—;f(w) is the corresponding Radon-Nikodym
derivative.

Let G C F a sub-g-algebra. Obviously px <g< P, px is dominated by P on
the o-algebra G. By the Radon-Nikodymin theorem a R-N derivative

Y(w) = d;‘;'gg ()

exists as an element of L'(§, G, P) which satisfies the change of measure formula
EP(X].A) = MX(A) = EP(Y1A> VAeg.

By Kolmogorov’s definition of conditional expectation follows Y (w) = Ep(X|G)(w)
P as.

Remark 5. The existence of the conditional expectation of X € L*(P) follows
by RN-theorem. We have not proved yet RN-theorem but we will, using a mar-
tingale argument where we need conditional expectations. In order to avoid a
circular proof, we showed that the conditional expectations by using approximat-
ing L*(P)-projections.

4.4 What can we say when Ep(|X|) =00 ?

Let 0 < X(w) € L°(Q,F,P) with Ep(X) = oo. Also in this case we can
truncate, take approximations in L?(P) and apply the monotone convergence
theorem (which does not require integrability), to show that the conditional
expectation

Y(w) = Ep(X|G)(w) € [0, +o0]
which is G-measurable and satisfies VA € G.
Ep(XlA) = EP(Y].A) S [0, +OO]

Note that Y (w) could also take value 400, and in any case Ep(Y) = Ep(X) =
00.

Consider the case X (w) = (X (w)T — X(w)™) with Ep(]X]|) = oo. Then the
conditional expectation

Ep(X|G)(w) == Ep(X"|G)(w) — Ep(X"|G)(w) € [~o00, +0oq]
is well defined on the complement of
U:={w:Ep(XT|G)(w) = Ep(X~|G)(w) = +oo}

When P(U) = 0 the conditional expectation is well defined almost everywhere.
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4.5 Regular conditional probability and kernels

The conditional probability of the event A € F conditionally on the sub-o-
algebra G is defined P-almost surely as

P(A[G)(w) = Ep(14]9)(w)
Since the conditional expectation is a non-negative operator, it follows that

P(A|G)(w) €[0,1] P-as.

Can we say that for P-almost all w, the map A — P(A|G)(w) € [0,1] is a
probability measure on (2, F) ?

Let {A,} C F with A, | . By the monotone convergence theorem condi-
tional expectation that there is a set N with P(N) = 0 such that

P(A4,|6)(w) L0 Vwe N© (4.1)

The event N may depend on the sequence {A,}, the set of such sequences
ios not countable, it is not guaranteed that outside a P-null set holds
simultaneously for all sequences of events with A,, | 0.

The conditional probabilities defined above are not always o-additive.

Definition 18. Let (0, F) and (S, F) probability spaces.
A map (A, @) — K(A,0) € [0,1] is a probability kernel when

e For every fized & € 0 the map A — K(A,&) is a probability measure on
(€, F)

o For fized A € F, the map @ — K(A,@) is F-measurable.

For the regular conditional probability consider Q=Qand F=GC F.

Definition 19. The conditional probability has reqular version when there is a
(Q,G) measurable kernel K(A,w) on (Q, F) such that for all A € F

P(A|G)(w) = K(A,w) P a.s
Remark 6. When the conditional probability P(A|G)(w) has a reqular version
K(A,w) we have
B(X|0)(w) = [ X()K (/)
Q

Definition 20. A probability space (2, F) is Borel if there is an 1-1 (injective)
function f: (Q,F) — [0,1],B(]0,1]) such that on the image, the inverse f~! is
also measurable.

Here B([0,1]) is the Borel o-algebra generated by the open sets.

Theorem 9. Let (0, F,P) a probability space, G C F a sub-o-algebra, and
X (w) a random variable taking values in a Borel space (', F'). Then the con-
ditional probabilities

P(X € A1G)w), A eF

have reqular version.
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For a proof, see Kallenberg 'Foundations of Modern Probability’, Thm 6.3,
6.4.

Remark 7. A separable topological space (which contains a dense countable set)
equipped with its Borel o-algebra is a Borel space. In particular the euclidean
space R? is separable, and also the space C([0,1],R?) of continous functions
where the Brownian motion lives, and we can always work with the regular
version of the conditional probability.

4.6 Computation of conditional expectation un-
der P-independence

Proposition 11. On a probability space (2, F), let G C F a sub-c-algebra,
Y (w) G-measurable r.v. with values in the measurable space (S,S). Let also
X(w) € (8,8) P-independent from G.

Let f: (§ x 8) — R a non-negative Borel-measurable function.

The conditional expectation has integral-representation

Ep(f(X,Y)|9)(w) = Ep(f(X.y))

- /S o, Y (@) Px(dz)  (4.2)

y=Y(w)
with Px(B) = P({w : X(w) € B}).

Proof: When f(x,y) = fi(z)f2(y), VG € G from P-independence follows

Ep(fi(X)fo(Y)16) = Ep (L(X) Ep(f2(Y)1e) = Ep (fz(Y)EP(fl <X>>1G)

1g(w)P(dw)
y=Y (w)

- / / FUX @) foY ()16 () P(de) P(dew) = / Ep(f(X,y))
QJ0 Q

More in general by definition of jointly measurable functions we find a se-
quence

0< fM(xy) = A" @) ) 1 flz,y), asn— oo
k=1

and the results follows by the monotone convergence theorem.

4.7 Computing conditional expectations by chang-
ing the measure: abstract Bayes’ formula

Lemma 11. The conditional expectation is a self-adjoint operator, meaning
that for X € LY(Q, F, P) , and G C F is a sub-c-algebra, YA € F

Ep(X Ep(14|G)) = Ep(Ep(X|G) Ep(14]G)) = Ep(Ep(X|G) 14)

Proof: straight from the definitions.
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We have shown two cases where we are able to compute conditional expecta-
tions: when the o-algebra G is generated by a countable set of atoms, or under
independence using proposition .

When independence does not hold under the original measure P, is often
possible to work with another simpler measure under which independence holds.

The next formula is a change of measure inside the conditional expectation.

Theorem 10. (Abstract Bayes’ formula ). On the probability space (Q, F), let

f
G C F and P < @ probability measures Q(A) =0 = P(A) =0 when A € F.
Radon-Nikodym it follows that there is a R-N-derivative, which means a
random variable

0< Z(w) = %(w) € L'(Q,F,Q)

for which the change of measure formula for the expectation holds:
Ep(X)=Eq(XZ) VX eL'(Q,F,P)
Then the conditional expectation satisfies Bayes formula:

EQ(XZ|9) w)
Eq(2]G)(w)

Proof. Let G € G. From the change of measure formula and the deifinition
of conditional expctation it follows

Ep(X|G)(w) LY(Q,G, P)

Ep(X1g) = Eg(ZX1g) = Eq(Eq(ZX1¢|G)) = Eq(Eq(ZX|G)1c)

 (Eq(219) (Eo(ZX|9). \ . (Eo(ZX|0)
‘EQ<EQ(Z|9>EQ(Z”)1G> ‘EQ(Z Eo(Z)0) IG) ‘EP( Eo(Z)0) IG) -

Exercise 5. (Bayes formula for densities) On a probability space (Q,F), let
and X (w) € R Y (w) € R™ random variables, let F = o(X,Y) and G = o(Y).

F Q
Let P < Q probability measures such that X 1LY with RN-derivative

0< Z(w) = 2(X(w), Y () = %(W) e LY(Q, F, Q)

where z(x,y) > 0 is Borel measurable.
Let f(x,y) > 0 Borel-measurable. From the abstract Bayes formula

_ Bo(f(X,Y)Z]6) ()

Bp(f(X.Y) ’g) Eo(2]9)(w)
_ Ja f( )) 2(X (@), Y (w))P(dw)
fQ ©),Y (w))P(dw)

:/Qf(X(@),Y(w))K(w dw)  where

2(X(@),Y(w))

Rl dB) = = R (), ¥ (@) Pl

P(dw)
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is the regular version of the conditional probability. We can also integrate directly
on the space R where X (w) takes values:

Y(w)) 2(90 Y( ) Px(dz)
f]Rd 2(z,Y (w))Px (dz) R

Ep(f(X,Y)[G)(w) = Jus 1 f(@, Y ()k(Y (w), dz)

where

z(z,y)
k(y,dx) = Jow 2(', y) Px (d) Px (dz)

When the distribution of the vector (X,Y) has density with repect to the (d+m)-
dimensional Lebesgue measure,

P(X €dx,Y € dy) = pxy(z,y)dzdy,

from Fubini’s theorem it follows that also the marginal distributions Px and Py
have densities

PX € do) = px(a)do = [ pxy(@)dy
P(Y € dy) = py (y)dy = /dpx,v(x, y)dx
R

Taking as probability space Q@ = R* x R™ and consider the probability measures
Qxy(dz,dy) := (Px @ Py)(dz,dy) = px (z)py (y)dzdy, Pxy(dz,dy) = px,y(y)dzdy

From the assumption Pxy < (Px ® Py), it follows that the Radon-Nykodim
derivative is given by

BT (4,) = 2T () = 2(ay) = PEEY
dQxy "’ d(Px ® Py) "’ ’ px (z)py ()

We write the reqular transition probability in terms of the densities

z(z,y) _bxy(@y) ol
by, do) = fRd z',y) PX(dx)PX(dx)i pY(?/) I 7pX|Y( lv)d

We have obtained the ’classical’ Bayes’ formula

Px,y(z,y) _ PX(@PY|X(?J|9U)
Py (y) Py (Y)

pX|Y(fE|y) =

4.8 Conditioning on P-null events : a warning

Let X(w) Y (w) independent standard Gaussian, with Fp(X) = Ep(Y) = 0,
Ep(X?) = Ep(Y?) = 1. Consider

and set N := {w: Y (w) = 0}. Clearly P(N) =0 and
Nen{w: X(w) =Y (w)}=NN{w: Ww) =0} =N°N{w: Z(w) =1}
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Let f : R — R*" a non-negative Borel-measurable function.

JJ F@)do(z = y)px (x)py (y)dady

. o _RXR
o B S T e ey ey
i) Ep(fOW =0) = [ f@pxw (el = 0)ds
R
iii) Bo(f()1Z = 1) = [ Fe)pxiz(elZ = iz

are not all equal !
Exercise 6. Show that i) = ii) # 4ii).

A set of measure zero can be represented by using different random variables.
The corresponding pointwise values of the conditional expectation may differ.
This is not in contradiction with the theory, since we can always change the
value of the conditional expectation on a set of probability zero.
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Martingale theory

5.1 Martingales

Definition 21. Let (2, F) a probability space. A filtration is an increasing
collection of o-algebrae (F; : t € T) where T = N,RT Z, R such that for all
s<tFs CFCF

Definition 22. A stochastic process (X; : t € T) is adapted to the filtration
(Fr:teT), if Xy is Fr-meaasurable for allt € T.

Definition 23. A random variable 7(w) € T = R" N is a (F;)-stopping time
if
{w:T(w)<t}eF VteT

Equivalently the counting process Ny(w) := 1(7(w) < t) is adapted to the filta-
tion.

Definition 24. Let 7(w) an (F;)-stopping time, the stopped o-algebra is defined
as

Fri={AeF:An{r<tleF VteT}.
Exercise 7. o Check that F, is a o-algebra.
o If0 <o(w) < 7(w) Yw where 0,7 are (Fy)-stopping times then F5 C Fr

Proof of F, C F,:

AeF, <= An{o <t} e F, Vvt >0,

Also {7 <t} € F;, which implies

An{r<t}An{oc <t}n{r <t} e F
Definition 25. A (sub,super)-martingale with respect to the filtration (Ft)ier
is an adapted and integrable process (X; : t € T) C LY(P) which satisfies the
martingale property: for s <t
EP(Mt‘-Fs) = Ms

(respectively >, <)

%)
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Note the martingale property depends both on the probability measure and
on the filtration.

Exercise 8. Let (X; : t € N) C LY(P) independent random variables with
E(X:) =0, and Fy = o(X1,Xo,...,Xt) Then My = (X1 4+ -+ Xy) is a
(Ft)-martingale

Exercise 9. Let (X; : t € N) C LY(P) independent random variables with
E(Xt) =1, and Fi = O'(Xl,XQ,...,Xt) Then M; = (X1 X oo X Xt) s a
(Ft)-martingale

Exercise 10. Let (By(w) : t > 0) a Brownian motion. Consider the filtration

F = {FP :t > 0} generated by B with FP = 0(Bs : 0 < s <t) Then
(Be:t>0), (Bf —t:t>0), and (exp(0B;, — 6°t/2) : t > 0)

are F-martingales.

Exercise 11. Let X, (w) € R? a discrete time Markov chain with initial distri-
bution m and transition kernel K

Define the operator (K f)(z) = fRd fW)K(y,dz) = E,(f(X1))
Check that this is a martingale

t

Mi(f) =D (F(Xs) = (K f)(Xs-1))

s=1
Taking telescopic sums

t

F(X0) = f(Xo) + ) _(f(Xs) = f(Xsmr) =

F(Xo) + Y (f(X) = Kf(Xoo1) + D (K )(Xe1) = f(Xam1))

= f(Xo) + Mi(f) + Au(f)

(decomposition into martingale and predictable part)

Definition 26. A process (Yi(w) : t € N) is predictable with respect to the
discrete-time filtration (F; : t € N), if Yy is Fy-measurable for allt € T.

Proposition 12. Let (X;) be a martingale and (Y;) a predictable process in the
discrete-time filtration F = (F; : t € N). Define the martingale transform

t

My(w) = Yi(M, — M,_y)

s=1
When E(|YsAM;|) < 0o Vs € T, (M) is a martingale.

Proof From the definition we see that M; is adapted and integrability follows
from triangle inequality. We check the martingale property:

Ep(My— My—1|Fi—1) = Ep(Yi(Xy — Xo—1)|Fio1) = ViEp(Xy — Xy 1| F—1) = 0
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where we use predictability of Y; together with the definition of conditional
expectation.
In order to check integrability it is enough to use Holder inequality,

E(|YsAM|) <|| Ys ||z, || AM; |z,
for conjugate exponents p,q € [1,+o0], p~ 1 +¢71 = 1.

Corollary 7. Let (M; : t € N) an F-martingale, and 7(w) € N a F-stopping
time. Then the stopped process

M{ (w) = Mypr(w) = Mo + Y 1(r(w) > ) (My(w) — My_1(w))

1s a F-martingale.

Proof: since 1(7(w) > s) = 1(7(w) > s — 1) € Fs_1, we see that My, is the
martingale transform of a bounded F-predictable integrand.

5.1.1 Martingale convergence

Theorem 11. ( Doob’s forward convergence) Let (X, : t € N) a supermartingale
with

sup Ep(X; ) < o0.
teN

Notation: & = max(+x,0).
Then
lim X(w) = Xoo(w)  P-almost surely

t—o0
with X (w) € LY(Q)

Notes : although X (w) € L}(2) we don’t have necessarily convergence in
L(P) sense. Joseph Leo Doob(1910-2004) American probabilist, is the father
of martingale theory.

Proof Note first that by the supermartingale propery, Vt € N
B(X;") < B(Xo) + E(X;)

so that
sup E(X;") < B(Xo) +sup E(X;)
t t

where E(]Xo|) < 0o, so that the sequence (X;);en is bounded in L!(P).
Given a < b, we define a sequence of stopping times

oo(w) =inf{s € N: X,(w) < a}, 7i(w) = inf{s > o;(w) : Xs(w) > b},
oi(w) =inf{s > 71 (w): Xs(w) <a}, i>1

We have 0 < 0; < 73 < 0,41 < ..., To check that these are stopping times, note
that for each ¢t € N the events

{wiojw) <t} and {w:m(w) <t}


http://en.wikipedia.org/wiki/Joseph_Leo_Doob
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are Jy-measurable since they depend on the trajectory of the (F;)-adapted pro-
cess X; up to time ¢.
Define the investement strategy

1 te(om] for some i € N
Ct(w) o { 0 t S (Ti,(fi+1]

Note that since 7; and o; are stopping times, for all t € N

{Ct = 1} = U{t S (O‘i,Ti]} = U{U" < (t-— 1)}(7{7} < (t— 1)}C € Fia

€N €N

Since Ci(w) € {0,1} is a non-negative and bounded predictable process, it
follows that the martingale transform

has the supermartingale property.
Note that
Vi 2 (b—a)Upa(0,1]) = (X¢ —a)7,

where U, )([0,t]) is the number of upcrossings of the interval [a, b] in the time
interval [0,¢] by the X process, meaning that each time X starts below a and
crosses [a, b] ending up above b.

By taking expectation, since E(Y;) < E(Y;y) = 0 from the supermartingale
property, we obtain Doob upcrossing inequality

1

Ep (U[a’b]([(),t])) S (b—a)

Ep((X:—a)7)

Now since Ul,4)([0,]) is non-decreasing, for every w exists
Uja([0.00),) = lim Ujo([0.4]) € NU {00}
and by monotone convergence theorem, since
(X; —a)” = max(a — X;,0) < la| + X,

we obtain

1
(b—a)

Ep Uian([0.59).6)) = Jim £ (U (0.)) < s (Jabrsup £(70) ) <0

In particular Uy, 3 ([0, 00),w) < oo P-almost surely. Since
N=Aw: hmtglgo Xi(w) # h?isgip Xi(w)}

= U {w:lim inf Xy(w) <a<b<limsup Xy(w)} = U {U}a,5)([0,00),w) = o0},
t—o0 t— o0
a<beQ a<beQ

we see that P(N) = 0 since is the countable union of null sets, which means
that P-almost surely (X¢(w)):en is a converging sequence. For all w € Q we set
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Xoo(w) :=limsup,_, . X;(w), and we have X;(w) — X (w) P-a.s. Note that a
priori Xoo(w) € [—00, o0].
By using Fatou lemma

E(Xx]) = E(limirtlf | X:]) < limiI}fE(|Xt|) < limsup E(|X:|) < sup E(|X¢]) < o0
¢ t t

since

Xl = X, +2X7 = B(IXi]) = B(X,) + 2E(X;) < B(X)) + 2sup B(X})

by the supermartingale property. In particular, since X € L(P), | X (w)| < 00
P-almost surely [J

Corollary 8. A non-negative supermartingale X; > 0 has almost surely an
integrable limit X o, with Ep(Xo) < Ep(X}), Vt < oc.

Proof For allt € N
Ep(|Xy|) < Ep(Xy) = Ep(Ep(Xi|Fo)) < Ep(Xo) = Ep(|Xol)

so that L' boundedness follows for free and Doob convergence theorem applies
O

Corollary 9. Let (X, : t € N) a submartingale with Ep(X;") < 0o. Then for
P almost all w 3limy_, o X¢(w) = Xoo(w) € LY(P).

Proof Apply the theorem to the supermartingale (—X;)

Remark 8. Even when sup,cy Ep(|Xy]) < 00, and X, (w) = Xoo(w) P-a.s.

with Xo, € LY(P), it does not follow that X, —(>) Xoo. In order get conver-

gence in L'(P) we need uniform integrability of (X; : t € N).

5.2  Uniform integrability

Definition 27. A collection of random wvariables C C L*(), F, P). is uni-
formly integrable (UI) with respect to P when

lim sup Ep(|X|1(|X]| > K)) = / | X (w)|P(dw) — 0 when K — oo
oo {wi]X (@) >K}

Lemma 12. A finite collection C = {X1, Xo,..., Xy} C LY(Q, F,P), M € N is
uniformly integrable. Proof: From the monotone convergence theorem it follows

that a single random variable X € LY(P) is uniformly integrable. A finite set
{X1,...,Xm} C LY(P) is uniformly integrable since

X ( < X ( L
kmax|k|z|k 2 e L'(P)

Remark 9. To show that a sequence {X,}nen s uniformly integrable it is
enough to find Y € L*(P) such that

sup [ Xp (w)| <Y (w)
neN
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Lemma 13. X € LY(Q, F, P), if and only if Ve > 0 36, such that VA € F,
P(A) <6 = Ep(|X|14) <¢
Proof, sufficiency: Vw,
Y () = [X (W) L(IX ()] < K) 1 [X(w)|
and by

Ep(X]) - Ep(y(®) = /{ e @R <

for K large enough so that P({w : | X (w)| > K}) < 4. It follows that
Ep(X|) < Ep(YF)4+e<K+e<oo

Proof of necessity, by contradiction: otherwise there would be € > 0 and a
sequence of events {A,, : n € N} C F such that

P(A,) <27" = Ep(|X|14,) 2> 0
Denote A = limsup A,,. Since

> P(A) <Y 27" =1<

n

P(A) =0 by the Borel Cantelli lemma.
Let B, = |J Ak. By definition A,, C B,, | A, which means
k>n
[ X ()14, (w) < X (w1, (W) | [X(w)|la(w) Yw

where the random variables above are integrable since X € L'(P). It follows
from the sufficiency part of the proof that

0<e<Ep(|X|1a,) <Ep(|X1p,) ! Ep(]X|14)=0
since P(A) =0 0O

Theorem 12. Characterization of convergence in L*(P).
Consider {X, :n € N} C LY(Q,F,P), n € N ja X € LY(Q, F).
X, B X and {X, : n € N} is uniformly integrable,

1
if and only if X, LXxe LY(P),

Proof (necessity): When X, B Xin probability, there is a deterministic
subsequence n(k) such that X, (w) — X (w) P-almost surely. By Fatou lemma

where from the uniform integrability assumption

sup Ep (| Xok)]) < M +sup Ep (|Xn(k)|1(Xn(k)| > M)) < o0,
keN keN
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which implies X € L'(P). For K >0

Ee(X, = X1) = Bp (1%, = XIU1X, - X] < ) + B (1%, - XX, - X] > K))
K

_ / P(\Xn — X| > t)dt — KP(| Xy — X| > K) + Ep (|Xn _ X[1( X, - X| > K))
0

K
< / P(|X, — X| > t)dt + Ep(Xn ~ X[1(X, - X| > K)) :
0

where we used Fubini theorem. Since (X, : n € N) is uniformly integrable and
X € L'(P), it follows that (|X,, — X|: n € N) on tasaisesti integroituva, and Ve
JK such that

supEp<|Xn - X1(X, - X| > K)) <e

Moreover, since P(|X,, — X| > t) is bounded and lim P(|X, — X| > ¢) =0
n—oo

Vt > 0 by assumption, by Lebesgue convergence Theorem on the finite interval

[0, K] equipped with the Lebesgue measure it follows

K
lim [ P(X,—X|>t)dt=0

n— oo 0

which means that 3N such that Vn > N
K
/ P(IX, — X| > t)dt <
0

which implies Vn > N

K
Ep(|Xn — X|) < / P(| X, — X| > t)dt +supEp<|Xn - X1(| X, — X| > K)) < 2.

0 n

(Sufficiency). By Chebychev inequality, we know that convergence in L!(P)
is stronger than convergence in probability.

Ep(|Xn— X)) >0 =X, 5X.

Since X,, = X + (X,, — X), where by the assumptions X € L!(P), it is enough
to show that

{IX, — X|:n €N}

is uniformly integrable. Let’s assume without loss of generality that X =0 P
a.s.

Let € > 0 and N such that Vn > N
Ep(|X,]) <e

Since {X1,..., Xy} C LY(P) is a finite subset , it is uniformly integrable,
and 3K such that

sup Ep(|X,|1(|X, > K)) <e.
1<n<N
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For the same K we have also for Vn > N
EP(|Xn|1(|Xn| > K)) < Ep(|Xn]) <e
which implies

sup Ep (| X, [1(| X, > K|)) <€ O
neN

Uniform integrability is a compactness condition in L!(P) when we replace the
L'-norm topology by the so called weak-star topology:

Theorem 13. (Dunford Pettis) A collection of random variables C C L' (P)
is UI if and only if it is weakly compact in L'(P) that is for every sequence
(Xn;n € N) CC there is a subsequence (ng) and a random variable X € L*(P)
such that VA € F

Ep((X”k — X)lA) — 0

We prove =, for the other implication see Kallenberg Foundations of Mod-
ern Probability Lemma 4.13. It is enough to consider the case when X (w) > 0
VX € C, since weak compactness of C will follow from weak compactness of
(XT:Xel)and (X~ : X €0).

Banach-Alaoglu’s theorem from Functional Analysis says that closed balls
in the dual space of a Banach space are compact under the weak-star topology
of the dual.

This means that if X is Banach space with dual X’ and duality (z,z")x x/,
and the sequence (], : n € N) C X’ is bounded in X’-norm (the operator norm),

/
2 |x= sup L 2Ixx|
) p|<
cex 2 ]x

there is a subsequence ny and 2’ € X’ such that

<3§ [ I/, >X,X’ — 0 VreX.

r g

Note that the map z’ — (z,2') x x/ is linear and continuous in || - [|x/ norm, and
provides an embedding of X into the bidual space X”. We say that a Banach
space is reflezive when X and X" are isomorphic. For example LP(Q, F, P) is
reflexive for 1 < p < oo, where the dual is LZ(P) with conjugate exponential
satisftying (p~ 4+ ¢~! = 1). L'(P) is not reflexive since its dual is the space
of essentially bounded random variables L>°(P), and the second dual (the dual
of the dual space) is the space of signed finitely additive measures which are
absolutely continuous w.r.t. P, denoted by ba(2, F, P).

The unit ball of X = L!(P) is mapped into the set of measures absolutely
continuous w.r.t. P contained in the unit ball of X" = ba(£2, F) by the map

X(w) — X(w)P(dw)

Let (X, : n € N) C LY(P) with Ep(|X,|) < 1. By using the Banach-Alaoglu
theorem on the bidual space, we obtain that there is a subsequence (ny) and a
finitely additive signed measure u(dw) < P(dw) such that VA € F,

Ep(X,,14) = /Q 14(w)Xp, (W)P(dw) — u(A), ask — oo.
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When p is o-additive, by the Radon-Nikodym theorem p(dw) = X (w)P(dw) for
some X € L1(Q, F, P). However y is finitely additive but does not need to be o-
additive, it is not guaranteed that for any sequence of events (A4,, : m € N) C F

with A, 2 Appyr and [ Ay, = 0, we would have
meN

lim p(Ay) = lim lim Ep(X,,14,) = lim lim Ep(X,,14,) =0

m— 00 moo k—oo k—o00 m—o0

because interchanging the order of the limits is not justified.

In order to bypass this problem we truncate the variables and work in the
space L?(P) which is the dual of itself. Let (X,, : n € N) C C and for M € N
consider the truncated random variables X3 := X, (w)AM. For fixed M, the
sequence (X : n € N) is bounded in L*(P).

By the Banach Alaoglu theorem applied in L?(P) it follows that for every
M € N there is a subsequence (n(M, k) : k € N) and a r.v. X(M) € L?(P) such
that VA € F

EP((X%}M X<M>)1A) — 0 as k — oo

which means XS(MJ& s XM) weakly in L' (P) (the dual of L' (P) is L>(P) the
space of essentially7 bounded random variables, by a monotone class argument
it is enough to check convergence using indicators). We use now a diagonal
argument: for the subsequence ny := n(k, k),

Ep((X,SJ:[) —X(M))1A> — 0 as k — o0

holds simultaneously for all M € N. For M, N € N,

_ E<(X<M+N> X0y (x (N > X(M))> +E<(X<M) _ X)) (x (HN) X<M>)>

— lim E((Xy(f,\erN) ,Xfllll/f )1(X(M+N) > X(M))) +kh_>H;oE<(X’gj’y) —XT(L]K*N))l(X(M*N) < X(M))>

k—o0
by (5.2),
= lim E( | XMV - X)) <sup E( (|X,| — M)1(|X,| > M)
k—oo k k neN

< sup E(|X,|1(|X,| > M)) = 0as M — oo
neN
by the UI assumption. Therefore (X (M) M e N) is a Cauchy sequence in the
complete space L!(P) and it converges in L'(P) norm to a limit X € L'(P).
For A € F,

‘Ep((Xnk — X)lA)

Ep((Xn, — X3)14) + Ep(X31 = X1 4) + Ep (XM — X)14)

< B (1% 10%,0] > 30)) + \Epang“ — x00)1)| 4 Bp(x00 — x))
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where we choose first M large enough to make

Ep(I XM - X|) and sup Ep(|X,|1(|X,| > M))
neN

small, and then choose k large enough to make the middle term small [J

Remark 10. The stronger convergence of the subsequence in L'(P) does not
follow.

It is good to know the following characterization of uniform integrability:
Proposition 13. C C L'(P) is uniformly integrable if and only if

sup Ep(|X]) <oo and Ve>0 36:P(A)<é = sup Ep(|X[14) <e
xec xec

Proof. exercise

Remark 11. When C C LY(P) is uniformly integrable, for K large enough

sup Ep(|X]) < K+ sup E(|X|1(|X| > K)) < K +e < 0
Xec Xxec

} is not uniformly

Nevertheless the unit ball By = {X € LY(P) : Ep(]X]) <1
=n"t and X, (w) =

integrable: let {A, : n € N} C F such that P(Ay)
nly, (w). Clearly X, € By Vn, and for all K >0

sup Ep (| Xa|1(|X,| > K)) = SU%EPGXnD =1
n n>

However we have the following criteria:

Lemma 14. Let C C LP(Q) for some p > 1, with

sup E(|X|P) < o0
XeC

Then C is uniformly integrable.
Proof. Recall that LP(Q, F, P) C L*(Q, F, P) for p > 1
B(IXP) > KP7' E(|X11(|X] > K)) =
sup E(|X[1(|X| > K)) <K' ?sup BE(X?) —0, asK — o0
XecC

Xec

Theorem 14. (A characterization of uniform integrability, by Leskeld and Vi-
hola 2011). A collection of random wvariables C is uniformly integrable if and
only if there exists a random variable 0 <Y (w) € L*(P) such that VK > 0

s (1]~ 207 ) < B (1 = 107

where T =2V 0=z1(z > 0).
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Proof We proof the <= implication: from the inequality
2l(z > K)<2(z-K/2)", K>0,
it follows

)S{ueréEp(\XllﬂX\ > K)) < 2)s,{uelep((\X| - K/2)") <2Ep((Y - K/2)%) =0,

as K — oo, where the Lebesgue’s dominated convergence theorem applies, since
Y(w) > (Y(w) — K/2)" > 0 with (Y(w) — K/2)T — 0 P-almost surely
K — oo, with integrable upper bound Y (w) O

Remark 12. When we interpret the random variable Y (w) > 0 as the market
price of a stock at a given maturity time in the future. the random variable
(Y(w) — K)7T is called european call option with deterministic strike price K.
At maturity, when the option expires, the holder of the option has the right but
not the obligation to buy one stock at the predetermined price K. The option
holder uses the option only when the market price is higher than the strike
price. By selling the stock immediately at market price, the option holder gains
(Y(w) — K)T. If at maturity Y (w) < K, the call option is worthless.

Application: taking a derivative inside the expectation

Proposition 14. On a probability space (0, F, P) consider an uniformly in-
tegrable family of random wvariable {Y (t,w) : t € [a,b]} C LY(Q,F,P), with
a <beR. We also assume that

o For allw € Q, the map t — Y (t,w) is continuous
It follow that:

1. the map t — Ep(Y (t)) is continuous.

2. Let

X(t,w):= /Y(s,w)ds, t € la,b].

a

Then at all t € (a,b) the derivative exists

d

S Er(X() = Ep(Y(t) = Ep (dX(t)>

and it is continous.

Proof. From the continuity assumption lin% Y;(w) = Yi(w) and by uniform
s—

integrability it follows
|Ep(Y:) — Ep(Ys)| < Ep|Y; —Ys| =0 when s —t.
Moreover

sup Ep(|Y;]) < 400
t€la,b]
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and Y (t,w)| € L'([a,b] x Q,B([a,b]) ® F,dt ® P(dw)). By Fubini’s theorem

En(X,) = Bp (/:Y(s)ds) - /[M]XQY(S,W) ds © P(dw) :/at En(Y(s))ds

and since t — Ep(Y (t)) is continuous, by the mid-value theorem of analysis

Jim, AT PP (Xupa) = Ep(X0)} =

t+A

iiLnOA_l t Ep(Y(s))ds = Ep(Y(t)) O

5.3 Ul martingales

Lemma 15. Let X € LY(P). Then the family
{Y = Ep(X|G) : G C F sub-o-algebra }

is uniformly integrable.

Proof Since it is enough to prove it separately for X*, where X (w) =
Xt (w) — X~ (w), we assume X (w) > 0. Then we apply Leskeld and Vihola’s
characterization Theorem Since the function z — (z — K)* is convex, by
Jensen inequality for the conditional expectation, VK > 0

EP((EP(XIQ) —K)+> = Ep <EP(X - K|g)+)
gEP<EP((XK)+|g)> _Ep<(XK)+> 0

Proposition 15. o Let (My : t € N) an UI martingale. Then Mi(w) —
My, P-almost surely, and in L*(P). Morevoer

My = Ep(Mw|Ft)

o Let X(w) € LY (P) and define M, = Ep(X|F;). Then (M; : t € [0,+00])
is an UI martingale with My — Mo, = Ep(X|Fs) P-almost surely, and
in LY(P).

Proof

e From the UI property follows that for any K > 0

sup Ep(|M;|) < K + sup Ep (| M| 1(|M;| > K)) < 00
teN teT

so that Doob martingale convergence theorem applies, there exists M, €
LY(P) such that M;(w) = Mo (w) P a.s. By the Ul assuption, using the
characterization of L'(P) convergence we have Ep(|M; — My|) — 0.

To show the martingale property,let’s fix t > 0 and A € F;.
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The sequence My (w)1a(w) = My (w)la(w) as T — oo and it is obviously
an Ul family, so that by the martingale property and characterization of
L' (P) convergence, for T > t,

Ep(Mt].A) = EP(MT]-A) — EP(MOCIA) O

e When X € L!(P) From the properties of the conditional expectation
it follows that M; = Ep(X|F;) is integrable, adapted and satisfies the
martingale property. Uniform integrability follows from lemma D.

5.3.1 Backward convergence of martingales

Definition 28. A backward filtration is an increasing family of o-algebrae
(Fe:teT) whereT = —N,—R, -NU{ — o0} —RU{—o0}. For0>¢t>u

F2FR2F.2F =R
teT

where F_oo is the tail o-algebra . The interpretation is that the information in
Fi decreases ast | —oo.

We consider a (sub,super)-martingale with respect to the backward filtration
(Ft)i<o is an adapted and integrable process (X; : t < 0) C L'(P) which satisfies
the martingale property: for 0 > ¢ > u

EP(Xt‘fu) = Xu
(respectively >, <)

Theorem 15. (Doob’s martingale backward convergence) Let (X; : —t € N) a
be supermartingale in the backward filtration F = (F; : t € —N).

1. P-almost surely, exists the limit

X _o(w) = tlir}loo Xi(w) € (—o0, ]

2. Under the assumption
sup E(X;") < +o0
te—N

X_oo(w) € LY(P) and is P-a.s. finite.

3. When (Xy) is martingale in the backward filtration the assumption (@)
holds automatically, (X; = E(Xo|Ft),t € —N) is uniformly integrable and

Xooo(w) = E(Xo|F-oo)(w)
i.e. the martingale property holds in the extended time index set (—N) U
{00}

Proof We copy the proof of the forward convergence theorem, where we play
the same supermartingale game in the shifted time interval {¢,¢+1,...,—2,—1,0},
with ¢ € (—N). The profit given by the martingale transform

0 for s <t
Vo=(C X =1 v 0(X, X, ) fort<s<O0
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where C,.(w) € {0,1} is F-predictable. It follows that (Y; : s € —N) is a
supermartingale as well, and

0=E(Y;) > E(Yo) = E(Uap([t,0)(b— a) — (Xo —a)”
where U, 3([t,0]) the number of upcrossing of (X,(w)) in the interval [¢, 0].

la| + Ep(Xy )

t <
b—a) <oo VE<O0

EP(U[a,b] ([ta 0])) <

Since Upy p)([t,0]) T Uap((—00,0]) as ¢ | (—00), by monotone convergence theo-
rem Ep(Ulqa,p((—00,0])) < oo, which implies Uy, 4 ((—00,0]) < oo P a.s. Since
this holds for all a < b € Q, it follows as in the forward theorem that

X_oo(w) :=limsup Xy (w) = ltlgl inf X;(w) P-almost surely
t——o0 -0

When X, is martingale by Fatou lemma
B(1X-]) = E(liminf |X,]) < liminf E(X,]) = liminf B(|2(Xol 7))
< liminf B(E(|Xo||F)) = E(|Xo|) < o0
In the supermartingale case, we have only
E(X_x|) = E(limirtlf | X¢]) < limil}fE(|Xt|) = 1imiltlf{E(Xt+) +E(X;)}
From the supermartingale property
Xy > E(XolFy) t<0
it follows
Xy SE(XolF)” < E(Xq |F) = E(X;) < E(Xq)

which implies X_,(w) > —oo P-a.s. Since we dont’ get for free an upper bound
for E(X;"), we need to assume (3).

Finally let A € F_, C F_; Vt < 0. Since X; = Ep(Xo|F:) is uniformly
integrable, when we use the definition of conditional expectation we can take
the limit inside the expectation getting

Ep(Xola) = Ep(Xi1la) = Ep(Xola)
which means X_ o = Ep(X3|F_).

Remark 13. When (X, : t € —N) is just a supermartingale bounded in L'(P)
and not a martingale, we could rewrite

X, = M, + X, te—-N

where My = Ep(Xo|F:) and )Z't = (Xy— M;) > 0 is a non-negative supermartin-
gale bounded in L'(P). Still although My(w) — My (w) P a.s. and in L*(P),
we do not get the uniform integrability for free and we do not have X; — X_
in L'(P) sense.
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Strong law of large numbers by martingale backward convergence

Lemma 16. (Kolmogorov 0 —1 law) On a probability space (2, F, P) consider
a sequence of P-independent o-algebrae (G, :n € N), G, C F.
This means that Vd e N, Ay € G1,...Aq € Gq

P(A1NAyN---NAg) = P(A1)P(As)... P(Ag)
We introduce the o algebrae
]:n:\/gkn ]:oo:\/gk7 Tfn:\/glm Tfoo:mTfn
k=0 k=0 k=n neN

Then the o-algebra T_ o, is P-trivial, i.e. A€ T_o = P(A) € {0,1}

Proof By assumption the o-algebrae F,,_1 and T, are P-independent.

Let A € T oo C Foo, then for alln € N A is P-independent from F,.

It is easy to see that A is also P-independent from Fu: for B € Fy ,
consider

E(1p|F,)(w) = P(B|F,)(w) — 15(w) P a.s. and in L*(P)
Then
P(ANB) = E(1alp) = E(14 lim E(15|F,)) = lim E(14E(1p|F,))
= lim E(14)E(E(1s|F,)) = lim P(A)P(B) = P(A)P(B)
Since A € Foo, A is P-independent from itself and
P(A) = P(AN A) = P(A)P(A) = P(A)> = P(A) € {0,1}

Theorem 16. ( Kolmogorov’s strong law of large numbers)
Let (Xy(w) : t € N) i.i.d. with X, € L*(P), and

Si(w) = X1 (w) + - + X (w)
Then
tlgglo t71S;(w) = Ep(X1) P-a.s. and in L*(P).
Proof Consider the backward filtration F = (F_; : t € N) where for ¢t <0
F_i=0(S, Si+1,---),
the F-martingale

M_; = Ep(Xl‘F_t) teN

The o-algebra F; is non-decreasing with respect to t € (—N).
By symmetry, the random pairs (S, X,) ja (S¢, X1) are identically dis-
tributed for 1 < r < t, and by P-independence for ¢ > 0
M_; = Ep(X1|F_¢) = Ep(X1|St, St41, Seyo,--+)
== EP(Xl‘St,Xt+1,Xt+2 .. ) = EP(X1|O'(St)) = EP(XT|O'(St)) Vl S r S t
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which means

¢
St = Ep(X1 4+ Xilo(50) = 3 Ep(X,|0(S1)) = tEp(X1|o(S-))
r=1
and M_;(w) = St(w)/t for t > 0.
By Doob’s martingale backward convergence theorem

lim t7 'S (w) = M_o(w) P as. and in L'(P)

t—o0

where we define Vw €

M_ oo (w) := liminf ¢~ S;(w)

t—o00

Note also that Vw € Q, Vn € N

| RS RS I
hglogf ;St(LU) = hgggf 7 ;Xi(W) + hgg}lf 7 A_(X;rl) Xi(w)

t
|
:0—%—11&1)3)1310; Z Xi(w)
i=(n+1)

is T_, = 0(Xn, Xn+t1,. .. )-measurable Vn, therefore it is measurable with re-
spect to the tail o-algebra T_.,. Since the random variables (X;)en are P-
independent, by Kolmogorov’s 0 — 1 law it follows that M_.,(w) is P-trivial:
Pt < M_) € {0,1} Vt and P(M_o < o0) = 1, there is ¢ € R such that
P(M_oo =c) = 1.

P almost surely and in L(P)

1
ESt(w) —c¢=Ep(X1|F-)(w)
By taking expectation
Cc = EP(M,OO) = EP(EP(Xl‘f,OO)) = Ep(Xl)

Note t71S;(w) = Ep(X1|o(S;))(w) follows from symmetry, and then we
applied martingale backward convergence P-a.s. and in L!(P). Independence
was needed to show that the limit

Ep(Xi|o(S))(w) = Ep(Xi]o(St; Sta1, Stz - ) (w)

is P-trivial. Without the independence assumption, we obtain the limit is a
random variable. This extension is De Finetti’s theorem. Bruno De Finetti
(1906-1985) was an italian probabilist, economist and philosepher.

5.4 Exchangeability and De Finetti’s theorem

Definition 29. The sequence of random variables (Xi)ieny where Xi(w) takes
values in the measurable space (S,S) is infinitely exchangeable (suomeksi ddaret-
tomdasti vaihdettavissa) when Vn, ti,...,t, € N and any m permutation of
{1,...,n}, the random vectors (X,,..., Xy, ) and (X ¢ have the
same distribution under P.

(1)) W(n))


http://en.wikipedia.org/wiki/Bruno_de_Finetti

5.4. EXCHANGEABILITY AND DE FINETTI’'S THEOREM 71

Note that that when X;(w) takes values in R,
M_i(w) =t"1S(w) == B(X1|T_¢), teN

is an uniformly integrable martingale in the backward filtration F which has a
limit P-a.s. and in L'(P) as t — co

M_(w) = E(X1]|T-c0) (W) .

The tail o-algebra T_ . is not necessarly trivial and M_.,(w) is a random vari-
able.

Definition 30. The random variables (X;(w) : t € N) taking values in (S,S)
are conditionally indendent and identically distributed given the o-algebra G
when, Vn, t1,...,tn, A1... A, €S8,

n

P(Xy, € Ay,..., Xy, € An|G)(w) = [[ P(X1 € Ai|G)(w) P as.

=1

By taking expectation of the conditional expectation it follows that condi-
tionally i.i.d. random variables are infinitely exchangeable. The reverse impli-
cation holds.

Theorem 17. (De Finetti) Assume that (S, S) is a Borel space, and the random
sequence (Xi(w) :t € N) C S is infinitely exchangeable w.r.t. P.

Then (X¢(w) : t € N) are conditionally independent and identically dis-
tributed with respect to a tail o-algebra T_o to be defined below.

Proof Let consider the empirical measure of the first ¢- variables

t

pe(do;w) =71 Z 1(X;(w) € dx)

which generated the o-algebra
o(us) =o{m(A): Ae S} CF.

Note that o(u:) C o(Xy,...,Xt), and for t > 1 it is strictly smaller because
it contains the information about the realized values of the random variables
but it forgets their time order.

Define the decreasing sequence of o-algebrae

T = \/ o(pr), Tooo = ﬂ T_: , is the tail o-algebra .

k>t teN

Let 1 <k <teNand f(z,...,2) : S* 5 R a bounded measurable func-
tion, not necessarily symmetric. By symmetry we compute Ep(f(Xi, ..., Xx)|T-¢)(w):

Define the random probability measure

usk s SOF — 10,1]
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which is a regular version of the conditional distribution of the random vector
(X1,...,Xk) conditionally on the o-algebra o(u;) (the regular version exists
since (5, S) is a Borel space).

By symmetry

oo Kl =
Fro) o= [ F@it ) = 5 30 F X)Xy @) =

s

(t —k)! Z (X, Xiy, oo, X3,)

t!
1<is,...,ir <t distinct

where we sum over the permutations 7 of the set {1,...,¢}.

Note that p°*(dr;w) is o (s )-measurable, since it depends only on the values
{X1(w),..., X¢(w)} and not by their ordering. Note also that u?*(dx) is not a
product measure, since in the sum there are not terms with repeated indexes.

For k=1

¢
1
ol
g (A) = ;ZleGA
k=1
is the empirical measure of (X;(w),..., X¢(w)).

For k < t and any permutation w of {1,..., ¢}, by exchangeability (X1, ..., Xg, )
and (Xr(1), -+, Xnh), 1¢) have the same distribution, which implies

Ep(f(X1,. ., Xplo(u))(w) = Ep(f(Xaqy, - -, Xagiy)lo (1)) (w)
By taking the normalized sum over the permutations,
u(frw) = Ep(f(Xu, - Xi)lo () (@)
Next we show that
Ep(f(X1,..., Xp)lo(T=))(w) = Ep(f(X1, ..., Xi)lo(ue))(w)

Note also that

T_t= U(,Ut,/lt+1,/$t+2, .- ) = U(MtaXt+1aXt+27 .- )

since the empirical measures p;(dr;w) and pyiq(de;w) determine X;y1(w) by
the identity

(st — pue)(d) = (1<Xt+1 € da) - ut(dx))

t+1
Exercise 12. (X3,...,X;) and (X411, Xiy2,...) are conditionally independent

given o(pt),
Solution Note that a random variable W (w) is o(pt)-measurable if and only
if W(w) = g(Xy,...,X) where g is measurable and symmetric, i.e.

g(@1, ..., x) = g(Tr(1)s - - Try) VT permutations .
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Assume that g(x1,...,2¢) s also bounded, and let Y(w) be a bounded and
0(Xiy1, Xiya, ... )-measurable random variab le and Z(w) = f(x1,...,x;) bounded
and 8®'-measurable, (not necessarly symmetric) random variable.

By infinite exchangeability it follows that Yy € N and for all permutations
of the indexes {1,...,t}, the sequences

L
<X17 X27 .. 'XtaXt+1aXt+27 s ) = (Xﬂ'(l)a X7T(2)7 s Xﬂ‘(t)) Xt+17Xt+25 s )
have the same distribution,

Ep(W ZY)=Ep(9(X1,....X:) f(X1,...,X) Y)

= Ep(9(Xn(1)s - X)) F(Xr()s-- s Xrr) Y)
( since the sequence is exchangeable )

=Ep(9(X1,.. . Xe) f(Xntys--» Xa)Y) = Ep(W f(Xr1)s-- o, Xn@) Y)
( since g is symmetric )

1 1
Tl Y Ep(Wf(Xnqys- s Xa()Y) = Ep (W Yo > F Xy ,Xm)))

=Ep(WY 1"(f))

By definition of conditional expectation
pit (f;w) = Ep(f(X1,.... Xe)|o () (W) = Ep(f (X1, ., X¢)|o(pe, Xeg1, Xego, .- ) (w)

which means that under P, (X1,...,Xt) and (X¢11, Xt42,...) are conditionally
independent conditionally on o(uy).

In other words, T_; does not contain information about the time-order of the
first n values of the sequence.

Since Mﬁ’?(f) := u$*(f) is a martingale in the filtration (7_; : ¢t € N), by

Doob’s martingale backward convergence theorem as ¢t — oo, the limit Mﬁko)o( 1)
exists P-a.s. and in L!(P) sense.

Since (X1, ..., X}) takes values in the Borel space (S*, S®¥), the conditional
probability

P((Xlaan) eAlT—OO)(w)a A€8®k

has a regular version, which is a 7_,,-measurable probability kernel u2*(dz;w)
on (S*, S¥F) such that P-a.s., for all bounded measurable functions f(z1, ..., xx)

MY (fiw) = Ep(f(X1, ., Xi)|o(T- o)) ()

:/ f(xla"'7xk)ﬂg£j(dxla~“dxk;w)
S1,..8

For k = 1 denote pio, = pl, where

1
lim —
t—oo t

> (XG(w) = / f(@)pioo(dw,w)  P-as.

S
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Exercise 13. Since (S,S) is a Borel space there is a measurable injection f :
(8,8) — ([0,1],B([0,1])) with measurable inverse f=*. It follows that A C S,
A € S if and only if f(A) is Borel set. Since

o{(a,b]: 0<a<b<1,abeQ} =B(0,1])
it follows that also S is countably generated, since
S=o{f((a,b]Nf(S):0<a<b<1labeQ}=c{A(l):(eN}
This implies that conditional probabilities on (S,S) have regular versions.
We know a priori that VA € S, AN4 C Q with P(N4) = 0 such that
pe(A;w) = poo(Asw) Vo & Ny

Since P(N') =0 where N' = |J Ny, it follows that
CEN

pi(Aw) = poo(Agsw) YEEN VYw g N
and since o{A; : £ € N} = 8§ it follows that VA € S
pe(A;w) = poo(A;w) VAES Yw g N (5.1)
Similarly we find a P-null set N' C Q such that Vk € N, V{A;} C S
LOF(AL X e X Apiw) = pF (A x - X Aiw) Yo €N (5.2)

P-almost surely the collection of finite dimensional distributions

{ugf(dxl,...d:ck;w) ke N}

is consistent, and by Kolmogorov’s extension theorem [3] for each w outside a
P-null set there is a random probability measure v ( - ;w) on the space of
sequences (zy : k € N) C S such that Vk, A;,..., A, €S
P(Xl € Al,. X € Ak|7:oo)(LcJ) =
,u‘;f(Al X oo X Apyw) = Vm({(xl leN)ix € 4,... a1 € Ak};w)
We show that P-a.s. v (-;w) is an product measure of infinite copies, which
means

k
P(X1 € Ay, Xy € Al Tooo)(w) = [[ P(X1 € Ai|T-o0)(w) VK €N.

=1

Let uf@k be the k-fold product measure of the empirical measure p;. For
every bounded and Borel measurable f(zq,...,xg),

M?k(f):t_k Z f(Xil""?Xik)
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where the sum contains also terms with repeated indexes. Then

(g% = uZ*)(F) = ue*(F) = uP* (f) =
I
H?k(f)(l—M)‘i‘t_k o Z - f(Xiys o, Xay)
1<ty i <t: AF#mM i1=tm

where in the first part we have terms without repeated indexes and in the second
part all terms have at least on index repeated. Then Vk € N,w € Q,

k—1
g (f5) = i ()] <1 F lloo (1 Sk +t"“(k) t’“‘l) —0

2
1=0

as t — 0o, where || f ||co=sup,cg |f(z)| and the upper bound does not depend
on w.
For all A;,As--- €S, Vk P-as. ast — oo

ut"k(Al><A2><~~~><Ak)—>u°k(A1><A2><~-~><Ak).

oo

For k=1
M?l(Ai) — oo (Ai),

and convergence follows also for the product measures

k k
pF Ay x Ay x-oox Ag) = [T e (Ai) = ] oo (Ai) = pSF(Ar x A x -+ x Ay).
1=1 =1

By triangle inequality
2 (f) = nE5(F)]
< () = 1 O+ 12 () = 25 (N + 1 (F) = n&E ()] = 0
P-a.s. ast — oo, and
pee(fiw) = p& (fiw)  P-as
for all bounded measurable f(z1,...,2x). It means that v, is a product mea-

sure on the space of infinite sequences SY. For all bounded measurable functions
Jis o596 S = R

k

Erlan (30) - (X0 T-)(e) = [T [ o)}

(=1

By taking expectations,
Ep(g1(X1) ... gr(Xk)) =
k k
ee(TI{ [ atomntan}) = [ ] [ atontan bataw
g s M(S) g s
where @ is the distribution of the random measure p,(dz;w) in the space
M(S) = { probability measures v : S — [0,1] }

In other words, a permutation symmetric (i.e. infinitely exchangeable) ran-

dom sequence with values in a Borel space is the mixture of i.i.d. sequences
O
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Exercise 14. De Finetti original proof was for the simplest case of random
binary sequences, where S = {0,1} and the space of probability measures on S
is M(S) =0,1].

Let Si(w) = (X1 (w) + -+ - + X (w)).

In coin-toss experiment, if the sequence of coin tosses is infinitely exchange-
able under P, it has a limit 9(w) := tliglo t71S:(w) € [0,1] P-a.s. and in L'(P)
sense.

Let Q(df) = P({w : ¥(w) € db}). By conditioning on the o-algebra o(¥),
the coin-tosses are conditionally independent and Bernoulli distributed, with the
same random probability-parameter Y(w) € [0,1]. The probability distribution
of the limit Q(dO) is interpreted as a priori probability on the parameter ¥. It
follows Vk, (x;)ien € {0,1},

P(Xy = a1, Xy = a4) = /01{1‘[13()(1 = 39 = 9)}Q(d9)

- /1 65+ (1 — )51 Q(dh)
0
Q(B) =P({w: tlggot—lst(w) € B}), BeB(0,1)])

De Finetti’s theorem is at the mathematical foundation of Bayesian statistical
inference.

5.4.1 Doob decomposition

Proposition 16. Assume that (X; : t € N) is an F-adapted process. We always
have the Doob decomposition

Xy = Xo+ M; + A; where Ag =0
t t
A=) AA = (B(X|Fom1) — Xoo1) is F-predictable,
s=1

s=1
t t
M, = Z AM, = Z(Xs — E(X5|.7-"s_1)) 18 a F-martingale

s=1 s=1

Proof write the telescopic sums with AX; = AM; + AA;.
When X; is an (F)-submartingale (respectively supermartingale ) A; is non-
decreasing (respectively non-increasing).

5.4.2 Riesz decomposition

Definition 31. A potential (Z,, : n € N) is a non-negative (P, F)-supermartingale
with

lim Ep(Z,) =0.

n—oo

The potential terminology comes in analogy with physics, where potentials
do vanish at infinity. Note that a potential is necessarly uniformly integrable.
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Definition 32. We say that a (F, P)-supermartingale (X, : n € N) has Riesz
decomposition when

Xp =Yy + Zn (5.3)
where Yy, is a martingale and Z,, is a potential.
Theorem 18. A (P,F)-supermartingale (X, : n € N) satisfying

sup Ep(X;) < 00
neN

has Riesz decomposition with
Y, =M, — E(Ax|Frn), Zn=FE(Ax|Fn)— An,

where X,, = M,, — A,, is the Doob decomposition of X into a martingale part
M and a predictable part with A non-decreasing and Ag = 0. The Riesz decom-
position is unique.

Proof: exercise

5.4.3 Krickeberg decomposition

Definition 33. We say that (P,F)-supermartingale (X; : t € N) has Krickeberg
decomposition if

Xy =L; — M, (5.4)
where Ly > 0 is a supermartingale and My > 0 is a martingale

Theorem 19. A (P,F)-supermartingale (X, : t € N) has Krickeberg decompo-
sition with

Lt:<Xt_}/t>:Xt++Zt207 and Mt:—Y;f:X;-FZtZO,
where
- t_:Yt‘FZt

is the Riesz decomposition of the supermartingale (—X, ),
if and only if

sup Ep (X[ ) < o0
teN

Proof: exercise. Note that since the function z + z+ = x Vv 0 is convex,
by the Jensen inequality for conditional expectations it follows that (—X, ) is
a supermartingale as well.

5.4.4 L? martingales
Martingales bounded in L?
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Proposition 17. A (P,F)-martingale (M,, : n € N) is bounded in L*(P), if
and only if

> Ep((AMy)?) < oo,  with AMy = My — My,
k=1

In this case M, — My, P-almost surely and in L?(P).
Proof

por) - p({ a0} ) =@ +2 T Ee(aram)
k=1 k=1 1<h<k<n
(5.5)

where for h < k, by tower property of the conditional expectation and the
martingale property whe have

Ep(AMyAMy) = Ep(AM,Ep(AM|Fy)) =0 .

Since (M, : n € N) is bounded in L?*(P), we know that it is an uniformly
integrable martingale of the form M, = FEp (Moo|.7-'n)7 where by Doob mar-
tingale convergence theorem and the characterization of convergence in L!(P)
Mo (w) = Jim. M,,(w) P-almost surely and in L!(P).

But from we see that (M,,)nen is a Cauchy sequence in the complete
space L?(P), which means that M, is also the limit in L?(P) sense, since by
completeness there exist an L?(P)-limit M., but this has to be P-almost surely
equal M, since the limit in probability is P-a.s. unique [

Predictable Covariation of martingales in L?(P) . Consider the case
where (M; : t € N) and (N; : t € N) are F-martingales with M;, N; € L?()
Vvt € N. For the product N;M; we have

MiNy — My_1Ny—1 = Ny  AMy + My ANy + AMAN,

== NtflAMt + MtflANt + (AMtANt — E(AMtANtLFtl)) + E(AMtANA]:tfl)

Denote

t t
[N, M], = Z AN,AM,, (N,M), = Z E(AN,AM,|F,_1)

s=1 s=1

which are respectively the (discrete) quadratic covariation andpredictable co-
variation of the pair (Ny, My).
By writing the telescopic sum,

NM, — NoMo = (N_ - M), + (M_ - N), + [N, M], =
(N- - M)+ (M— - N); + ([N, M]; — (N, M)¢) + (N, M), = X; + (N, M),

where the martingale transforms

t t
(N M)y =) NotAM,, (M- N)i =) M, AN,

s=1 s=1
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are F-martingales (integrability follows by Cauchy-Schwartz inequality since
M, N; € L(P)). Also ([N,M]; — (N,M);) is an F-martingale, and (N, M),
is IF, predictable. Therefore the Doob decomposition is

N:M; = NoMy + X; + (N, M);, with martingale part

X = (N_ -M)y + (M_ “N)¢ + ([N,M]t - (N,M)t)
Note that by taking expectation,

E(M;N;) — E(MoMy) = E((M; — My)(N; — No)) = E((M, N);)
When N; = M, by Jensen’s inequality (M?) is a F-submartingale and the

predictable variation

t

<M>t = <Ma M>t = Z E((AM9)2"F‘;—1)

s=1
is non-decreasing.

Theorem 20. Let (M, : t € N) a (P,F)-martingale in L?(P) (not necessarily
bounded in L*(P)). Then

lim Mt (LU)

n— oo
exists P-almost surely on the set A := {w: (M)s(w) < 00}.

Proof Let 7,(w) = inf{w : (M);41 > n}. Note that Yw € A, IN(w) with
Tn(w) = 400 for all n > N(w).

Note that M;-, is a square integrable martingale with predictable variation
(M)¢nr, <n, with Ep (ME/\TH) = EP(<M>t/\-,—n) <n.

Therefore

tlirgo Mipr, (W) = M-, (w)

exists P-almost surely and in L?(P). For w € A and n > N(w) we have
Tn(w) = 0o and the limit

lim M;(w) = My (w)

t—o0

exists O

5.5 Doob optional sampling and optional stop-
ping theorems

Lemma 17. Let (X; : t € N) a supermartingale and 0 < 7(w) < k a bounded
stopping time.

Then E(X|Fr)(w) < X,.

Proof For A € F, by definition AN {r = t} € F;. By using the super-
martingale property

k k

Ep(Xila) =) Ep(Xpl(An{r =1})) <> Ep(X;1(An{r =1})) = Ep(X,14)
t=0 t=0
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Theorem 21. Let (M, : t € N) an UI martingale, and T a stopping time. Then
Ep(Moo|F7)(w) = M (w)
Proof Since Frnp C Fi, k € N and (M) is an Ul-martingale
Ep(Moo|Frak) = Ep(Ep(Moo|Fi)| Frar) = Ep(My|Frak)

Let’s assume that Mo, (w) > 0, otherwise we work with M1, M separately,
since

My(w) = M{P (@) = M7 (W), where M (w) = Ep(ME|F)(w)
are uniformly integrable martingales. For A € F.,
Ep(Moolanir<iy) = Ep(Milangr<iy)

by the martingale property, since AN{7r < k} is Fx-measurable by the definition
of stopped o-algebra F.,

= Ep(Moprlangr<iy) = Ep(M:1an(r<k}) =

where we used lemma [17] for the bounded stopping time (7 A k) < k together
with the fact that AN {7 <k} is also F(;r)-measurable. To check this, for all
t € N we have

An{r <E}n{r ANk <t} =An{r <kANt} € Funr) C Fi

Since 1(7(w) < k) 1 1(7(w) < 00) as k 1 0o, by the monotone convergence
theorem it follows

Ep(Moo1a1(r < 0)) = Ep(M;141(r < o))

and since M;1(T < oo) is Fr-measurable, in discrete time this follows since
M, (w)1(7(w) = k) = Mi(w)1(r(w) = k), we have

E(My|Fr)(w)1(r(w) < 00) = M, (w)1(7(w) < o0)
The result follows since
Moo (w)1(7(w) = 00) = M (w)1(1(w) =c0) O

Corollary 10. Let 7(w) > o(w) stopping times, and (M; : t € N) an Ul
martingale.
Then F, C F, and

Ep(M.|F,) = M, (5.6)

and by taking expectation Ep(M,) = Ep(My) for all stopping times .

When 7(w) < o(w) P-almost surely, if the filtration is P-complete, meaning
that Fo D NP ={A C Q, P(A) = 0} we have the same implications.
Proof: When o(w) < 7(w) Yw € Q and A € F,

An{r<t}=An{oc <t}n{r <t} e &
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since AN{o <t} € F; because A € Fy, and {7 < t} € F; since T is a F-stopping
time.

More in general, suppose that o(w) < 7(w)Vw € N¢ with P(N) = 0. Assum-
ing that the filtration is P complete, when A € F,

An{r<ty=(An{oc<tyn{r<INNY)U({r<t}N(ANN)) € %

where {T <t} € Fy, since T is a stopping time, AN{c <t} € F; since A € Fy,
and both N¢ and (AN N) are in N C F; since the filtration is P-complete.
Now, since F, C F,

M, = Ep(Mw|F5) = Ep(Ep(Mo|F7)|Fs) = Ep(M-|F5) (5.7)
Corollary 11. If (My,t € N) is a martingale and
0<o(w)<T(w)<KE€eN (5.8)
are bounded stopping times, then
Ep(M:|F5) = M,y (5.9)

Proof apply corollary to (M; : t = 1...,K) which is uniformly inte-
grable since it is a finite subset of L*(P).
Corollary 12. For a UI martingale My = Ep(My|F:), the stopped process M]
is also an UI martingale in both filtrations (F; : t € N) and (Fyar : t € N)
Proof By theorem [21| Ep(Mo|F:) = M,. Because 7(w) > (7(w) A t) are
stopping times, by corollary [10]

EP(M00|~FT/\t) = EP(MT|~FT/\t) = Mt/\ta

which is uniformly integrable by lemma [I5] OJ
Here another version of Doob optional stopping theorem

Theorem 22. Let 7 be a F-stopping time with Ep(t) < oo and (M; : t € N)
an (F, P)-martingale such that for some constant C

Ep(|AM{||Fi—1) = Ep(|AM||F—1)1(r >t —1) < C,
P-almost surely ¥t € N. Then Ep(M;) = Ep(Mp).

Proof Since Ep(7) < 00, it follows that P(7 < oo) = 1, which means that
(tAT)T T < oo and Myar — M, P-almost surely. Since the stopped process
M] = Mia, is a martingale, E(Mia,) = E(My). We show that (Mia, : t € N)
is a Cauchy sequence in L'(P): by taking tellescopic sum

t
Mt/\fr - Ms/\‘r = Z 1(’7’ > 5 — 1)AMS
k=s+1
By the triangle inequality and the tower property of the conditional expectation,
for0<s<t
t
Ep(|Minr — Mypr|) < Z Ep(1(r > s — 1)|AM,|)
k=s+1

oo

= Y Ep(L(r > k= 1)Ep(|AM[|Fr-1)) <C> P(r > k)
k=s+1 k=s
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which goes to zeros as s — 0o, since by Fubini theorem

iP(T>k‘):EP(T) <oo O
k=0

Exercise 15. Since the stopped process can represented as a martingale trans-
form of a bounded predictable integrand one would hope that martingale trans-
forms with respect to a bounded predictable integrand preserves uniform integra-
bility, but this is not true.

In fact convergence in L'(P) sense of martingales is tricky. Cherny has
constructed an uniformly integrable martingale (X; : t € N) and a bounded-
predictable integrand (Hy : t € N), (that is |Hy(w)| < ¢ for some constant), such
that the martingale transform (H - X) is a martingale which is not bounded in
LY(P) and therefore it is not uniformly integrable

We construct a positive martingale (X, (w) : n € N) as follows: the filtration
is the one generated by the sequence. F,, = o(X1,...,X,).

At time ¢, conditionally on the past, with small probability X; is rescaled by
a very large factor, and continues, and with high probability it is rescaled by a
very small factor and stops.

Let
2n - A Q
an = 2n, bnzm, Pn onZ neN, Xj(w)=a=1 4=,
App1={w: Xpy1=ar----- Ant1} € Fni1
P(Xnq1 = araz - ... anant1|An) = pns1

P(Xn+1 =aiaz - ... anbn+1|An) =1 — Pn+1
P(Xpi1 = Xp|AS) = 1

Note that the process X,, stops the first time the event A appears, and X,, is
a martingale since

E(Xpi1|Fn) = Xn (1A% + 14, {any1pni1 + by (1 —Pn+1)}> =Xn

Forn <m

E(|Xm - Xn|) = E(|Xm - Xn‘lAn) = E(|Xm - Xn|1An+1) + E(|Xm - Xn‘lAnlA;H) -

One can check by induction that Yy, ., := (X — X,,)14 > 0 for m > n.

n+1

}/n—&-l,n == (Xn+1 - Xn)]-An_H =ay... an(an+1 - 1)1An+1 Z 07
(X'm - Xn)lAn+1 - (Xm - Xm—l + Xm—l - Xn)]-A
mel,n + (Xm - mel)]-A =

m—1

n+1 =

Ym—l,n +ag...0m—1 <1Am (am — 1) + 1Am711Af,L(bm — 1))
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Now when w € Af,_; the second term is zero and the first term is non-negative
by induction. When w € A,,,_; this gives

=a2...0m-1 (1 + 1(Am)(am - 1) + 1A;:n (bm - 1)) Z 0

Using the positivity property of Y, »,

E(|Xm — Xn|1An+1) = E((Xpm — X”)1A7L+1) = E((Xnt1 — Xn)la,,,) = E(|Xns1 — Xn[1a

n+1 n+1)

so that

E(|Xm —Xu|) = E(| Xm — Xnl1la,,,) + E(| Xm — Xn|1An1A;+1) =

E((Xm — Xn)la,,,) + E(|Xp41 — Xp[1a,1ac, )

=E(Xnt1 — Xn)la, ) + E(| Xy — Xn|1An1A;+1) by the martingale property,

= B(|Xns1 — Xalla,1a,,,) + E(1Xns1 — XolLla, Lac, ) =

E(|Xns1 — Xnl|la,) =az...an X p2...0p X ((ans1 — Dppg1 + (1 = bpg1)(1 = ppg1)) =
az...anpz...pn X (1= bpg1 + (ang1 + bng1 — 2)Pns1)

+1)§2/n

n
+1

<as...apps ... pp(@pi1ppe1 +1) = - <n

therefore X, is a Cauchy sequence and it converges in L!(P), which means that
it is an Ul martingale.

Consider now the martingale transform (H-X); of the bounded deterministic
integrand

H, =1(nis even)

We show that (H - X); is not bounded in L' !
For m > n,

g

> E<1A2,,,1AC

2n+1

> = E<1A2n 1A§n+1 Z(X% - X%_l))

k=1

(Xon — X2n—1)) ;

(H : X)Qm

]'A?n 1A5n+1

since the remaining terms are non-negative on the event 14, 1 AG iy

1 1
=pa...p2n(l —pony1)as ... azn—1(a2, —1) > —pa...popas...a2, = —

4 &n
We have
D=ATUAINAS)U---U(Aam NAS, 1)U Aopmi1

where the union is taken over disjoint sets,

m m 1
Ep(‘(H.X)QmD > ZEP<1A%1A5M (H.X)ZMD oy Lo
n=1 n=1

as m — oo, the martingale (H - X),, is not bounded in L!(P).
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Corollary 13. Let (X;:t € N) an UI submartingale with Doob decomposition
X =Xo+ M+ Ay

where M is a martingale and A; is a predictable non-decreasing process with
MO = Ao =0.
Then

1. (My) is an UI-martingale and Ep(As) < 00.
2. For every stopping time T

E(Xoo|Fr)(w) = Xr(w)

Proof By Doob forward martingale convergence theorem
X = tlggo Xt (w)

P-almost surely and in L'(P) sense. By monotonicity A;(w) T As(w) P-a.s.
and by the monotone convergence theorem E(A;) T Ep(As). Since X; is
uniformly integrable V¢

EP(At) = Ep(Xt — XO) < SUII\I)EP(‘Xt — Xol) < o0
te

and A; — Ao € LY(P).
Therefore
My — My = Xoo — Xo — Ao

P-as. and in L(P).
For a stopping time 7, we have since M; is an Ul-martingale

EP(X0<>|]:T) = X0+EP(MOO“FT)+EP(AOO|}-T) = X0+MT+AT+EP(AOO_AT|‘7:T)
where the last term on the right hand side is non-negative [J

Lemma 18. Let (X;(w) : t € N) be a non-negative martingale. Since it is non-
negative, it is automatically bounded in L*(P), by Doob convergence theorem
exists limy o0 Xt(w) = Xoo(w) P-almost surely with X, € L*(P). Then X is
uniformly integrable if and only if E(X) = E(Xo)

Proof
Necessity follows from the characterization of L!(P)-convergence. For suffi-
ciency, by Fatou lemma for A € F;

Ep(Xoola) < liminf E(X71a) = E(X;14)
which gives the supermartingale property at T' = oo:
Ep(XoolFt) < Xy
Now by assumption
0=Ep(Xi — Xoo) = Ep(Xy — Ep(Xo| 1))
which means X; = Ep(Xoo|F:) P-almost surely O
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5.6 Change of measure and Radon-Nikodym the-
orem

Definition 34. Let u and v positive measures on the probability space (0, F).
We say that v is absolutely continuous with respect to u, (also p dominates
v)if for all A € F u(A) =0 = v(A) = 0. In this case we use the notation
v .
Sometimes we need absolute continuity with respect to some sub-o-algebra

g
G C F. We say that p dominates v on G and denote v < L.
When both p < v and v < pu we say that the measures are equivalent (that
is they have the same null sets) and denote p ~ v.

Lemma 19. Let Q < P be probability measures on the space (Q, F). Then for
all € > 0 there is 0 > 0 such that for A€ F P(A) <d = Q(A) <¢

Proof Otherwise there is € > 0 and a sequence (A4, : n € N) C F with
P(A;,) <27 and Q(A,) > € > 0 By Borel Cantelli lemma P(limsup 4,,) =0,
while by reverse Fatou lemma

Q(limsup A,,) > limsup Q(A4,) > e >0
which is in contradiction with the assumption Q <« P O

Theorem 23. (Radon-Nikodym) Let p and v o-finite positive measures on
the measurable space (Q,F). When v < pu, there is a measurable function
Z:(QF) — (RT,B(R")), such that the change of measure formula holds

v(A) = / Z(w)la(w)pu(dw) VAeF
Q
Proof Since both p and v are o-finite, there is a countable partition
0= U Q,
neN

of disjoint measurable sets, such that both p(Q2),,v(£2), < co. By considering
on each §2,, the probability measures

Pn(dw) = M(dw)/ﬂ(gn) and Qn(dw) = V(dw)/V(Qn) )

we see that it is enough to prove the theorem for probability measures Q < P.

We assume first that F is countably generated (we say also separable )
F = o(F, :n € N) where {F,, }nen C N. This is the case when (€2, F) is a Borel
space. We will drop this assumption later.

Consider the filtration {F, } where F,, = o(F1,..., F,), with F =/, .y Fn-

For each n, by taking intesections of Fi,...F;,, we find a F,-measurable
partition of € {A(ln), . ,A;’f)} with F,, = O’(Aé,n) tk=1,...,my).

We define the F,, measurable random variable

My Q(Agl)) (n)
Zn(w) = 7,”1(0.) cA )
,; P(A") ’
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with the convention that 0/0 = 0 (or if you like 0/0 = 1, it does not matter).

Note that by absolute continuity, Q(A,i")) = 0 when P(A;cn)) = 0 so that
Zn(w) takes values in [0, +00).

It follows that Q(A) = Ep(Z,14) VA € F,,.

On fact it is enough to check this property for some A = A,(Cn) kEe{l,...,my},
since these sets generate the o-algebra F,,. But this follows directly from the
definition.

Note that for every F,-measurable random variable X (w) (which is neces-
sarily a simple r.v.) it follows directly that

Eq(X) = Ep(XZy)

Note also that Ep(Z,) = Q(Q2) = 1.

The process (Z,(w))nen is a (P, {F,})-martingale. We have seen that (Z,)
is adapted and it is P-integrable since it takes finitely many finite values.

For all A € F,, also A € F, 41, so that

Ep(Znla) = Q(A) = Ep(Zni11a)
which by definition of conditional expectation means
Ep(Zni1|Fn)(w) = Zn(w).

Since (Z,(w)) is a non-negative martingale, in particular it is a supermartin-
gale bounded from below, and by Doob forward martingale convergence theorem
it follows that P almost surely exists

Zoo(w) = nl;rr;o Zn(w)

and Z,, € L'(Q, F, P). In order to define Z(w) for all w we take the lim sup.
In order to show that Q(A) = Ep(Zoc14) VA € F, since the sets F), generate
the o-algebra, it is enough to show that Q(F,) = Ep(Zw1lp,) Vn.
Since Q(F,) = Ep(ZyF),) for all m > n, in order to show that

EP(Zoan) = liin EP(Zan) = Q(Fn) :

Let’s check uniform P-integrability for the martingale (Z,,).

Since Q < P, by lemma [19] for given £ > 0 we can find é > 0 such that for
A e F and P(A) < 4§ follows Q(A) < e.

By Chebychev inequality

P(Z,>K)< K 'Ep(Z,) =K' Vn

Choose K > 671, Since {w : Z,(w) > K} € F,, by the change of measure
formula
sup Ep(Z,1(Z, > K)) =supQ(Z,, > K) < e

which is the Ul-condition:

lim sup Fp(Z,1(Z, > K))=0
K—oco g
So far we have proved the R-N theorem for countably generated o-algebrae.
We extend the proof by using convergence of generalized sequences.
We recall this concept from topology:
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Definition 35. In a topological space (E,T) a net is a generalized sequence
(o : o € I) indexed by a directed set, that is a partially ordered set (Z,<) such
that for every two elements «, 8 € T there is an element oV (3

aVB>a,aV>py>aandy>=~v>aVp

We say that o — x© € E when for every open set U > x there is an element &
such that xo € U for all o > av.

When F is not countably generated (we say also separable), we consider the
partially order set

G:= {Q C F : G is a countably generated o-algebra } .

Here the ordering relation is the inclusion C. Note that when G,G" € G,
G'VvG'":=0(G,G") is a separable sub o-algebra as well.

For each G € G we have shown that there is a random variable 0 < Zg(w) €
L'(Q,G, P) such that the change of variable formula holds in G:

QA) = Ep(Zgla) VAEG

We show that (Zg : G € G) is a Cauchy net in L'(Q, F, P), and by com-
pleteness it has a limit Z € L'(Q, F, P).

By Cauchy net we mean the following: for all € > 0 there is a G € G such
that if G’ © G, G" 2 G, §',G" € G, then

Ep(|Zg — Zgr|) <e
By the triangle inequality this it is equivalent to
Ep(|Zg — Zg/|) <2/2, VG' €GwithG' DG

If (Zg) was not a Cauchy net we would find some ¢ > 0 and a sequence
(G, : n € N) C G such that G, C G,,41 and

EP(|ZQn - Zgn+l|) >e>0

Let Goo = V,en Gn- oo € G and by the previous argument (Zg, : n € NU{ +
00}) would be an uniformly integrable martingale in the filtration {G, }, which
necessarly is convergent in L!(P), giving a contradiction.

Remark 14. In a complete metric space (E,d) every Cauchy net (x4 : « € T)
is convergent, that is there is an element x* € E such that Ve > 0 Ja with
d(z*,z4) < e Va >a.

Proof: for every n let &, such that d(zg,,7s) < n~! Ya > @,, and we can
also choose @, > ap_1 (we have to assume the axiom of choice, allowing to
choose elements from uncountable sets).

Therefore (zg,) is a Cauchy sequence and it has a limit © € E, which does
not depend on the choice of the sequence a.,, since for another choice &, con-
verging to a limit  one would have by the triangle inequality

A(2,7) < d(ra,vi,, ) +d(Ta,m, ) < >

Vn e N,

and we say that x is limit of the net (z4).
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Since L!(Q, F, P) is complete, the generalized Cauchy sequence (Zg : G € G)
has necessarily a limit Zo,(w) € L(Q, F, P). Let’s check the change of measure
formula: consider A € F and take G € G such that

Ep(|ZOO — Zg/|) <e€
for all ¢’ 2 G, G’ € G. Define G := o(G V A) € G. Since
Q(A) = Ep(Zz1a)

we have
Ep(Zss1a) — Q(A)

< EP<|ZOO - Zg‘) <e

with arbitrarily small €, and the change of measure formula holds [

5.7 The Likelihood ratio process

Consider a probability space (€2, F) equipped with a filtration F = (F; : t € T)),
(T = N,R) and two probability measures P, Q). such that ) dominates P locally

l
P <O<C @, which means P, < @y VteT,t<oo

where P;, Q; are the restriction of P, Q) on the o-algebra F;. In other words, if
A € F; for some t < oo and Q(A) = 0, then P(A) =0.
By the Radon-Nikodym theorem,there is a likelihood-ratio process

_an
dQy
such that VA € F;, the change of measure formula holds

P(A) = Eq(Zi1a)

0 < Zy(w) (w) € LY, F1,Q), 0<t< oo,

Proposition 18. The process (Z;(w),0 <t < 00) is a (Q,F)-martingale.
Proof. For s <t,VA € Fs C F; the martingale propery follows:
P(A) =Eqg(Zs14) = Ep(Zi14)

Uniformly integrable likelihood-process Consider the discrete time case
loc
with T'= N. When Q < P, (Z; : t € N) is a non-negative (P,[F)-martingale
and by Doob’s convergence theorem there is Z..(w) € L!(P) such that
Zi(w) = Zoo(w) @ and P almost surely ,
and by Fatou lemma Fp(Zy) < liminf Ep(Z,) = Ep(Zy) = 1.
By lemma (Z; : t € N) is uniformly integrable with

1
Z(w) = Ep(Zoo| F)(w) and 2, =5 2z,

if and only if Fp(Zs) = 1. In this case Q@ < P not just locally but also on the
o-algebra

Fo=\F

teN
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Martingales in mathematical statistics We continue with a probability
space (€2, F) equipped with the filtration F = (F; : ¢ > 0), and consider a family
of probability measures (Py(dw) : 6 € ©), with parameter space (6 C R%), such

loc
that Py & Q Vo € 0.
Denote

Assume

i) For t > 0 and Yw, Z¢(w) is continuously differentiable w.r.t. 6, with
random gradient vector

Vi (w) = Vglog Z¢ (w) = (alnge().i—l,...,d>—( L aZ’fe(w)'izl

00

such that

lim — {Z"*Eh Z)} = (hVy(0)2! VheR weQ

e—=0 ¢

V2 (w) is called score .

In order to interchange the order of differentiation and integration we also
assume

2. V7?9 is locally uniformly dominated at 6, i.e. there is an U neighbourhood
of § and a random variable 0 < D;(0,w) € L(Q, F;,Q) and

IVoZl(n)| < Di(0),  VneU.

For B € F;, by Fubini and dominated convergence

1
0 O0+ee; _ 70 —
89 1BZ dQ—ggng Q]_B(Zt Zt)dQ

1 f 0
O+ce; O+ee;
glrr(l)5 QlB</80Z de)d@—glm6 (/ an dQ)
0 Q

_ 9 6
_/ andQ
Q

Moreover B € Fy,

0 0
/IBEQ(a—GiZf‘}'S)dQ :/ B 50 - Z0dQ =

Q Q

9 040 —

9 00 — 9 oa0 — RN

89i/QIBZSdQ_/1389iZ‘“dQ—/lBE)9iEQ(Zt |Fs)d@Q
Q

Q

20w 00, yeen
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and we can change the order of derivation and integration

0 0
a0, Ba(Z]|1F,) = Ea(5-2|F:)

Proposition 19. Under the previous assumption on the statistical model in a
neighbourhood of 6, {V,(0)}1>0 is a (P?,F)-martingale: For 0 < s <t,

Eq(ZIVi(0)|Fs) _ 1 529

E —:—E =
1 8 0 1 079 Blong _
7339 QlZi1Fs) = Z9 00 90 = V()

Essentially we had to assume that the limit V4Z¢ € L1(Q).
Since e~ 1(Z0Th — 29) € L'(Q) Ve > 0, is natural to use a weaker definition
based on L!-convergence instead of pointwise convergence.

Definition 36. : A statistical experiment
(Q, F, Qi, (P)geco) is L'-differentiable at 0, if there is a random score-
vector V4(0) € Ll(Po) such that Vh € R?
)=

We show that under this generalized definition V;(6) as a random process is
a (P?, F)-martingale.

1
i B (|120% - 20} - (0 Vi) 2

e—0

Proposition 20. : If a timet > 0 the statistical experiment (2, Fy, Qt, (P?)oco)
is L1- dzﬁerentzable at @ , then V0 < s < t the statistical experiment (2, Fs, Qs, (P%)gco)
is L'-differentiable at 0 with random score-vector

Vs(0) = Ep, (Vi(0)|Fs)
Proof: let B € F,

B ({1420 - 20) - (nvito) 22 1)
- Fq ({1{z§+6h ~ 2 -, EQ<me<e>|fs>>}1B)

0
E {Z9+Eh ZS@} o (h7 EQ Z ‘/tg )Z
Eq(Z|Fs)
({ {28+ — 2%} — (h, Epe(Vy(0 9}13) — 0 when e — 0

and since this holds VB € Fg,

1
Eo (’E{Zg+sh — 7% - (h, EP,,(Vt(e)|]-‘s))Z§ ) — 0 whene =0
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Exercise 16. (Laplace’s two sided exponential distribution):

For P%(dz) = 1 exp(—|z — 0|)dz, the density f°(x) is not differentiable with
respect to 0 at the point 0y = x.

Nevertheless it is L'-differentiable with score

V(0,xz) = —sign(0 — )

Notes The story continues: since Z{ € L'(Q), it follows that \/Z¢ € L?(Q).
When +/Z¢ is L2-differentiable, V;(6) is a square integrable (P?, F)-martingale,
we define Fisher’s information as

L(0) = Eps (Ve(8) " V2(0))

which is studied by using martingale theory.

5.8 Martingale maximal inequalities
For a process (X; :t € T), T =R or N we define the running maximum
X0 = jpox, Xa(w)

Theorem 24. Let 0 < X (w),s € N a (F;)-submartingale.
Then for ¢ > 0,T € N,

cP(X} > ¢) < Ep(Xr1(X} > ¢)) < Ep(X7)
Proof Let A :={w: X} (w) > c} and

T
A= {w Xi(w) <., X (w) < e, X (w) > c}, A= U Ay,
t=1
with Ay N As = 0 for s # t. By the submartingale property
T T T
Ep(Xrla) =Y Ep(Xrla,) > Ep(X.la,) >c¢) P(A,) =cP(A)
s=1 s=1 s=1

Lemma 20. Let X(w) > 0,Y (w) > 0 random variables with Y € LP(Q, F, P) ,
p > 1 for which

¢cP(X >c¢)<Ep(YL(X >¢)), ¢>0
then

1 1
X|L,<q|lY with(—i—):l
[ X Np<allY [l P

Proof Assume first that X € LP. By Fubini’s theorem

X (w) o]
Ep(XP):/(/ ptp_ldt>P(dw):/ P(X > t)ptP~ldt <
Q 0 0
p

ﬁ/ tP(X > t)(p — 1)tP~2dt < q/ Ep(Y1(X > 1)) (p— 1)tP~%dt <
- 0 0

X (w)
qEp <Y / (p— 1)tp2dt> = qEp(YXP7h)
0

(Holder ) <qEp(Y?)'/PEp(XYP D)0 =q || Y ||| X 57" .
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Without assuming that X € LP, take the truncated r.v.
XM (W) :=X(w)An?t X(w) asnt oo
and that {w: X(w) An >c} =0 for n < ¢, while for n > ¢, {w: X(w) An >

¢} = {w: X(w) > c}. The lemma applies to X (™ and the result for X follows
by the monotone convergence theorem [J

Theorem 25. (Doob’s LP mazximal inequality) Let (M : t € N) a martingale
with My € LP ¥t € N. Then for 1 <p < oo, T € N,

I Mz lp< q || Mz |,
Proof |M,| is a submartingale, by the maximal inequality
cP(|M}| > ¢)< Ep(|Mr|1(|MF| > ¢))
and we to apply the previous result with X = |M7| and Y = |Mrp|.

Corollary 14. When (M, : t € N) is a martingale in L*(P), we obtain
Br((477) < 4B (043) = +{ Er(M3) + Br (01,00 |

Corollary 15. If1 < p < oo and (M : t € N) is a martingale with My € LP(P)
vt,

| M flzr <

Esup || My |11
teN

cP(IMZ[ > ¢) < sup Ep(|Mi])
teN

Proof By the monotone convergence of expectations. For the second in-
equality apply first Doob maximal inequality to the submartingale |M|.

Kakutani’s theorem and likelihood ratio process On a probability space
(Q, F) consider a sequence of random variables (X, (w) : n € N) which generate
the filtration (F,,), Fn = 0(X1,..., X,).

We consider two probability measures P and @ such that the random vari-
ables (X, (w)) form an independent sequence under both measures P and Q.

Q l<0<c P ( P dominates @ locally ), which means that for all n and for all
A, € F,, P(A,) =0= Q(A,) =0.

By the Radon-Nikodym theorem, for each n € N there is an F,-measurable
Radon-Nikodym derivative

_dQy,
- dP,

0<Z,(w) (w) such that Q(A) = Ep(Z,14,) VA€ F,

where @, and P,, are the restrictions of () and P on the o-algebra F,.
Now Z,(w) is a martigale, since if A € F,,, then A € F,, Ym > n and by
using twice the change of measure formula

Ep(Zmla) = Q(A) = Ep(Z,14)
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Let’s assume that X,,(w) € R? with densities Q(X,, € dr) = g,(z)dz and
P(X,, €dz) = fp(z)d.

By assumption outside a set of Lebesgue measure 0, g, () = 0 when f,(z) =
0. In particular the function

_ In ()
zn(z) = )

is well defined outside a set of Lebesgue measure 0.
It follows that

Zn(w) = 21(X1(w))22(Xa2(w)) - - 20 (X (w))

Kakutani’s theorem says that Z,, is Ul martingale if and only if

ﬁ Ep(Vzn (X)) >0
= i(l — Ep( zn(Xn))) < 00

n=1

Theorem 26. (Kakutani) On a probability space (2, F,P) let (X; : t € N)
P-independent random variables with Xy(w) > 0 and Ep(Xy) = 1.
Let Fy = o0(Xy,...,X:) and

M, =X1Xo...Xy, a={B(X)}€(0,1]

M, is a non-negative (Fi)-martingale with E(M;) = 1 and by Doob forward
convergence theorem it has P-a.s. limit M (w) as t — oo, with M, € L'(P),
E(My) € [0,1]. The following statements are equivalent:

1. M; is uniformly integrable

2. Ep(My) =1

3. H ar >0
t=1

4o Yo (l—a) < o0
Otherwise My (w) =0 P a.s, and P and Q are mutually singular on
Too = () o(Xk : k>n).

neN

Proof 1) = 2) by the characterization of L!(P) convergence.
2) = 1): since M; > 0 we can use Fatou’s lemma: VA € Fj

EP(Moo]-A) = Ep(litlginfMtlA)
< liminf Ep(M;1a) = Ep(M14)

where we used the martingale property. This is the supermartingale property
at ¢ = oo:

Ms(w) > Ep(Moo|Fs)(w) P as.
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By assumption
Ep <MS - EP(MOO|.7-'S)) = FEp(Ms) — Ep(Mx) =0

which implies that (M;) is an UI martingale:
M;s(w) = Ep(Ms|Fs)(w) P as.

3) = 2): Define
Mt(UJ)

a1as ...a¢

Nt(LU) =

(N) is a non-negative martingale in L?(P).
By Doob LP martingale inequality with p = 2,

Ep (sup MS> < ( by Jensen’s inequality) Ep <sup NS2> <4BE(N}) = — 5
aj ..

s<t s<t
and by the monotone convergence theorem

— 1 < ~2
Ep (sup MS) tlirrolo Ep (sup Ms) <4 H a;

seN s<t teEN

Now if ] a¢ > 0, this gives a finite upper bound, and necessarly (M;) is an
teN
UI martingale since it is dominated by (supseN Ms) € LY(P).

(1) = (3): In case ] ar =0, by Fatou lemma
teN

Ep(\/MOO) = Ep(limtinf \/Mt) < 1imtinpr(\/Mt) = li){nalag .a; =0

which implies Mo, =0 P a.s.
3) = 4): On another probability space, take a sequence (Y, : n € N) of
independent Bernoulli random variables with

P(Y,=1)=1— P(Y, =0) =a, € (0,1]
Let B, ={w:Y,(w)=1},and B= () By,.

neN
Using o-additivity,

PB) =[] P(Bn) =[] an

neN neN
Note that since P(B;,) = a, > 0 Vn,
P(B) =0<«= P(liminf B,,) =0 <= P(limsup B;) =1

By the first and second Borel Cantelli lemma for independent events this is
equivalent to

0= PB)=>» (1-a, O

= n=1
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Exercise 17. Let X,, i.i.d. standard Gaussian with Ep(X,) = 0 and Ep(X2) =
1 under the measure P and let X,, ~ N(un,1) and independent under the
measure (.

In this case

)2 exp (4o — )

Ly
= exp (wun - 2/%)
(2m)~ /2 exp | —5a?

zn(x) =

Then P ~ @Q on the o-algebra F if and only if

O O D GG D)

= HeXp —éun —exp(—z,un>

which is equivalent to

oo
D up < oo
n=1

In fact, if gy, = p # 0 Vu, then P and Q are singular on Foo.
For example by the law of large numbers the set

A={w: lim n " (X;(w) + -+ Xp(w)) = p}

has Q(A) =1 and P(A) =0

Exercise 18. Suppose now that under P the random variables (X,,) are i.i.d.
Poisson(1) distributed, while under Q (X,,) are independent with respective dis-
tributions Poisson(A,) with A, > 0.

In this case

on(z) = (exp(—An)Azg /n!> / (eXp(—l) /n!> = exp(zlog(An) + 1 — M),
B (/) = exp (51 - ) ) B (VAL ) =
exp(@— 1+ %(1 - )\n)) = exp(—;(\/x - 1)2>

since for a Poisson(1) distributed random variable X, Ep(6%) = exp(f — 1).
Therefore Q ~ P on Fo if and only if

0< HQXP( VA —1) > eXP(ii(@lV)

n=1 n=1

@)i(ﬁn—lf <00
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Chapter 6

Continuous martingales

6.1 Continuous time

Moving from discrete to continuous time, we need some technical assumptions.
We will work with the filtration (F; : ¢ € RT) on the probability space
(Q,F,P).
We say that the filtration (F;) satisfies the usual conditions if

1. The filtration is completed by the P-null sets

FoONP ={ACQ:PA) =0}
2. The filtration is right-continuous

Vt>0 Fi=Fipi=()Fu

u>t

Next we discuss why these usual assumptions are needed.

Lemma 21. Let 7(w) > 0 be a random time and (F; : t > 0) a filtration which
in general is smaller than the filtration (Fey : ¢t > 0).

1. 7(w) is a stopping time with respect to the filtration (Fi+) if and only if
{T<t}€ft vt > 0.

2. When the filtration is right continuous T is also a (Fi)-stopping time.

Proof When 7 is a (F;+)-stopping time

{w:t(w) <t} = U{w:T(w)gt—n_l}E}}

neN

where, by definition of stopping time, {r(w) <t —n"'} € F_1/, C F;.
On the other hand, from the assumption

{w:T(w) <t} = ﬂ{w:T(w) <t+n'YeF, O
neN

97
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Exercise 19. We show a filtration which is not right-continuous, generated by
a continuous process. Consider the probability space of continuous functions
started at zero

Q={weCR"R):w=0}
equipped with the Borel o-algebra, where the canonical process is Xi(w) = wy,

Let (F?) be the “raw” filtraton generated by X, with FP = o(ws : s < t).
Note that A € F{ if and only if for all w,© € Q, with ws = @s Vs € [0,1],

weEA=wecA

meaning that A depends only on the path w restricted to the interval [0,t].
For a > 0, consider first the random time

T(w) =inf{t>0:w > a}

Now Vt > 0,
w:T(w)<t}={w: inf —w)t =0
{wiT(w) <t} ={ qgtl,I;eQ*(a a) }

now since (a —wq) " is .7-'2 measurable by taking the infimum over the countable
set [0,8] N Q, we see that this event is F_ measurable.

Next we construct a random time which is a (F7,)-stopping time but not a
(FD)-stopping time. This shows that the raw filtration (Fy) is not right contin-
uous, even if it is generated by a continuous process. Let

T(w) =inf{t > 0:w; >a}
For each t > 0,

{w:T(w) <t} = U {w:wy >al e F
q€Qt q<t

meaning that 7 is a (Fy,) stopping time.
However T is not a (FQ)-stopping time. For fived t, consider a set of paths
which are crossing the level a for the first time at time t:

Ay =A{w: T(w) =t}
:{w:wq<a;Vq<t, wg=a, IN 1wip1/n > a Vn>N}

For w € A, consider the reflected path &

5o [ ws s € [0,1]
T 2a—ws s>t

Now by construction when w € Ay, 7(@) > 7(w) = t, since by construction ©
attains the local mazrima a at time t, and may cross the level a only later.
Which means, the event {7 < t} is F2, measurable but not F; measurable:
the path w and & coincide up to time tau, but w € Ay and & & Ay, which means
that Ay & F.
By observing the paths on the interval [0,t] we cannot distinguish between
w € A; and the corresponding @. For that we need to observe a little bit of the
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future, that is the extra information contained in .7-"t0+

Things may change when we complete the filtration with respect to a prob-
ability measure: Let PV the Brownian measure on €, such that the canonical
process Xi(w) = wy is a Brownian motion, and let (F;) the filtration completed
by the PV -null events.

In the previous example it is not difficult to show that for each fixed t > 0
PW(A;) = 0, meaning that the probability that the Brownian motion will cross
the level a for the first time at the pre-specified time t is zero, and by reflection
this is equal to the probability that the Brownian motion attains a local mazimum
a at time t. Therefore

F<t}={F<tju{F=t} ca(F,N")=F
T is a stopping time with respect to the P -completed filtration (Fp).

We have seen that continuous process can generate filtrations which are not
right continuous. On the other hand, the raw filtration generated by a process
with jumps may become right-continuous after completing with the P-null sets.

Proposition 21. The completed filtration generated by a time-homogeneous
process with independent increments is continuous.

Proof We give for the case of Brownian motion, but you can check that
it goes through also for the Poisson process, (the same proof works for Lévy
processes which we have not introduced yet).

Let FO = (F?) the raw Brownian filtration, with

F)=0(By:0<s<t)

For 0 < sp <81 <--- <8, and #,...,0, € R, we consider the Gaussian
random vector

G(w) = (Bs;(w) = Bs,_, (W) : i=1,...,n)

For each # € R", the characteristic function the conditional distribution of G
given F7 is a martingale

Zy(0) = Ep (exp{ﬁiez‘(Bsi - Bsi_l)}‘fto>
i=1
Pas. exp{ﬁé 0i(Bs;nt — Bs,,_l/\t)}EP <exp{ﬁ§ 0i(Bsnt — BSi—lAt)})

n n
1
= eXp{\/ -1 E ei(Bsi/\t — Bsifl/\t) — 5 E 912(51 Nt —s;,_1 N t)}
=1

=1

We see directly (without using Doob’s martingale convergence theorem which up
to now we know only in discrete time), that ¢ — Z;(w) is continuous when ¢ —
By (w) is continuous. Since the conditional characteristic function characterized
the conditional distribution, for every bounded measurable test function f :
R - R
0 P a.s. .. 0 0
Ep(f(G)Fa)(w) =" lim Ep(f(G)|Fiip-1)(w) = Ep(f(G)|F)(w)

n—oo



100 CHAPTER 6. CONTINUOUS MARTINGALES

where the identity holds P-almost surely. Beacuse F) = o(Gs : s > 0) it
follows that VA € F2,

P(A|F)(w) = P(A|F)(w) P almost surely
But this implies Fp, VNT = F) VNP = F) v NT. since for A € FI\ F°,
X(w) :=14(w) — P(A|F2)(w) =0 P almost surely

is NP measurable, therefore A is 72 V N'*' measurable OJ
We need to extend the results for discrete time martingales to continuous
time.

Lemma 22. Let 7(w) € RTU{+00} a stopping time with respect to the filtration
F=(F,:teR").

There is a sequence of stopping times (T,(w) : n € N) where each 7, takes
finitely many values and 7,(w) > 7(w) , approzimating T from above:

Tn(w) J 7(w) Yw asn T oo .
Proof: Define

B Too if 7(w) >n
n(w) = {(k +1)/n  otherwise, for 7(w) € [k/n,(k+1)/n), k€N

You see that 7, is a F-stopping time:
{w:m(w) <t} ={w:7(w) < [tn]/n} € Flunjm S Fr VE20
where |x] is the largest integer smaller than x.

Remark 15. Note that corresponding random time approximating the F-stopping
time T from below

2 (w) = n if T(w) >n
" k/n  otherwise, for T(w) € [k/n,(k+1)/n), keN

is not always a stopping time.

Definition 37. A random time o(w) € (RTU{+00}) is F-predictable is there is
an announcing sequence of F-stopping times (1,,) approxzimating o from below

Tn(w) T o(w), Yw
and
To(w) < 7(w)  on the set {w: 7(w) > 0}
Lemma 23. A F-predictable time is a F-stopping time.
Proof: Vt, {w:o(w)<t}= ﬂN{w i Ta(w) <t} € F
ne
Lemma 24. ( Regularization) Let (X; : t € Q+) is a F-submartingale, with

F=(F:tcQt). We can replace Qt by any countable set dense in RT.
Then P almost surely the left and right limits

X (W)= lim  X,(w), Xpp(w):= lim X
(W)= lim Xe(w), Xep(w) = lim Xo(w)

exist simultaneously for all t € RT.
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Proof: It is enough to prove the lemma in a finite interval [0, 7] NQ™T, with
TeQ.
Let F, a non-decreasing sequence of finite sets with F,, C F}, 11 and

U F, = ([O>T} QQ+)
neN

For each finite set F,,, (X, : ¢ € F,) is a submartingale in the filtration
(Fy:q € Fy).
Define for a < b € R the number of downcrossings of [a, b] by X (w)

Diq 1) (Xq(w) tqeQn [07T]> = Sl;pD[a,b] (Xq(w) iq € F)

where the supremum is over finite subsets F' C [0,7] N Q™.
Note that for each finite ', F' C F,, for n large enough, therefore

Do) (Xq(w) : ¢ € Fu) T Dig ) (Xq(w) :q € QN[0,T]) asntoo, Vw
By Doob submartingale inequality in discrete time , Vn

E(X{)+b” _ B(Xr))+b” _

: n) < <
E(Dpay) (Xq(w) : q € Fy) b—a b—a

Therefore by monotone convergence,

E(D[%b] (Xq(w) 1qeQn [O,T])) <o =
Diq ) (Xq(w) :qeQn [O,T]) <oo Va<beQ, Pas.

which means that P a.s. left and right limits exist simultaneously for all ¢ €
[0, 7], and since R is covered by countably many finite intervals it holds also
P a.s. simultaneously for all t € R*. By following the proof of Doob martingale
convergence theorem we see also that V¢ € [0,7], as ¢ — Q from the left or from
the right we have by Fatou lemma

Ep(] liquD < limTitnpr(|Xq\) < E(|Xo]) + 2B(|X1]) < o0,
q q

Ep(| lingqD < limTitnpr(|Xq\) < E(|Xo|) + 2E(|X7|) < o0,
q q

by using the submartingale property for 0 < ¢ < T < oo, since z+ < y* when
r <y,

Xyl = =X, +2X), = Ep(1Xy]) < —Ep(Xo) +2Ep(Ep(Xr|Fy)")
< —Ep(Xo) +2Ep(Ep(Xf|F,)) < Ep(|Xo|) + 2Ep(|X7]) < 00

which implies that these left and right limits are finite P a.s [J

Remark 16. By changing the sign a supermartingale becomes a submartingale,
and lemma [24) holds as well for supermartingales. Although the submartingale
(Xy) was defined only on QF, we can use the existence of the limit to redefine
outside a P-null set a modification of the process which is right continuous at
all t € RT. In order to have adaptedness for the redefined process we need to
work with the right continuous filtration completed by the P-null sets.
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Lemma 25. Let DT = {k2™" : k,n € N} be the dyadic set (or another count-
able set dense in RT), and let (My)yep+ be a right-continuous martingale in
the filtration (Fy)uep+ satisfying the usual conditions. Fort € RT define
M, = i My(w), Fi= F
() wltueDt u(@) ’ M “
u>t,uc DT
Then (My)icr+ is a right-continuous martingale in the filtration (Fi)ier+
which satisfies the usual conditions.

Proof By definition, (F;);er+ is right continuous.
Let u, € Dj with u, | t, and consider the time-discrete filtration with
negative times F_,, = F,, . By definition

Fi=F-co=()Fu

The process (M,, : n € N) is a (F_n)-martingale, and by Doob’s backward
convergence theorem and since (M, ) is right-continuous on the dyadics,
define

M;(w) :=lim sup M, (v) Yw,

n—roo
= lim M, (w) P-almost surely,
n—oo
where by definition M; is F;-measurable and in the second equality the limit is
P-almost surely and in L'(P), which implies M; € L!(P).

Let’s check the martingale property: for s,¢ € R with s < ¢, and let r,, € DT
with 7, | s and u,, € DT with u, | t. Since s < t we can choose sequences such
that r, <wu,. Let A e Fs C F,. , Vn.

Since M, (w) — M;(w) and M, (w) — M(w) P-almost surely and in L' (P)
Ep(M1,) = lim Ep(M,,14) = lim Ep(M,,14) = Ep(M1,)
n—oo n—oo
where we used the martingale property of (M,),ep+ O

Note that in the backward martingale convergence theorem we get uniform
integrability and L!(P)-convergence for free.

Proposition 22. Doob’ optional stopping theorem in continuous time.

Let (M; : t € [0, +00]) a right-continuous uniformly integrable F-martingale
where F is right continuous, and 0 < o(w) < 7(w) F-stopping times.

Then

E(M:|F5) = My(w)
Proof: There are two non-increasing sequences of stopping times o,,, 7, with
o(w) < on(w) <m(w), T(W) < TR(W)
which for each fixed n take values in the dyadics D,, = (k27" : k € N) and

on(w) L o(w), on(w)lmw) asntoo
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To do this simply take

Tn(w) = (k +1)27" otherwise, for 7(w) € [k27",(k+1)27"), keN
on(w) = (k+1)27" otherwise, for o(w) € [k27",(k+1)27"), keN

and 7,(w) = 400 and o,(w) = 400 when 7(w) = 400 and o(w) = 400,
respectively, and check that they are stopping times.
The fitrations (F,, : n € N), (F,, : n € N), are non-increasing as n — oo.
Therefore we apply Doob’s backward convergence theorem,

M, (w) = M.(w) and M, (w)— M,(w)

not just P-almost surely (which is implied by the right continuity) but also in
LY(P)

For every fixed n, by the discrete time version of the optional sampling theo-
rem with the filtration (Fy : d € D,,) under the uniform integrability assumption

Ep(M;,|Fs,)(w) = M, (w)

Let A€ F, C F,, CF, CFy..

E(MTlA) = lim E(MTn]'A) = lim E(Mgn].A) = E(MUIA)

n— oo n— oo

where we used the convergence in L'(P) to take the limit in and out of the
expectation.

Lemma 26. If 7 and o are F-stopping times, (T Ao) is an F-stopping time and
Frne = Fr N Fs

Proof: {tAo <t} ={r<t}u{oc <t} e F.

Clearly F, N Fr O Frpo, since 0 > 7 Ao and T > Ao, and recall that
intersection of o-algebrae is a o-algebra. For the opposite inclusion, if A €
Fo N Fr, then AN{o <t} € Fy and AN {r <t} € F;, which implies

(An{o<thuAn{r<t}h)=An{rAc}eF
which means A € F o, O

Lemma 27. Let 7 be an F-stopping time and X; an F-adapted right continuous
process. When the filtration F is right continuous, X,(w) is F, measurable.

Proof: approximate the stopping time 7 from above by a sequence of F-
stopping times 7,(w) | 7(w) with 7,(w) taking values in the dyadics D™ =
(27"k : k € N).

Now for each n € N consider the discrete time filtration with }N",? = Fro-n,
k € N, It follows that X, (w) is F,, by the result in discrete time.

Since F, = |J F,,, since F is right continuous, and X, = limsup X, (w)
neN n— 00
since X is right continuous, it follows that X, is F.-measurable.
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Proposition 23. Let (M;) a right continuous martingale in the right continuous
filtration F, and 7(w) a F-stopping time. Then the stopped process

M (w) = Mipr(w) := My(w)1(7(w) > t) + M- (w)1(7(w) < 1)
is a F-martingale.

Proof Note that Finr = F; N Fr.

We show that M, is Fia--measurable:

Since 7 is a stopping time it follows that (M;r.) is F-adapted. Let’s fix
0 < s <t < oo Nowin a finite interval (M : s < t) is uniformly integrable,
and by Doob’s optional stopping theorem applied to the bounded stopping times
(sAT)<(tAT) <t

E(Mipr|Fsnr)(w) = Mopr
Next we show that
E(M:pi|Fs) = M1(1 < s) + E(Moae] Fras)1(T > 5)
For A € Fj,
E(M;pi1a) = E(M:141(7 < 8)) + E(Mop1a1(T > 5))

Note that AN {7 > s} is not only F; measurable but also F, s measurable
since by definition for all » > 0

0 e Fs ifs>r

Aﬂ{7>s}ﬂ{7/\s<r}:{AQ{T>S}E]__S G

Therefore by taking conditional expectation w.r.t. F s inside the expectation
we get

E(MT/\t]-A) = E((MT]_(T S S) + E(MTAt|‘FtAS)1(T > S))1A>

= E((MT]_(T < 8) 4+ Mopad(r > s))1A> = E(Myrs14)

which means

E(Mipr|Fs)(w) = Mapr (w)

6.2 Localization

Definition 38. We say that a property holds locally with respect to the filtration
(Ft) for the process (Xi(w)), if there is a localizing sequence of (F;)-stopping
times T, (w) T 0o such that for each n the stopped process X{™(w) := Xiar, (W)
satisfyies that property.

For example every (F;)-adapted process (X; : t € RT) with continuous paths
and Xo(w) = 0, is locally bounded, the sequence of F-stopping times

To(w) :=inf{¢ : | X¢(w)] > n},

is localizing: 7, (w) 1 oo since | X;(w)| < 00, and | Xiar, (W) < n.



6.3. DOOB DECOMPOSITION IN CONTINUOUS TIME 105

6.3 Doob decomposition in continuous time

We recall that the (total) variation of a function s — x(s) in the interval [0, ]
is given by
Vioy(@) i=sup > la(t: =1

t; €Il

where the supremum is taken over partitions I = (0 =tg <t; <...,<t, =1)
of the interval [0,¢]. It follows that x(s) has finite first variation if and only if
z(s) = z(0) + 2%(s) — 29(s) with 2%, 2® non-decreasing functions.

Lemma 28. A continuous local martingale (My : t € [0,T]) with almost surely
finite (total) variation is necessarly constant.

Proof Without loss of generality we assume that My(w) = 0. Let 7, (w) 1 00
a localizing sequence of stopping times such that for each n the stopped process
Mipr, is a martingale. We define stopping times

on = To Anf{t : Vjo g(X(w)) > n} <7,

By Doob optional sampling theorem, the stopped process M;/"(w) is a martin-
gale with

|M7" | < Vo (M) < VE >0

Since o, (w) — 00, it is a localizing sequence. In order to simplify the notation,
let’s fix n and assume that M;(w) := M/"(w) is a true martingale, which has
bounded first variation. By the discrete integration by parts formula, for a
sequence (0 =ty <t <ty <...), with t,, = co. We have

ME =23 My (Myne = M) + ) (Mine = My n0)?
=1 =1

Since s — M (w) is uniformly continuous on [0, ¢], there is a random 6(w) such
that

Z(Mti/\t_Mti,l/\t)Q < sup [ My ne—Mz, o il Z | Mg ne =My, nt| < eVipg(M) < en
3

when A(IT) = sup;{(t; At) — (ti—1 At)} < 6(w). This means

Z(Mt“\t — Mti_l/\t)z — 0  P-almost surely
as A(II) — 0, and we have

M? = A(llllr)n—m?ZMtl nt(My ae—My,_at) = 2/ MsdMs  P-almost surely

where for almost every w the limit of Riemann-sums with continuous integrand
and integrator of finite variation is a Riemann-Stieltjes integral. By taking
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expectation,

EP(MtZ) =2FEp (A(lli[r)nqothil(MtiAt - Mtil/\t)>

=2 lim E My, (M e — My, =
A(lllr)n_>0 P(; ti_l( ti At tz_l/\t))

li 2 Ep| M, ,Ep(M e — My, Fi, =0
A(IITI)ILO ; P< ti—1 P( tiAt t,,,l/\t| tll/\t)>

where we used the martingale property, which gives M;(w) = My(w) = 0 Vt.
The interchange of limit and expectation is justified by the bounded convergence
theorem, since M;(w) has bounded variation.

Z Mti—l (Mti/\t - Mti_l/\t)

=1

< Vo,g (M(w))? <n?  P-almost surely .

Coming back to the local martingale, E(MZ,,, ) = 0 implies M;r,, =0 P a.s,
Mi(w) = lim Mips, (w) =0  P-almost surely O
n— oo

The next two technical lemma are not very intuitive but useful:

Lemma 29. Suppose (A, : n € N) is a (F,)-predictable and non-decreasing
process with Ag = 0, such that

Zn = Ep(As — Ap|Fn)(w) <C  Vn
Then Ep(A2)) < 2C2.
Proof Note that Z,, is a potential (see .

(A,)? = zn: zn: AALAA, = 2znj zn: AALAAL — Zn:(AAk)Q

k=1h=1 k=1 h=k k=1
=2 (A — Ap_1)AAL =) (AAL)?
k=1 k=1

n
where AA;, = (A — Ap_1), and since the terms (4,)? and Y (AAg)? are
k=1
non-negative and non-decreasing, the monotone convergence theorem applies

Ep(A%) =2E (i(AOO - Ak_l)AAk> ~ Ep (i(AAk)2>

k=0 k=1
where we can exchange the order of summation and integration. By taking
conditional expectation inside and using predictability,

Ep(A2) <2 i Ep (Ep((Aoo — Akl)AAk]]-‘kl))
k=0

=2> Ep (E(Aoo - Ak1|]-'k1)AAk> <2CEp (Z AAk) = 2CEp(As) < 2C?
k=0 k=1
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Lemma 30. Suppose ASP and Ag) are two predictable processes satisfying the

hypothesis of lemma and B, = (AEE) — Aﬁf)). Suppose that there is a T.v.
Y (w) > 0 with Ep(Y?) < oo and

|Ep(Boo — BulF)(@)| < No(w) = Ep(Y|F)(w) Vn.

Then there exists a constant ¢ > 0 such that

Ep (Sup BZ) < C(EP(Y2) + CE(Y2)1/2>

nenN

Proof We shall need the following estimate: since

IAB| = 1AAY — AAP | < AAD 4+ AAP),

it follows
Ep(B%) =2FE <Z E(By — Bk_1|]-'k)ABk> — Ep (Z(ABM) <2Ep((AY + AZ)Y)
k=0 k=1

< 2Ep(Y2)1/2 (EP({A&)}2)1/2 + Ep({AgZ)}Q)lﬁ) < 220 Ep(Y?)!/?

where we used Cauchy-Schwartz inequality together with lemma [29]
Let M,, := Ep(Bw|Fn), Xn := (M,, — By,), satisfying

| X = |Ep(BOo — Bn|]-'n)| < E(Y|F,) = Ny, :=Ep(Y|Fn)

By Doob’s LP martingale maximal inequality

E<sup X,’f) <Ep (sup N,‘j’) <4Ep(NZ) < 4Ep(Y?)
neN neN

and

E<sup M,%) < 4E (Mgo) =4F(B%)
neN

Since sup,, |Bn| < sup,, | X»| +sup,, |M,|, by the inequality (a+ b)? < 2(a? +b?)
E(sup B2) < Q{E(supXZ) + E(sup Mﬁ)} < 8<E(Y2) + E(Bi))
< 8<E(Y2) + 25/2CEP(Y2)1/2> O

Theorem 27. Suppose (X, : t € RT) is a (P, F)-submartingale with continuous
paths. Then we have the Doob-Meyer decomposition

Xi(w) = Xo(w) + Mi(w) + Ay(w)

where Mp(w) = Ag(w) = 0, My is a continuous (Fy)-local martingale and Ay is
F-adapted continuous and non-decreasing. Moreover (M) and (A;) are uniquely
determined up to indistinguishable processes.
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Remark : The result holds also for continuous local submartingales (the
localizing sequence is obtained by taking minimum of localizing sequences). It
also extends to processes with jumps.

Proof, Uniqueness: From the Bass, Probabilistic techniques in analysis .

Suppose that we have two Doob-Meyer decompositions

Xt—XOZMt‘i‘At:]\Z'i‘gt
It follows that . B
(My — M) = (Ar — Av)

is a continuous local martingale starting from 0 with paths of finite variation,
and by lemma [28]it is constant P-almost surely.

Existence : by considering the stopped process X;¢ = Xiar., where
To(w) = inf{s : [Xs(w)| > C or s > C}

we reduce first the problem to the case where X is a bounded and uniformly
continuous process, which is constant on the interval [C,00). Without loss of
generality we assume that Xo(w) = 0.

Fix k and m € N, and consider F;"* = Fjo-m, k € N.
Construct for each m € N the discrete time Doob’s submartingale decompo-
sition
Xpgem (w) = M{™ 4 A™
In continuous time we define for each m piecewise constant filtrations

7§m) (W) = Fra-m(w) when (k—1)27™ <t < k27"

and the time process
A (W) = A (W) when (k—1)2"™ <t < k2™ .

Both the filtration and the process are left-continuous. Note that for each m,
Zim) is (F:)-adapted, since in the time-discrete Doob decomposition A,(cm)(w) is
F(k—1)2-m-measurable.

Consider the modulus of continuity

W(,w):= sup | Xit(w)— Xs(w)]
s<K,|s—t|<d

W (d) is a bounded random variable since X;(w) is bounded, and because
Xt(w) has uniformly continuous paths on the compact interval [0, C], W(d) — 0
P-almost surely as § — 0. By the bounded convergence theorem W (d) — 0 also
in L?(P) sense.

We show that Z,Em) converges in L?(P) uniformly in ¢ as m — oo.

For m > n, ng) and Zin) are constant on the intervals ((k—1)27™ k27™],

e have m) _ —(n) Sm) ()
sup [A, ' — A, | =sup Ay m — Arym
t keN
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Fix ¢ = k27™ for some k. and let (I —1)27™ < ¢ <[27". Denote u = (27". By
the discrete time Doob decomposition

Ep(AL) - A" [F") () = Ep(AD) — A\ Fran) (@) = Ep(Xoo — Xi|Fra-n)(w) =
Ep(Xoo — Xt Ft)(w)

On the other hand

Bp(A%) — A [F ™) w) = Ep(AD) — A™|F)(w) = Ep (EP<A£:;> AP|F)

ft)(w)z

EP (EP(XOO - Xu|]:u)

ft) (@) = Ep (Xoo = Xu|F1) (@)

Then the difference of conditional expectations is bounded:

)

\Epmf;”) A E) - Ep@ - A" R

< e (1% - X.|17) < B (W)
The assumptions of lemma [30] are satisfied, giving
—(m) —(n)\2 a2 2y 1/2
Ep(sup(4; "—4; )" ) < Ep(W(27")?)+2CEp(W(277)?) -0 asmn—o00, m>n
t
We show the space of processes
Sy = {Z(t,w) (Fi)-adapted with || Z ||g,:= Ep (sup Zf) < oo} (6.1)
t

is complete under the || - ||s, norm.

Suppose (Zlfn) :t > 0,n € N) is a Cauchy sequence in Sy. In particular there
exists a sequence (N}) with

E(sup(Zt(") — Zt(m))2> < 2_k, Vn,m > Ng
¢
For each t define

9] N - N, N
2 = 20" + 3 (2" () - 2" (W)
k=0

where V¢ the series converges in L?(, F;, P). Then by triangle inequality

1/2
oo m o} m 2
[ Z(*) — zm) s, = E(Sl;p(zt( ) _ Zt( )) )

1/2 1/2 o0
< E(Sup(Zt(m) — Z,f(Nk))Q) + E(sup(Zt(m) — Zt(N’“))2> <2 k24 Z 2—h
t t
h=k

which is arbitrarily small for m > Nj and k large enough.
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By completeness, there is a (F;)-adapted process A¢(w) € So with
Ep (sup{AEn) — At}2> —0
t

From convergence in quadratic mean it follows that there is a subsequence (n;)
such that —ny)
sup |4, (w) — Ay(w)| = 0 P-almost surely .
t

Next we show that A;(w) is continuous. For t = k27",

AA] = Ep (X(k)Q" = X(k—1)2n

]:(kl)2”> < Ep(W(E2 )| Fr-1)2-n)

where on the right hand side we have an uniformly integrable martingale. We
have

Ep (sup(AA?)z) < Ep (sup Ep(W(2_"){}'(k_1)2—n)2> <4Ep (W(Q_")2> —0 asn—o0
¢ k

by Doob LP-martingale inequality. In particular there is a further subsequence
(n;) such that

Slip AA} (w) =0  P- almost surely as j — oo
Almost sure continuity follows:
Sup | AA ()] < sup [AA(w) = AT ()] +sup [AAT (@)
< 2sup | Au(w) = A (@)] + sup | AT ()
which for almost all w is arbitrary small for j large enough.

We show that M, := (X; — A;) is a (F;)-martingale. Since M, is continuous
and square integrable since X;(w) and A;(w) are.
By using lemma [25] it is enough to show the martingale property for s < ¢
with s,t € Dy = {k27V : k € Z}, and B € F:
Ep((My — My)1p) = E((Xy — X,)15) — E((A: — AJ)1p)
= B((X, — X,)15) — E((A{" — AM)1p) + E((4, — A")1p) — E((A, — AD)1p)
=0+ E((A — A1) — BE((As — A%)15) = 0 as n — oo

where the last identity holds Vn > N by the discrete time martingale property,
and by the Cauchy-Schwartz inequality,

1/2

Ep((A" — A)1p)| < Ep (s,ltlp(Aﬁ’” - At)2> P(B) — 0.

For the general case, by using the localization

X; = lim X7°w) = Xo+ lim M/w)+ lim A9 (w)= Xy + M, + A,
C—o0 C—o0

C—o0o
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where Mt(c) are continuous true martingales and A§C> are continuous increasing
processes with MO(C)(w) = A((JC) (w) =0 and

M w) = M7 (@) and AL (w) = ATV (w) on [0, 7]
This implies that the limits M;(w) and A;(w) exist with Mt(c) = Minr, and

AEC) = Aiprr... Therefore A, is continuous and non-decreasing and M, is a local
martingale with localizing sequence (7¢ : C € N) O

Remark 17. Note that without additional assumptions, it is not possible to
show that My is a true martingale: fort > s and B € Fy

EP((Mt - Ms)]-B) = EP(&EI;O(MU\TC - MS/\TC)]-B) (62)
L lim Ep((Miprg — Mrr)15) =0 (6.3)

C—o0

the interchange of limit and expectation is not always justified.

Definition 39. 1. the right continuous adapted process (Xi(w)) is in the
class D (D is for Doob) is the family of random variables

{XT(w) : T 1S a stopping time }

is uniformly integrable.

2. We say that a right continuous (F;)-adapted process (X (w)) is in the class
DL (local Doob) if for each t > 0 the family of random variables

{Xf(w) : T is a stopping time with 7(w) <t a.s. }

is uniformly integrable,
Exercise 20. 1. A local martingale My of class DL is a true martingale
2. A local martingale M, of class D is an uniformly integrable martingale. .
Proof
1. Let (,,) be a localizing sequence. For 0 < s < t, B € F, we have

Ep((My — M)1) = Ep (nILIIgO(Mt/\Tn — Msar,)1p) = lim Ep((Mar,

n—oo

where the last step is justified since the family {|Miar, — Msar, | : 1 € N}
is uniformly integrable by assumption.

2. M, is a martingale by the previous step, and it is clear that M; is uniformly
integrable since determistic times are stopping times.

- MS/\Tn)]-B) =0
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Corollary 16. A continuous (F;)-submartingale of class DL has unique Doob-
Meyer decomposition

Xi(w) = Xo(w) + My(w) + As(w)

where My(w) = Ao(w) = 0, My is a continuous true (Fi)-martingale and Ay is
continuous and non-decreasing with E(A;) < oo

Moreover if Xy is of class D, the martingale My is uniformly integrable and
E(Ax) < oo.

Proof When X, is of class DL, for t and B € F;, by the characterization of
convergence in L!(P) we have

Ep(|Xt — Xinre|) 2 0as C — o0
Since A is non-decreasing by the monotone convergence theorem
Ep(A; — Aipre) — 0 as C — oo
Therefore
| My — Minrg lz2py<I| Xe = Xinre 21y + || At — Atare l21(p)— 0

which justifies the interchange of limit and expectation in equation [6.2

When X; is of class D it is uniformly integrable, therefore X; — X, almost
surely and in L'(P) by the Doob martingale convergence theorem, and by the
martingale property

EP(Aoo) = lim Ep(At) = lim Ep(Xt — Xo) = EP(Xoc — Xo) < 00,
tToo tToo

which means that
M; = (Xt—X0+At) — My, = (Xoo —X0—|—AOO)

P-almost surely and in L'(P) sense. In particular M, is uniformly integrable.
O

6.4 Quadratic and predictable variation of a con-
tinuous local martingale

Let M; be a continuous local martingale in the (F;)-filtration, and (7,) a local-
izing sequence. Note that we can choose (7,,) such that |[M[" (w)| < n.

By Jensen inequality, the stopped process (M;")? is a (F;)-submartingale,
with Doob decomposition

(M7")? = M + N+ (M),
)

where (M™); is a continuous non-decreasing process and Nt(n is a local mar-
tingale.

Since 7,, < 7,41 and the Doob-Meyer decomposition is unique it follows that

N™1(r, > t) = N ™1(r, > t) = N1(r, > ¢)  and
(M™ ) 1(1, > t) = (M) 1(1, > t) = (M) 1(1, > 1)



6.4. QUADRATIC AND PREDICTABLE VARIATION OF A CONTINUOUS LOCAL MARTINGALE 113

where N; := 1iTm Nt(n) is a local martingale and (M), = liTm (M™), is a contin-
uous increasing process, which give the Doob-Meyer decomposition
M7 = M§ + N¢ + (M),

The process (M), is the predictable variation of the local martingale M;. Note
that

My — Mg =0  P-almost surely = (M); = (M);  P-almost surely

Definition 40. Let M,, M, (Fi)-local martingales. We define by polarization
the predictable covariation as

(M), o= (M 4+ WD) — (M = 1)) = 3 (M + WD), — (M), — (1))

Note that (M, M)y = (M);.

Proposition 24. (M, M)t is the unique continuous process of finite (total)

variation such that (M, M)q =0 and
M; M, = MyMg + N, + (M, M), (6.4)

where ﬁt 18 a local martingale with ﬁt =0.

Proof Since (M; + ]\Z) are local martingales with Doob-Meyer decomposi-
tions
(M, + M;)? = (Mo + My)* + N&) + (M + M),

we use the polarization identity
—~ 1 — —
MM, = 4{(Mt + My)? — (M, — Mt)Q}
to obtain the semimartingale decomposition 1) with Ny = (Nt(ﬂ —Nt(f))/él 0

Exercise 21. Let (B, Et)tzo a pair of independent Brownian motion, and con-

sider the filtration J; = o(Bs, Es 5 <t)VNT completed by the sets of measure
zero. B
B; and By are square integrable martingales.

Ep (BB, — ByB,|Fy)
= ByEp(B; — B,||Fs) + BsEp(B, — Bs||Fs) + Ep((B: — Bs)(B; — B,)|Fs) =
BsEp(B; — By) + BsEp(B; — By) + Ep((B; — By)Ep(B; — B,) =0

therefore the product (Btét) is a martingale and from the uniqueness of the
Doob-Meyer decomposition it follows that (B, B); = 0.

For a € [0,1], consider the process

Wt - \/aBt + vV (1 — a)gt
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It follows that (Wy) is a Brownian motion adapted to the filtration F;. We have
Ep(BtWt BW,|F)
:BSEP(Wt—W||f)+WEp(Wt—W|\]—')+Ep((Bt—B)( W,)|F)
)
)

=0+ vaBp((B; — By)*|Fs) + V(1 — )Ep((B; — Bs)(B; — By)| F,
=Va((B): — (B)s) = f(t—s

It follows that (B,W); = y/a(B); = y/at

Theorem 28. Let M be a continuous martingale with |Mi(w)| < C < oo Vt > 0.
Then

o0
[M]t = lim Z(Mt/\tk - Mmtk_l)g
where the limit exists in L?(P) sense uniformly on compacts, with

A=0<to<ti<....tp...), [Al:=sup(t; —t;—1), sup{t, € A} =00

[M]; is continuous and non-decreasing and satisfies:
M = Mg + [M]; + Ny
where Ny is a true martingale. In other words [M]; = (M);.

Proof From Revuz-Yor Continuous martingales and Brownian motion.
Without loss of generality we assume My = 0, otherwise consider M; =
(M; — My). Lets denote

= Z(Mt/\tk — Mips,_,)° (6.5)
k=1

It follows that (M2 — T2 (M)) is a martingale since for 0 < s <t
(M; — M,)* = M} — M? + 2M,(M; — M,)
and by the martingale property

E((Mt - Ms)2|]:5) = E(Mtz - Mz’]:s) (6'6)

= Z E(MtQk/\t - Mti_l\/s‘}—s) = Z E({Mtk/\t o Mtk—1VS}2|]:S) = E(TtA(M) o

trkEA treA
In particular for fixed partitions A, A’

XPA = TP (M) - T (M)

is a martingale. We will show that X; = XtA’A’ — 0 in L%(P) uniformly on
compact intervals as |A[, |A] — 0.

2(M)|Fs)
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Denote AA" = AU A’ the coarsest partition of RT containing both A and
A’. Note that for fixed A, A’, X; is bounded on compact intervals, since is the
sum of finitely many squared differences of the bounded process M.

Consider the process TtAA' (X), which is defined as in replacing the mar-
tingale M; with the martingale X;. (We don’t want and we don’t need to write
the explicit expression).

From [6.6] we see that

(X7 = TP (X))

is also a martingale. Since (a — b)? < 2(a? + b?), we have

B(X?) = BT (X)) < 2Ep (Tﬁﬂ’(TA(M)) LA <M>>)

We show that Ep (TtAA/(TA(M))) — 0. For s € AA’, t; € A such that

t; < sp < Sgy1 < by,

T (M) = TR(M) = My, — My,)? = (M, — My)?

Sk+1 Sk+1
= (M5k+1 - Msk)2 + 2(M5k+1 - Msk)(MSk - Mtz) = (M5k+1 + Msk - 2Mtk)(MSk+1 - MSk)

and for t = s,, € AA’

n—1

! 2
TAY(TA(M)) = > (T4, (M) = T3 (M)
k=0
n—1
< Sup(M5k+1 + Msk - 2Mtz)2 Z(MSkJrl - MSk)2
k<n k=0
— o« 2 AA'
= zgp(MSkH + M, — 2Mtz) T; (M)
<n

By taking expectation and using the Cauchy-Schwartz inequality
/ 1/2 / 2\1/2
Ep (TtAA (TA(M))) <Ep (ng(MSW + Mg, — 2Mtk)4> Ep({T/* (M)}7)

Since for P-almost all w M;(w) is a continuous martingale, it is uniformly con-
tinuous on the compact [0, ],

sup |Ms, ., + M, —2M;, | =0
k<n

P-a.s. as |A|,|A’| = 0. Since |[Mi(w)|] < C, convergence in LP(Q) follows as
well.
In order to complete the proof we show that

Ep({TA(M)}?)

remains bounded as |A| — 0.
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Assuming that t =¢,, € A, denoting AMy, = (My, — My, _,)

(r2any = o@am'+ 2Z<Z<AMj>2) (AM,)?,

k=1 “j>k
Ep ({TtA(M)}2> < Ep (TtA(M) sup(AMy) > +2ZEP< —My,) (AMk)Q)

where in the last term we have taken conditional expectation with respect to
Fi, and used the martingale property

Ep(M}, — M2 |F,) = Ep((M; — My, )| F,)

We get

Ep ({TtA(MHZ) < EBp (TtA(M) SUP{(AMk)Q +2(M,; — Mﬁ})

k<n

< Ep(TA(M))12C? = Ep(M}?)12C* < 12C*

This shows that for each ¢ and every sequence of partitions A,, with |A,| —
0,

T2 (M) is a Cauchy sequence in L2(€2).

Since for fixed k,n (T~ (M) — T2 (M)) is a martingale, by the Doob LP-
martingale inequality

Ep <sup (T2 (M) = T2 (M))Q) <4Bp ((Tﬁ" (M) — T <M>>2)

s<t

which means that T2 (M) is a Cauchy sequence in the complete normed space
Sy (6.1)), and there is a limiting process [M]; such that

Ep (SUP([M]s - Ts,A"(M))Q) =0

s<t

as |A,| — 0, which does not depend on the choice of the sequence (A,). In
particular there is a subsequence n(j) such that

Sliliz |[M], — TsA"(j)(M)‘ — 0  P-almost surely .

It follows that [M]s is non-decreasing since T2 (M) with A = A,;) is non-
decreasing. Since the approximating processes T2 (M) with A = A,,(;) are con-
tinuous and converging P-almost surely uniformly on compacts, by the Ascoli-
Arzela equicontinuity criterium it follows that the limiting process [M]; is almost
surely continuous.

We check the martingale property: for s <t, A € F;

B (047 - 222114 ) = Ep (12 00) ~ 720014 ) - B (] - ML) )

2
as A — 0, since T2A(M) L [M];. Therefore (M? — [M];) is a true martingale
and by the uniqueness of the Doob-Meyer decomposition [M]; = (M);. (This
does not hold for processes with jumps! ) O
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Remark 18.

. 2
[M]t = \ilgot%(MtiM - Mti,mt)

_ 2
(M) = \ilgo E<(Mti/\t - Mti—l/\t)
t;EA

]:tq‘,—1>

where the limits are taken in probability. These coincide when M is a continuous
square integrable martingale but are different when M; has jumps.

Corollary 17. Let M; be a continuous local martingale. Then the process

oo
2
M), = lim Mipe, — M,
[ }t |A‘—)O ( tAty t/\tkfl)
k=1
exists as a limit in probability, it is non-decreasing and we have [M]; = (M) in
the Doob-Meyer decomposition

.7\4,52 :Mg-i-[M]t-l-Nt

where Ny is a local martingale with Ny = 0.

By polarization we obtain also the quadratic covariation of two continuous
local martingales My and My,

oo

[Mv M]t = \AHIEOZ(MU\% - Mt/\tk,l) (Mmk - ]\stk,l)
k=1

which coincides with the predictable covariation (M, M}t
Proof Without loss of generality, let My = 0. There is a localizing sequence
Tn T 00 of stopping times such that and M;™ is a true martingale with | M| < n.

Nt(n) = (M}, —[M™];) is a true martingale which is constant on the
interval [7,, 00).
Since NV = (M2, ., — [M™+];) is also a true martingale, by the

uniqueness of the Doob-Meyer decomposition it follows that
[MT"Jrl]tl(Tn > t) = [MT"}t].(Tn > t)
Define

(M]e(w) = > 1(rno1 <t < 7)[M7],

with 7,,_1 = 0. Note that this sum for each w contains finitely many nonzero
terms. We see that (M? — [M];) is a local martingale with localizing sequence
Th-

For fixed ¢, T/~ (M) N [M]; (in probability):

P( sup |[M], — TA(M)] > 5) =
te[0,T

P({Tn <t} ﬂ{ sup] M) = TA(M)| > 5}) + P({Tn > t}ﬂ{ sup |[M]inr, — Tir,, (M)] > g}>

te[0,T te[0,T]

< Pl <)+ P sup (7]~ 7200 > ¢
te(0,T
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where for n large enough the first term is is arbitrarily small since 1(7,, <t) — 0
P-a.s, and for such fixed n we let |[A| — 0 to make the second term small [J.

Lemma 31. Let (My(w) : t € N) C L?(P) a square integrable F-martingale.
The following conditions are equivalent:

1. (My : t € N) is bounded in L*(P), that is

sup Ep(M?) < oo
teN

> E((M; = M;_1)?) < o0

t=1
3. there is a 1.v. My € L?(P) such that My = E(My|F;) and My — My,
in L2(P).

Proof. Note that for s <t € N, using telescoping sums, by the martingale
property

E((Mt—MSF):E({ Z AMn}2> = Z E((AM,)?)

n=s+1 n=s+1

For s = 0, we see that (1) < (2).

When (1) holds, (M; : t € N) is an uniformly integrable martingale and
My (w) such that M; = E(My|F;) and My — My, P-almost surely and in
L'(P). We show that M; — M, also in L?(P).

For t, N € N,

E((Myyn — My)?) = E<{§AM5}2> = HZNE((AMS)Z‘)

5=t

where when we develop the square by the martingale property the cross terms
have zero expectation. For fixed ¢t as N — oo by Fatou lemma

E((Mx — M)?) < f: E((AM,)*) =0

s=t
as t — oo by the hypothesis (2). We see also that
0 < E((Mo — My)?) = E((Myyn — My)?) + E((Myyn — Mx)?)

t+N [e%)
= Y E((AM)?) + E((Myyn — My)?) — > E((AM,)*)+0 O
s=t+1 s=t+1

Proposition 25. Let (M, : t € RT) a continuous martingale with E(M?) < oo
vt > 0.
Then (M7 — (M), : t € RY) is a true F-martingale, in particular

E(M?) = E(M§) + E({(M),)
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By polarization, if (]\A/[/t :t € RT) C L2(P) is another continuous martingale,
(MyM; — (M, M); : t € RY) is a true F-martingale, in particular

E(M;M,) = E(MyMo) + E((M, M),)

Proof Let 79 = 0 and 7,(w) = inf{t : |My(w)| > n}, with 7,(w) 1 oo as
n T oco.

For fixed n, (M-, :t > 0) is a bounded martingale, and

(MZ,. — (M)irr, : t € N) is a true martingale by theorem ).

For fixed ¢ consider the telescopic series

My (w) = Mo + Z(MMT" - Mipr, )

n=1

By Doob’s optional stopping theorem M., = E(M;|Fiar,) € L*(P).

E({TLZM(MMT,,. - MtAT,,.l)}2> =

r=n

n+k n+k

Z Ep ((Mt/\n - Mt/\TTl)2> +2 Z Z Ep (EP (Minr, — Mynr,_y | Fine,) (Minr, — Mt/\Tsl))

r=n n<s<r
n+k

= ;EP <<M>mn - <M>tAn1> = Ep <<M>Mm+k - <M>tATn)

and by lemma applied with respect to the discrete time filtration (Finr, :
n € N)

Mt/\Tn — M, in L2(P)
which implies

BE(M}) = lim BE(Mf,, )= lim E((M)inr,) = E(M))

n—oo n—oo

where the last equality follows by monotone convergence. This gives integrabil-
ity we show the martingale property: for s <t¢, A € F,, Since ME/\TTL — M? in
LY(P),
B((M? — M2)14) = lim E((MZ,, — M2, )1.)
n— 00 " n
= E(((M)tnr, = (M)spr,)1a) = E(((M)e — (M)s)14)
where we use monotone convergence again [J

Remark The L?(P)-isometry E((M; — My)?) = E((M);) is the key step
in the construction of the Ito integral.
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Chapter 7

Ito calculus

7.1 Ito-isometry and stochastic integral

Proposition 26. Let M? be the space of continuous F-martingales (M, (wW))e>0
which are bounded in L?(Q), with norm

I M 3= Ep(MZ,) = Ep((M)o)
M? is complete and it is an Hilbert space with scalar product
(M,N)p2 := EP(MDONOO) = Ep((M, N)Oo)

By Doob’s LP martingale inequality

1/2
Br(supha?) <20 M e
>0

Proof When

sup Ep(M?) < o0
>0
by lemma M;— M, P-almost surely and in L?(P).

We show that M? is complete.

If (M), cn is a Cauchy sequence in M? | then (Még))neN is a Cauchy
sequence in the complete space L?(Q), and there is M., € L?*() such that
Ep (MY — M.)?) — 0.

Define M;(w) := Ep(Myo|F;)(w), it follows that M™ — M € M?, equiva-
lently

Ep (sup(Mt - Mt(n))2> —0

t>0

In particular there is a subsequence (n;) such that for P-almost all w

sup ’Mt(nj)(w) — My(w)| =0

t>0

which implies that P-almost surely the path ¢ — M;(w) is continuous O

121
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Definition 41. We say that the process Y (s,w) is a simple predictable with
respect to the filtration F = (Fy)i>0, if it is adapted and left-continuous taking
finitely many random values, that is

) = Z 1(ai7bi] (S)ni(w)7 neN (7'1)

with 0 < a3 < b <as < by < -+ < by <ap < by, < 0 and 7 (w) is
Fa;-measurable.

Definition 42. Given the filtration F = (F3)ter, consider the measurable space
QxRT equipped with the predictable o-algebra P generated by the left continuous
F-adapted processes.

Ezxercise: the simple left-continuous F-adapted processes generate also P.

When (w,t) — Yi(w) is P-measurable, we say that the process Y is F-
predictable.

Lemma 32. Let (M;) € M? a continuous martingale, and Y; € S a bounded
simple predictable process with representation[7.1. We define the Ito integral as

(Y M), := / Y.dM, := Zm (My, At — Mg, nt)

=1

ForY €S, the map Y — fooo YsdM; is an isometry between
L2(Q x R, P(dw) ® (M)(w,dt)) and M?, with

Ep<{/ooo stMs}2> =Ep (/OOO Y3d<M>s) (7.2)

We have the property: for all (N;) € M2,

(Y -M),N), : _/ Y d(M,N), Zm (M, N)p,pt — (M, N)a,nt)

i=1

Proof Let Y(w,u) = 1(4(u)n(w) with a < b and n(w) bounded and F,
measurable. We have

t
YdM

) Ep(n(M, — M,)| F)

t>b
a<t<b
Ep 7’]Ep Mt Ma|fa)|/rt) =0 t<a

=n(Mip, — Mina)
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By taking conditional expectation and using the martingale property

wo({ [ ) -

zn: Ep <n?(Mbi - Mai)z) +2 zn: > Ep <nmj(Mbi — M,,)(My, — Maj)) -

i=1 =1 1<5<1

> Ep (npr((Mbi - Mai>2|fai)) +2)° > Ep (nmj<Mbj — My,,)Ep (M, — M,,

i=1 i=11<j<i

ng (v (cann, - ) = o [ v2aan.)

where the cross terms have zero expectation. To show (7.2]), note that for s < ¢,

]-'ai)> _

t t S
/ YodM, = / Yo dM, — / YudM, = 1(Mone — Mays),
s 0 0

and for A € F,

Ep (1A (/: YudMu> (N — Ns)) =Ep (1A77(Mb/\t — Mavs)(Ne — Ns)) =

Ep (1A77(MbAt = Mavs) (N — Nb/\t)) + Ep (1A77(MbAt — Mavs)(Noar — Na\/s)>
B (Lan(Muns = M) (Vs ~ N)) =

Ep <1A77(Mb/\t — M,ys)Ep ((Nt — Npat)

fbAt)) + Ep (1A77EP <Mb/\t — Mavs)(Nopat — Navs)

)

+ EP <1A77EP <Mb/\t - MaVs

Fave) (N = N2 )

- Ep (1A77(<M, Nopnr — (M, N)av5)> = Ep (1,4 /: Y, d(M, N>u>,

where we use the martingale properties of N, M and (M? — (M)) between times
s<(aVs)<(bAt)<t. This shows that

t t
N, / Y, dM, — / Y, d(M,N),
0 0

is a F-martingale which proves (7.2]).

Theorem 29. (Kunita- Watanabe inequality) Let (N;), (M) € M? and (Ys), (Us)
jointly measurable processes (not necessarily F-adapted !).
Then, P-almost surely for t € [0, 400],

/Ot |V Us| d|{(M,N)|s < </0t de<M)s>1/2 </Ot U3d<N>S)1/2

By Hoélder inequality, we have also for p,q > 1, p™' +q ' =1

e [ o aon.) < ee({ [ Y£d<M>s}p/2)1/pEp({ A U§d<N>s}Q/2)1/q
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Note that we need joint measurability since we want that the maps t —
Y(t,w) t — U(t,w) are B(R")-measurable for all w € Q, in order to use the
Lebesgue-Stieltjes integral. The integral on the left hand side is a Lebesgue-
Stieljes integral taken w-wise with respect to the total variation of the process
(M, N)i(w)

Proof Note that P-almost surely Vr € R (M; +rN;) € M? and

[M + 7Ny = [M]; + r?[N]; + 2r[N,M]; <=

By continuity, this holds simultaneously for all » € R outside a P-null set.
The corresponding quadratic equation in the unknown r has at most one
real solution, and the inequality for the discriminant follows:

(N, M)7 — (M){(N); <0< |(N,M);| </ (M)e/(N)y

The same inequality holds for increments:

‘<N7M>t - <N7M>s’ < \/<M>t - <M>S\/<N>t - <M>s
By changing the sign of the integrands opportunely, we obtain

L gAML N

where the last term on the right hand side is the Radon-Nikodym derivative of
(M, N) with respect to its total variation, and it is enough to show that

g(AEGﬂMnfﬂ(AwaNufm

Assume that U; and Y; are simple measurable procesess, such that there is a

t
‘ / YU d(M, N),
0

n
finite partition of [0,¢] = (J B, into disjoint Borel sets, and random variables
j=1

Yj(w), ﬁj (w) such that

n

Yi(w) = Yi(w)l(s € B)), Usw) = Uj(w)i(s € B;)
j=1

j=1

Denote

AV :/ v,
B.

J

where V; = (M, N);, (M), (N), have paths of finite total variation.
Note that if B C R is a Borel set and y is a positive measure on (R*, B(R™))

w(B) = sup uw(C) = inf 1(0)
closed ccB open 0ODB
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and the same equality holds when we take supremum over C' union of finitely
many closed intervals and infimum over O union of finitely many open intervals.
Therefore

ANM, N)|; = (M, N)|(B;) = sup {|<M,N><c>} < sup {¢<M><c>¢<zv><c>}

CCB; CCB,

< ¢ sup (M)(C) ¢ sup (N)(C") = \/ (M) (B,)\/(N)(B)

CCB; C'CB;

where we used the same notation for the non-decreasing functions and the cor-

responding measures. We have
< ViU |\ AM);1/AN),;
i=0
no_ 1/2 , n N 1/2 t 1/2 t 1/2
< (Xvaon,) (Sozam,) = ([ vaaon.) ([ vzaw.)
Jj=0 j=0 0 0

where we used the Cauchy Schwartz inequality for sums.

The result follows for jointly measurable integrands by the monotone con-
vergence theorem for the Lebesgue-Stieltjes integrals splitting first the inte-
grands into positive and negative parts, and approximating from below by sim-
ple F ® B(R*)-measurable processes [

t
‘/ YU, d(M, N),
0

Y Y;U;A(M,N);
=0

Remark 19. The integrands Y;(w), Us(w) were not assumed to be F-adapted,
just jointly measurable.

Lemma 33. (martingale characterization) An (Fy)-adapted process (My) is a
martingale if and only for all bounded (F;)-stopping times 7, the random
variable M, (w) € L*(P) and

Ep(M,) = Ep(My)

Proof The necessity follows from Doob’s optional stopping theorem.
Sufficiency: let s <t and A € F;. Define the random time

T(w):=s51a(w)+1t1ac(w)

Note that Yu > 0

Q t<u
{rw)<u}=< A s<u<t
0 0<s<u

which is F,, measurable in all cases, therefore 7 is a bounded stopping time.

EP(M()) = EP(MT) = Ep(].AMS + ]-ACMt) =
Ep (M) + Ep(14(M; — My)) = Ep((Mo) — Ep(1a(M; — M,))
= Ep(1a(M; — M,)) =0

which gives the martingale property.
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Definition 43. On a probability space (2, F), a stochastic process (Y (s,w) :
s € R™") is jointly measurable when

o Vs the map w — Y (s,w) is F-measurable
e Yw the map s — Y (s,w) is Borel measurable

We say that Y (s,w) is progressively measurable w.r.t. the filtration F = (Fs),
when Yt > 0 the restricion

Y :[0,] x Q> RY
is B([0,t]) ® Fi-jointly measurable.

Theorem 30. (Tto integral, from the Revuz and Yor’s book) Let (M;) € M?
and Y (s,w) a progressively measurable process with

oo
Ep (/ de(M)s) < o0 (7.3)
0
1. There exists an unique martingale in M? which will be denoted by
t
Y -M) = / Y dM;
0
such that ¥V (N;) € M?,

Ep ((Y : M)OONOO) = Ep (/Ooo Y, d(M, N>S> = Ep ((Y M, N>oo)

(7.4)
2. (Y- M)y =0 and for all (N;) € M?
t
¥ M~ [ V().
0
is a true martingale, in particular
t
<<Y ' M>,N> - [ vaarw),
t 0
and for N =(Y - M)
t
(Y - M), = / Y2d(M, M), Vte€[0,+ox]. (7.5)
0

3. By uniqueness it follows that for simple predictable integrands this defini-
tion of Ito integral coincides with the Riemann sums definition given in

(EE)
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Proof: The map

Ny = @(N) = Ep(/oooysd<MaN>s>

is linear since the predictable covaration is P-almost surely bilinear. It is also
continuous in M2 norm: by Kunita-Watanabe and Cauchy-Schwartz inequali-
ties

lp(N)| = ‘Ep (/OOO Yod(M, N>S) ‘ <Ep (/Ooo Y3d<M>S> 1/2Ep ((N)OO> v

00 1/2
po( [ v2a00.) N e
0

When
Ep </ de(M)s> < oo
0

by the Riesz representation theorem in the Hilbert space M? there exists an
unique continuous martingale in M2, which we denote as {(Y - M), }, such that

Ep </OOO Y,d(M, N)s) =p(N)=((Y-M),N), .. =

Ep <(Y : M)OONOC) =Ep <<Y - M, N>oo>

Note: up to now we did not need predictability or progressive measurability
of (Ys), in Kunita Watanabe inequality joint measurability was enough.

The progressive measurability of Y, will be needed in to show that
t t
Xpi= N [ vaant, - [ vaonw),
0 0

is a martingale for all N € M? which means, by definition of predictable co-
variation,

((Y - M),N), = /Ot Y. d(M, N),.
By taking N; = (Y - M); we obtain also
v, = [ YLd(M, (v M)y, = / Yad(y (), = / 2ag, ),
and by taking N, = M;, we also obtain
(r.-a0), = [ V(. ),

Let 7 be a (F;)-stopping time (since we work in the space My of martingales
bounded in L?(P) we don’t need to assume that 7 is bounded).
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Since N, (Y - M) € Ms, by Fatou lemma and monotone convergence

E(N?) < lim me(N2

TATL

)_h}lnE(<N‘rAn>) =
E((N)7) < B({N)x) = E(NZ) =I| N [[3,< o0,

and similarly E((Y - M),) <|| (Y - M) |3, < co. By Cauchy Schwartz and
Kunita Watanabe inequalities it follows that X, € L*(P).

The martingales (Y - M); and (V;) are uniformly integrable martingales
(since they are bounded in L?(Q, F, P)), we write

N;)=Ep <Ep((Y.M)me)NT) =Ep <(Y : M)OONT> -

Ep((Y
( ) = Ep (((Y : M),NT>OO) = by the defining property
=Fp (/ YdMNT>>:Ep</OTYSd<M,NT>S)

and by the martingale characterization lemma
t
X=X -M)N; — / Yod{(M,N)
0

is a true martingale when it is F-adapted, which is the case when Y (w) is pro-
gressively measurable. To show that (Y - M) = 0, take a constant martingale
Ny = Ny € L*(Q, Fo, P). By Kunita-Watanabe inequality

(M, N)y| < /(M)/(N), =0

since [N, N]; = (N, N); = 0. Then

0=FEp (/Ot Y. d(M, N>S> = Ep <(y : M)tNt> -

Ep <(Y : M)tNO) = Ep ((Y : M)ONO)

which implies (Y - M)q = 0 since Ny € L?(, Fp, P) is arbitrary.

Remark 20. P-almost sure path continuity t — (Y - M) follows directly from
the definition of Mo without additional work.

This proof is a bit abstract since we used Riesz representation theorem. A
more standard proof for predictable integrands consists in approximating the
integrand Y by a sequence (Ys(n)) of simple predictable (left-continuous and
adapted) integrands in the space L> (Q x RT, P, P(dw)(M}(dt,w)) obtaining by
Ito isometry a Cauchy sequence of Ito integrals in M?2.

A constructive extension of this line of proof to progressively measurable
integrands for which the Lebesgue-Stieltjes integral fot Y,d{M)s is not necessarily
well defined as a Riemann-Stieltjes integral, is a bit technical, since one needs
an intermediate approrimation step in order to work with Riemann sums (see
for example the details in Karatzas and Schreve book Brownian motion and
stochastic calculus).
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Remark 21. The Ito map (Y, M) — (Y - M) € My is bilinear.
Remark 22. When H(s,w) is just jointly measurable but not F-adapted, under

¢
the integrability assumption|7.3, there is a square integrable martingale [ HsdMj
0

such that VN € M,

([ ) )= .

There is a progressively measurable process °H (s,w), such that °H(s) = E(Hg|Fs), Vs
which is called F-optional projection or F-optional trace such that

E (/Ot H,d(M, N>s> —E (/Ot H,d(M, N>s> ,

t t t
/Hdes = /oHdes = /E(H9|f9)dM97
0 0 0

</ HSdMS,N> :</ "HSdMS,N> =
0 t 0 t

:/tOHSd<M,N>S:/t E(H,|F,)d(M, N),.
0 0

Lemma 34. Under the assumption of Theorem (@), If T is a stopping time, the
stochastic integral with respect to the stopped martingale M] = Mn- satisfies

t t
(Y~M7)t:/ Yng;:/ Y 1(7 > s)dM, =
0 0
tAT

(Y - M) = (Y - M)yp, = Y, dM,
0

Proof. For N € My, since (M, N7}y = (M, N)¢nr
p( [ van ) = s(( [ vae > gianm, )
0 0

implies by the uniqueness of the Riesz representation that

/ Y dM? :/ Y1(r > s)dM; :/ Y.dM,
0 0 0
Proposition 27. (Exztension by localization)

Let (M) a continuous local martingale and (Yy(w)) a progressively measur-
able process such that Vt > 0

P(/Ot}/fd(M)S < oo) =1

Then there is a local martingale which we denote by (Y - M), = fot YsdM,
such that (Y - M)o =0 and

(.8 = [ T Yad(M, N, (7.6)

for every continuous local martingale N.
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Proof Let (7)) a localizing sequence for M;. Define the sequence of stopping
times

t
7= inf{t >0: / YZ2d(M), > n}, neN
0
and 7, = (7}, A 1)/). We see that 7,(w) T oo P a.s.
With this localization, for each n Y; and the stopped process M;[™ satisfy
the assumptions of Theorem and the Ito integral (Y - M™) € My exists.
Note that V0 < k < n by lemma

t ¢
/ Y 1(r > s)dM]* :/ Y 1(r > s)dM»
0 0

as elements of M.
The sets Qf = {w: Th_1(w) <t < 7 (w)} form a measurable partition of 2.
Define

t o0 t t t
Y, dM, = (/ YodM[™ —/ stMT("‘”> = lim Yo dM ™
/o nZO 0 ! 0 ' nreo Jo

where for fixed ¢, P almost surely 7,(w) 1 oo, and the telescopic sum contains
only finitely many non-zero terms,

We see that P a.s. the trajectory t — fot Y.dMj, is continuous, and fot YsdM,
is a local martingale with localizing sequence (7,) OJ

Remark 23. It is not true that a local martingale bounded in L? is a true
martingale, here a counterexample:

Let B, = (Bt(l),Bt(z),Bt(g)) a 3-dimensional brownian motion starting from
0 at time 0 , with independent components, so that (B, BU)), = ij-

The process

is called the 3-dimensional Bessel process.

Let M; = Rt_1 for t > 1. We start the process at time 1 since Ry = 0.
(My)i>1 is a local martingale which is bounded in L*(P) but it is not a true
martingale (exercise).

Lemma 35. (Dominated stochastic convergence) Let (M) a continuous local

martingale (Yg("))neN a sequence of locally bounded progressively measurable in-
tegrands such that for all s,

[V{™ (w)| = 0 P-almost surely
and there is a locally bounded process Xs(w) such that
V™ ()| < Xs(w), Vs,n. P-almost surely
Then for allt >0

sup
s<t

t
/ Y™ dM,| — 0 in probability as n — oo
0
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Let 7(w) be a stopping time such that both stopped processes MT and X7
are bounded. Then by the bounded convergence theorem

Ep (/OT(YS("))2d<MS>> — 0 as n — 0o
which implies
/OT Y™WdM, — 0 in L?(Q,F, P) and in probability as n — oo
To complete the argument we for any fixed ¢ choose the localizing stopping time

7 such that P(r <t) < ¢ and conclude as
Then by using the Chebychev inequality, Doob’s maximal inequality and Ito

isometry
tAT
P(sup / Y;(")dMS‘ > n)
s<t 0

1 EAT 2 4 tAT 2
< P(r<t)+ ?Ep <sup (/ Ys(")dMs) ) < P(r<t)+ 772Ep<</ Ys(”)dMs> )
s<t 0 0

=P(r <t)+ %Ep (/OW (Y;("))2d<M)S> < 2

t
/ YS(”)dMS’ > 77) <P(r<t)+ P(sup
0

s<t

for n large enough.

Definition 44. We say that X; = Xo+ M;+ Ay is a continuous semimartingale
when My = Ay = 0, My is a continuous local martingale and A, is continuous,
(Fi)-adapted with locally finite variation.

When Y; is a F-progressive process such that V0 <t < oo

t t
/ Y2d(M)s < oo and / |Ys||dAls < 0o P-almost surely
0 0

where the integral on the right side is with respect to the total variation of A,

we define
t t t
/stXS:/ stMer/ YsdA;
0 0 0

We also have [ X, X] = [M,M] = (M) = (X)

7.2 Ito formula for semimartingales

Proposition 28. Let X;, Y; continuous semimartingales. Then we have the
integration by parts formula

t t
XY= Xo¥o + [ XeaVis [ VX, vy,
0 0
Proof: By polarization it is enough to show

t
X2 - X2 - [X,X); = 2/ X,dX,
0
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Since the formula is true when X has finite variation, it is enough to show

t
M? — MZ —[M,M); =2 | M,dM,
0
when M is a local martingale.
By taking telescopic sum for a grid 0 = ty < t; < --- <, by the discrete
integration by parts formula

2
> (Mine — My, pi)” = M7 — Mg =23 My, (Myne — My, n1)
As A = sup(t; — t;—1) — 0 the left side and right hand sides converges in
probability uniformly on finite intervals respectively to [M, M]; and

t
ME—M3—2/ MM, O
0

Theorem 31. (Tto formula) When X;(w) € R? is a continuous semimartingale
and f € C*(R%R)

(1) (@) ()
FX, Xo+z/ 2L (xax® + 3 z/ axlax] (X, X,

Proof When the result holds for the function f(z1,...,xq), by the integra-
tion by parts formula is holds also for the function g(z1, ..., z4) = z;f(z1, ..., xq).
It follows that Ito formula holds when f(x) is a polynomial. By stopping it is
enough to consider the case when |X;(w)| < C' < oo P a.s. Since continuous
functions are approximated uniformly on compacts by polynomials, we find a
polynomial f,(z) such that

) Lo =
ljlugpcf(fn Nl <~ B s ()
Ly SN I
< axiaxj(x)‘ “n

" z|<c
This implies P-almost sure convergence

0 fu

X)d(X® x0)y,
al‘ axj ( ) < ) >

IIn (x )d(X(i),X(j)>S_>/t 9% f

t
fn(Xt) — f(Xt>’ /0 0 63:1033]-

uniformly on finite intervals, and by the dominated stochastic convergence

lemma [37]
/(‘33:1( $)dX /()31‘1( $)dXx

in probability, uniformly on finite intervals.

Theorem 32. (Lévy characterization of Brownian motion) Let M;(w) € R?
a continuous F-adapted process, with My = 0. The following conditions are
equivalent
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1. M; is a d-dimensional F-Brownian motion: it has P a.s. continuous paths,
Vs <t the increment (M; — My) is P-independent from Fs, and Gaussian

with BEQM® — M®y = 0, B(M® — M& Y™ — MMy = (¢ = 8)6p -

2. Mt(k) and (Mt(k)Mt(h) — tnr) are continuous F-local martingales, h,k =
1,...,d.

Proof we know already that 1) = 2), and these local martingales are
square integrable martingales (all moments of the Gaussian distribution are
finite).

Assuming (2), we show that the increments are Gaussian independent from
the past. The idea is to study the conditional distribution by usign the charac-
teristic function.

Apply Ito formula to

f(My(w),t) = exp <i6‘ - My(w) + ;|92t> eC

(which means to apply separately Ito formula to real and imaginary parts),
obtaining

f(Mt7t) - f(MS,S) =

d + -9 2 t
. k) . Y (k) h) 0]
3 | 100 + 3 D OO0 M)+ 5 [0

d t
:iZGi/ f(M,.,r)dM®
k=1

S

where the finite variation parts cancels since <M(k), M(h)>,, = 7riLp.
Therefore f(M;,t) is a local martingale. It is a true square integrable mar-
tingale since for all ¢

7M., 1) < exp(510P)
Let s <t and A € F,. By the martingale property V0 € R,
B( (700 - S ) =0
= E(exp(ia (M — Ms))lA) = E<E (exp(i9 (M, — My)) ‘]—"s> 1A) =
exp (500~ ) ) P
which implies
E(exp(i@ - (M — My)) ‘-7;) = exp (—;9|25) ( deterministic )

Since the characteristic function characterizes the distribution, (M; — Mj) is
independent from Fy and Gaussian, with zero mean and covariance (t — s)Id O
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Proposition 29. (Dambis, Dubins-Schwartz : random time change represen-
tation ) Let (My) a continuous martingale in the filtration F = (F; : t > 0) with
My =0 and (M) = co. Consider the of F-stopping times

o(u) = inf{t (M) > u}, u>0

with o(u) < o) for u < v, a and the filtration G = (G, : v > 0) with

gu = fa(u)'
Then By = Mgy is a Brownian motion in the filtration G.

Proof

Note that the map u — o(u,w) is left continuous but not necessarily right
continuous: M; and (M), could be constant in some random intervals.

However u + (M), is continuous (P a.s.) since

(M)oy =u

This implies that u +— Mg, is continuous, since ¢ +— M; is continuous (P
a.s.) and

B, is a G-martingale: Let 7, be a localizing sequence for M; such that
|Mipr,| < n.

Then by Doob’s optional sampling theorem, for u < v

Ep (M‘f'"/\o'(’u) |Fa(u)) = MTn/\U(u)

Note that (M), 1 oo since (M)o, = o0 and 7, T co. Also 7, is a G stopping
time since 7, < o(u) is F,(,) measurable :

{tn <o@)}n{o(u) <t} ={m <o}n{m <t}n{olu) <t} e F Vt(7270)

where both 7,1(7 < t) and o(u)1(o(u) < t) are Fi-measurable.
Then by Doob’s optional sampling theorem, for u < v

Ep (M'rn/\o('u) |Fa(u)) = MTn/\U(u)

which means that B, = M, is a local martingale with localizing sequence 7,
in the filtration G.

Note also that since the predictable and quadratic variation of a continuous
local martingale coincide, by construction

(B)u = [Blu = [M]ou) = (M) o(u) = u
By Lévy’s characterization theorem B; is a Brownian motion in the filtration G.
Remark Let M; = exp(W; — %t) — 1, where W; is an F-Brownian motion.

It follows that M; > —1 V¢, so we cannot obtain a Brownian motion by random
time change. In fact

(M) oo = /000 exp(2B; — t)dt < 0o (7.8)

since by the law of large numbers zlft — 0 as t —> oo P-a.s. By the random

time change we can obtain only a stopped Brownian motion.
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7.3 Ito’s representation theorem

Let B, = (B,gl)7 o ,Bgd)) a d-dimensional Brownian motion.

Theorem 33. Let Y € L%(Q,FE, P), T € (0,+00] a real valued random vari-
able. Then there is a progressive process H(w) € R? with

T
Ep</ Hfds> < o0
0

T d T
Y(w) = Ep(Y) + /O H,dB, = Ep(Y)+ Y /0 H®dBW
i=1

H,(w) is unique P(dw) X ds almost surely.

Proof Uniqueness: if f{S has the same property, then by Ito isometry

/Q < /OT (Hy(w) - Ers(w)yds) Pld) = 0

Existence:

T
H= {/ H,dB, : H is progressive and in L*(Q x [0,T],dP x dt)}
0

is a closed subspace of L?(Q, FZ, P), which follows since the space of progressive
integrands in L?(Q2 x [0,T7],dP x dt) is complete.

We show that it is total, in the sense that if Y € L?(Q2, FE, P) such that
Ep (Y fOT HSdBS> = 0 for all progressive H € L%(Q x [0,T],dP x dt), then
Y(w)=EpY).

The random variable (Y (w) — Ep(Y)) coincides with its orthogonal projec-
tion on the closed subspace H, and the results follows.

Without loss of generality assume that Ep(Y) = 0, otherwise take Y (w) =

(Y(w) — Ep(Y)). For f(x) € L3([0,T],dt) with values in R?, consider the
complex valued square integrable martingale

t 1 [t
Mt(f) = exp(i/ f(s)dBs + 5/ |f(s)|2ds), 1=+v-1
0 0
By Ito formula
T
MY 1= z/ MY f(s)dB,
0

Since the real and imaginary parts of the right hand side are stochastic integrals

in H,

0=Ep (Y(M;f) - 1)) — Ep (YM#”) — Ep(Y) = Ep (YM@)
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When f(s) = 31 Okljo(s) for 6, € R, ¢, € [0,T], k =1,...n,n € N it
follows that

n 1 &
OZEP(YeXp<iZGk'Bt,€+2 Z 01,05 (th/\tk)>)

k=1 h,k=1
=FEp (Yexp(z Z@k . Bm)) exp(2 Z 00k (tn A tk-))
k=1 h,k=1
— Ep(YeXp(iZGk : Btk>) =0
k=1

By the Lévy inversion theorem, which holds not on only for probability measures
but also for finite signed measures, the characteristic function characterizes the
measure.

Since the characteristic function is identically zero, VA, € B(R),k=1,...,n,

/L(C) = ,U/tl,..‘tn(Al X oo X An) = FEp <Y1(Bt1 S Al, . ~7Btn S An)> =0.

where C' is the cylinder
{w: By (w) € Ay,...,B, (w) € Ay}

Since the cylinders generate the o-algebra FZ, by Dynkin extension theorem
wF):=Ep(Y1lp)=0 VFeFE

By assumption Y € FE measurable, by taking F'* = {w : £V (w) > 0}, we see
that Y (w) =0 P-a.s. O

Corollary 18. Let (M;) a martingale in the Brownian filtration bounded in L?,
i.e. Ep(M2) < co. Then

t
M; = Ep(My|FP)(w) = My +/ H,dB,
0

where the integrand H € L?>(Q xR, dP xdt) is progressive and unique P(dw)xdt
almost surely. Note that since FE is P-trivial, My = Ep(My) = Ep(M,;) =
Ep(My).

7.3.1 Computation of martingale representation
Let F(w) = f(Br(w)) for some f(z) € L*(R,y(x)dz).

E(f(Br)|Ft) = E(f(B: + (Br — By))| Fe)
=E (f(x + Gﬂ))

=B (w)

- /R F(Bu(w) + yWT =Dy (y)dy =
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where G(w) ~ N(0,1) is a standard Gaussian random variable with
P(G € dy) = y(y)dy = (2n) /2 exp(—y*/2)dy
Next we apply Ito formula and integration by parts to

Tt \vT-1) du

g(Bta Uu; tv T) =
We do the calculation in steps:

Y (y) = -y7(), v (v) = v (> - 1) d (T—t)"'? = %(T —t)7?

Tt

and for a continuous semimartingale Y;
1
(%) = 7(¥5) (—Ytdn B 1>d<Y>t)

Now for Y; = % we have using integration by parts

L g+ 2B gy, =

dY; = —_—
IV 3 (T —1)3?

Therefore

—Uu t—u2 t—u2
dy(Y) :7(Yt)<_(B,lf_t)dBt - ;HdtJr;((BT_t) - 1>T1 dt) =

Bt —Uu 1
(B apos g )

Integrating by parts:
1 1 B —u 1 1
Y)) | = —7Y})| ———dB; — t t
d( T—t’Y( t)) T—t’Y( t)< T—t " 2(T—t)d+2(T—t)d)

1 Bt—u U—Bt
dB
T—t’y( T—t)(T—t) K

Therefore we have simply

t _ BS
9(Bt,u,t,T) = g(0,u,0,T) —I—/ g(BS,u,s,T)(uT )dBS
0

for fixed u and T, this is a solution of the linear stochastic differential equation

X, (u, T) = Xo(u, T) + /Ot Xs(u,T)(“T_ BS)dBS

with Xo(u,T) = %7(%)

By Ito formula the stochastic exponential

9(Br,ut,T) = 9(0,1,0,T)E (/ (“ - Bs)d&)
o\T—s t

t/u— B, 1 [/u— B>
9(0,u,0, )eXp</0(Ts)d o 2/0<Ts> ds)
1

9(0,u,0,T) exp(My(u, T) — §<M(u,T)>t)
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solves the SDE in the interval [0,7T), where the Ito integral

t
~ B,
M,(u, T) ;:/ ”T dB,
0

— S

exists VO < ¢t < T since

/t Mds — /t ud =(T*+u*)((T—t)"" =T7") + 2T (log(T) — log(T —
0 0

(T—s)? (T—s)?

However

/ &d ~ oo

o (T'—s)?

When for u # By (w) , (M(u,T)) = co and g(Brp,u,T,T) = 0.
For u = Bp(w), there is a problem in defining the Ito integral

K BT - Bs
(=)o

which appears inside the exponential form of g(By, By, t,T'), since the integrand
(Br — Bs)(T — s)~! is non-adapted.

One way to define such stochastic integrals is to consider the initially enlarged
filtration G = {G;} with G, = F; V o(Br).

B, is not a (P, G)-martingale anymore, it becomes a Brownian bridge pinned
to the final value By, which has a semimartingale decomposition

¢ BT - Bs

B, =B g
t t+0 T_g ¥

where B, is a (P, G) Brownian motion. We remark that the drift process

t Br — B,

d
OT—SS

has integrable total variation on the close interval [0, T, since

E</0T ds) N /OT E<|B\/TT—B;|) VTI— 2=
/ ' B(GI) s = 2VTE(IG) < o0

where G ~ N(0,1). Therefore B; is a (P,G)-semimartingale. By taking the
stochastic integral in the G filtration

t t 2
By — B, 1 Br — B,
2T PsaB, — — 2L 75 g
/0 T—5 2/(T—s) §
1 [/ By — B,\>
dB /( )ds—/ <T> ds =

" By — B, 1 Br — B
— 4B, — ) d
o T'—s +2/0 ( T—s ) ’

BT*BS
T—s

t)+t<
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Now

"Br— B, ~ Y/ Br — B\’ Y (Br—B)? 1
</Tst> Z/(T> dsz/(T ) ds — 0o
0 T — S t 0 T — S 0 T — S T — S
as t — T, which implies g(By, By, t,T) - ccast — T.
Heuristically, g(Br,u,T,T) = dp(u — Br) is a Dirac’s delta function in the
sense of distributions with mass at the random point By (w). Without using the

language of distributions it is clear that since By is Fr measurable and at time
T the conditional distribution of Br given Fr becomes degenerate.

When we integrate a test function f(z)

Ep(f(Br)|Ft) =
/Rf(u)g(Bt,u,t,T)du—/Rf(u)g(O,u,O,T)du+/R(/Otf(u)(uT_ig>g(Bs,u,s,T)st>du

= BB + | t (s (52 YotBvs,ryan)am,
— Ep(f(Br)) + /0 Be(f(Br)(Br — B.)| )

(T'—s)
where we used a stochastic Fubini theorem [34] to be explained in the next

paragraph, in order to invert the order of integration w.r.t. between du and
dB,. Note that

Ep(f(Br)(Br — B)IF) _ Ep((f(Br) — (B.)(Br — BJ)IF.)
T—s T—s
_ Ep <{f(BT) - E(f(BT)‘fs)}{BT - BS} ]:S) _ COV(f(BT),BTU:s)
T — s Var(BT|.7:s)

is a conditional covariance/variance ratio.
The interpretation is that

dBs

Cov(f(Br), Br|Fs)
Var(BT|.7:S)
is the best estimator of f(Br) in L?(P) sense, among the estimators which

depend linearly on (B — B;) and have Fs-measurable coefficients.
We check the sufficient condition ([7.9) in the stochastic Fubini Theorem

E(f(Br)|Fs, Br — B) := E(f(Br)|F,) + (Br — Bs)

tEp(f(Br)(Br — Bs)‘]:s)
/ ) 4
We show that the Ito integral
/ B BB =B i, — (8r) - w1080
0 (T =) ’

exists in L?(P) when f(Br) € L*(P), by showing directly that

I I

T—s
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Let’s consider first the case when f(x) is polynomial. When f(z) = 2™,

({FAPE P ) (e () ) -

T1_8E<{G\/§ +GVT — sG'}' {Gy/s + G'VT — s}”G’G”>

where G, G’,G” are independent standard gaussian,

n n

L T S

h=1

1 i i (n) (n> s(k-‘rh)/Q(T — s)n—(k-l-h)/QE(Gk-i-h)E((G/)n—k+1)E((G//)n_h+1)

where we Newton binomial formula and the independence. Now the moments
of a standard gaussian are given by

E(G*t) =0, EG™) =02n-1!:= ﬁ(2/<;—1):1-3-5~...(2n—3)-(2n—1) neN
k=1

we obtain
1
D s — R (4 p) (0 — K+ 1) (0 — b+ 1)

T—s
h,kel,

where the sum is over pairs 1 < h,k < k such that (k + h) is even and n — k
n — h are both odd.
When we integrate we obtain

T
> (Z) (Z) (k+h)(n—k+1)(n—h+ 1)!!/ shFR)/2(T _ gyn=(k+h)/2g5 —
h,kel, 0

1
> (Z) (Z) (k+h)(n —k+ D (n — h+ )T+ / w21 —qyn=(+/2 gy —

h,kel, O
n\ (n ni1 D((E+h)/2)T(n — (k4 h)/2)
> (k> (h>(k+h)!!(n—k+1)!!(n—h+1)!!T +1 au

h,k€l,
=T"E(G*) - B(G")*

Note also that we proved in between that g(z,u, s, T) satisfies the heat equa-
tion
2

5@9(’1:511‘75771) =0

%g(x’ u? S7 T) Jr

with boundary condition g(z,u,T,T) = dp(x — u) the Dirac delta function in
the sense of Schwartz distributions.
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Up to now we just assumed that f € L?(R,dy). When f(z) = f(0) +
foz f(u)du is absolutely continuous with respect to Lebesgue measure we can
use the Gaussian integration by parts formula

E(f(By)B;) = tEp(f'(By))

which holds when B; ~ N(0,t) Gaussian.
In this case we write Ito’s representation also as

Ep(f(Br)|F) = Ep(f(Br)) +/0 Ep(f'(Br)|Fs)dBs

Example Let F(w) = f(fOT h(s)dBS>7 where h(s) € L?([0,T],ds) is de-

terministic and Ep (f(]| & |2 G)?) < oo, for G(w) standard Gaussian r.v.
Then we have the representation

o Ep ( f ( I h(s)st> 7 h(s)dBs

ftT h(s)?ds

" > h(t)dB,

F@) = En(f( 112 G) + [

Hint: define the deterministic time change

7(u) = inf{t : /Ot h(s)*ds > u}

Then by Lévy characterization theorem Eu = fOT(u) h

: B _ rB
motion and F,” = fT(u).

Letting T = fOT h(s)%ds.
In Malliavin calculus these ideas are extended to more general setting where
there is not need to use the Markov property.

(s)dBs is a Brownian

Theorem 34. Stochastic Fubini theorem, version 1.

Let (0, A, a(df)) be a measurable space, where a(df) is a o-finite measure,
and H(s,w,0) a jointly measurable process, such that the map 6 — H(s,w,0) is
A-measurable for each (s,w) and the map (s,w) — H(s,w,0) is (Fi)-progressive
for each 6 € ©.

Assuming that for all t, P-almost surely

/[Ot]xgH(s,w,O)Q(aQ@(M))(d9xds) < 00 (7.9)

which by the classical Fubini theorem does not depend on the order of integration.
Then

/Ot(/@H(s,w,@)oz(dHOdMs/@(/OtH(s,w,e)dij)a(dg), P oo

(7.10)

18 a local martingale which does not depend on the order of integration.
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Proof Assume first that «(df) is a probability measure, and consider the
product space Q=0x6 equipped with the product o-algebra and the product
probability P(dw) = P(dw) x a(df), with @ = (w,#). In this probability space
we use the filtration F = (}"t) with F, == 7 @ A.

We define on this probability space the local martingale Z\Z(&) = M(w),
and the integrand H (s,®) := H(s,w,0).

Note that

(/H <oo>>P(//H59 M), < ):1

Therefore we are in the settings of Proposition [27] and the Ito integral

/Ot H(s)dM

exists on (€, F, P) and it is a P-local martingale. This means that there is a
localizing sequence of F—stopplng times Tn( ) T oo P almost surely such that
the stopped process (H - M )M; is a (P, F)-square integrable martingale.

Then we define on (2, F, P) the random processes
t t
/ H(s,0)dM; ::/ H(s)dM; for (w,0) =
0 0

Note that 7, (w, ) := 7, (@), defines a sequence of F-stopping times on  which
are measurable with respect to the parameter 6. Unless © was a finite set, this
does not guarantee that there exists a localizing sequence o, (w) of F stopping

times which is localizing simultaneously the stochastic processes fg H(s,0)dM,
for all 8 € ©, and it is not clear whether

/e</o " <Sv">dMs>a<d0>

is a (P,F)-local martingale.

Let’s take a step back and work under the stronger assumption

EP(/[OW@H(S,M,W( @ (M ))(d@xdt) (/H ><oo

(7.11)
Then by Theorem [30]

t —~
/H(s)dMs, t>0
0

exists and it is a F-martingale in L2(Q, F, P).
By the definition of joint measurability and assumption (7.11]), there is a
sequence of simple integrands

kn
H™(s,3) = H™ (s,w,0) = Z hgn)(s,w)l(ﬁ € AE”))

i=1
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where for A,(Cn) € A, and hz(") (s,w) are F-progressive processes, such that

g ([ 4106) = i aon. ) = e [ [ {0600 - Hlse.0)dtan).00a0)) — o

For example, when A is countably generated, one can find an increasing
sequence of finite measurable partitions of © generating a filtrations A4, C
Ani1 T A, and take

kn
H™(s5,0,0) =Y 1(0 € A) a(AM)~ /1(9 e A" H(s,w,0)a(d6)

i=1 o

which is the conditional expectation of H(s,w, §) under the measure (M)(ds,w)P(dw)a(df)
with respect to the o-algebra Fr @ B(0,T) ® A,,.

Note that by the linearity of Ito integral, the stochastic Fubini’s formula
holds for the simple integrands H <")(s, 0). By Jensen inequality

g 2
/ (/ (s, 0) = H(sw, 0>)a<d9>> a(M),
0 €]
= / (H(n)(s,w,G) - H(S,w,@))Qa(dQ) © d(M), LE) 0
[0,T1x©

This implies

/@ (/OT H™(s, 9>st> o(d6) =
/OT </9 e H)Q(de)) 5. = /oT (/@ H(s, e)a(cw)) 4B

Since

t t t t
/ H(")(s)dMsz/ H™ (s,0)dM, —>/ H(s)dMS:/ H(s,0)dM,
0 0 0 0

with convergence in L?(Q2 x ©, F ® A, dP ® da), by Jensen inequalilty

Ep({/ (/ H™ (s 9)dM) (d6) — /(/ H(s,0 dM) (d&)}2>
Ep(/o{/o H(")(s,ﬁ)dMs—/O H(s,@)dMs}Zoz(dH)F) 0

which means

/@(/OtH(n)(S,G)d]\A/[/S)a(dQ)—)/@(/Ot}[(s’g)dMs)a(da)

in L2(Q, F, P). On the other hand

/(/H sa)dM> (d6) /(/H”)sﬁ d6>dM—>/</Hs€ d@)d
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in L2(Q, F, P), which proofs the stochastic Fubini formula (7.14)) under assump-

tion (7.11)).

Let’s now work under the weaker assumption ((7.9). Consider the stopping

times
() = inf{t:/@/OtH(s,Q)Qd(M}sa(dé)<n}

with 7, (w) T oo P a.s.
For every n the stopped process (Mgar, : t > 0) and the integrand H (s, 6)
satisfy (7.11)). and the stochastic Fubini formula

/Own </@H(8’“’e)a(d9)>dMs:/@(/Own H(s,w,e)dM,)a(dg)

holds P almost surely, and by using the telescopic sums representation starting
from 175 = 0,

il (Th-1(w) <t < 1 (w)) (7.12)

it follows that

[ (o5 [ ([ oo,

and

/@UOWn H(s,w 0)dM> (d6) Z/ (/;M (5, g)dM) (@)

coincide P almost surely, and ((7.13)) gives a continuous (P, F)-local martingale
with localizing sequence 7, [

When «(df) is a o-finite measure on (0, .A), by using a countable measurable
partition © = [J, oy Or with a(6y) < oo together with convergence in L?(P)
see that the stochastic Fubini theorem holds under (7.11]), and for the general
version the localization argument applies without changes [.

Remark 24. This theorem not much discussed in the literature, usually under
the assumptions . See Protter’s book Stochastic integration and Differen-
tial equations , p 121-122. The following version which is given under weaker
assumption is from Jacod’s book (Calcul stochastique et problemes the martin-
gales).

Theorem 35. Stochastic Fubini theorem, version 2.

Let (0, A, a(df)) be a measurable space, where a(df) is a o-finite measure,
and H(s,w,8) a jointly measurable process, such that the map 60 — H(s,w, ) is
A-measurable for each (s,w) and the map (s,w) — H(s,w,0) is (F;)-progressive
for each 6 € ©.
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Assuming that for all t, P-almost surely

/[o,t]xe </e His,e, 9)a(9)> 2d<M>s ® a(df) < oo
Then

/Ot(/@H(s,w,e)a(de))dMsL(/Otﬂ(s,w,e)dM)a(dg)’ P oo

18 a local martingale which does not depend on the order of integration.

Proof As before, it is enough to consider the case when a(df) is a probability
measure.

By linearity we can assume that H (6, s,w) > 0, and do the stochastic inte-
gration separately for H (9, s,w)™.

Let 7,, a localizing sequence for M and let

H™ (0,s,w) =nA H(”)(G,s,w)l(m > )

The sequence 0 < H™ (6, s5,w) 1 H(0, s,w), and for each n, H™) (0, s, w) satisfies
the assumptions of the 1st version of Fubini theorem, 77, so that

/@(/OtH(n)(G,s)dMs>a(d9):/Ot (/@Hm(@s)a(d@))dm
Now

Let’s assume first that

E(/Ot </@ H(s,w,&)a(d&))2d<M>s> < 0 (7.14)

E(/Ot H(s,w79)2d(M>s) < o0

and V0 € ©

For (N;) € M?, which is the space of continuous martingales bounded in
L?(P), define the linear functional

¢*(N) = E(/Ot{/eH(s,H)a(dé))}d(M, N)S) = Ep (/@ (/OtH(s,Q)cKM, N)S)a(de))

where the equality follows by polarization and the classical Fubini theorem. By
the assumption (?? ), it follows that ¢®(N) is a linear continuous functional
on the Hilbert space M?2, and by Riesz representation theorem the stochastic
integral

(HO‘-M)t:/ot{/@H(s,H)a(dG)}dMs

exists, satisfying

(V) = Ep((HO‘ . M)OONOO>
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On the other hand,

H(0,s)dM
Ot

as a martingale with on the product space Q=0x < © under the product measure
P(dw x df) = P(dw) ® a(df) with the filtration F, = (F,) with F, = F, @ A.

We can identify N(&) = N;(w), and identify the space M? with M2, which
is the space of continous martingales bounded in L?(P ) defined on the product

spaceQ
_ /ﬁ /0 ' fi(s)a (I, N,

We have
where we mean H(s) = H(©,s) = H(0,w,s) and we identify the martingales
Mt(&;) = Mt(LU) o

Therefore there exist a martingale (H - M ) , in M? such that

Epga ((ﬁ : M)OQNoo> = ¢*(N)

We interpret (ﬁ M ) ,In M? as a martingale which is A ® F; measurable with

respect to (6,).
- E(/OOO Hi(s,0)d(M, >S>

Define
by the classical Fubini theorem

¢*(N) ::E(/Ot{/@H(s,e)a(de)}d<M,N>s> :/ (/ H(s,0)d(M, N) ) (d6) /qbe

where the classical Fubini theorem applies since

E(/Ot /@H(sﬁ)a(d&)’ \d(M, N>S|)> < E(/Ot{/@m(s,e)a(d@)}zdw)s)I/QE(<N>t)1/2 < o0

By the defining property of the Ito integral.

Proposition 30. Gaussian integmtion by parts formula. If G(w) ~ N(0,1) is

centered Gaussian and f(x) ) + fo y)dy is absolutely continuous such
that both (f'(G) — f(G)G) and f( ) are in Ll(P), Then

Ep(f(G)G) = Ep(f'(G))

Proof We recall that the standard Gaussian density ~(x), satisfies 7/(z) =
—zv(x) Integrating by parts, for alla <b € R
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If f(x) is compactly supported, the left-hand side equals zero for |a| and |b| large.
As a — —oo and b — +00 the left hand side converges to Ep(f'(G) — f(G)G).

More in general we approximate f(x) with a sequence of compactly sup-
ported functions. Let ky,(z) = (1—|z|/n)*. We have 0 < k,(z) <1, Lk, (2) =
—n"Lsign(2)bf1(|x| < n), and nlgr;o kn(z) =z, Vo € R.

Let f(z) = f(x)k,(x).
0= E(f,(G) = fn(G)G) = E((f'(G) — F(G)G)kn(G)) + E(f(G)k,,(G))

where we used the chain rule of differentiation. Since |(f'(G)—F(G)G)k,(G)| <
(f(G) — F(G)G) € L'(P), by Lebesgue’ dominated convergence theorem

E((f(G) = F(G)G)kn(G)) = E('(G) = F(G)G)
and E(|f(G)k,(G)]) <n7'E(If(G)]) =0

Example the maximum process
Let B, be a standard Brownian motion starting from zero, 772 = o(Bs:0<
s <'t). Define

B} = sup {Bs},

0<s<t
Ha:inf{t>0:Bt2a}
respectively the running maximum and the first hitting time of level a > 0
Proposition 31. For a > 0, by the reflection principle
P(H, < () = P(Bf >a) = 2P(B; > a) = 2(1 — ®(a/V?))

where ®(x) = P(By < z).
By differentiating with respect to £ we obtain the probability density of the
hitting time H,
P(H, € d?)
de

2
(2m)~1/2 exp(—;g>a 0732100 > 0), a>0

=pu,(l) =

Moreover

P(BZa, By € dx) = \}27<“+|\%_“>dx (7.15)

Proof We define a Brownian motion reflected after H,

E_ Bt 7tSHa
™Y 2a—B; t>H,

with representation

B = /Ot (1(5 <H)-1(s > Ha))st
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where the integrand is bounded anb adapted since H, is a (F?)-stopping time
Since
2

(B); = /Ot<1(s < H,)—1(s > Ha)> ds — ¢

by Lévy characterization it follows that Et is a Brownian motion.
By drawing a figure we see that
{B; >a} ={By>a} U{B; > a}
where {B; > a} N {B; > a} =0
P(B; >a) = P({B; > a} U{B, > a})
= P(B;>a) + P(B; > a) =
2P(B; > a) = 2(1 — ®(a/V¥)) = 2®(—a/V¥)

where ®(x) is the cumulative distribution function of a standard Gaussian r.v.

By the same argument
P(B; > a,By € dz) = P(B} > a, By € dz) = P(B} > a,2a — By € dz)

now there are two case either x > a or x < a. When z >«

P(B; >a,B,€dx), . P(Bg€dx)
otherwise 2a — x > a. and
P(B} > a,B,; € dx) P(By € dx)
= 2 —
I (2) o (2a-1)

In both cases this gives formula ([7.15).

7.4 Barrier option in Black and Scholes model

Consider the Black and Scholes model for a risky asset and a riskless bond.

t t 2
S; = Sy exp(/ osdB; —|—/ (Mt - Ut)dt),
0 0 2

¢
U; = Uyexp (/ psds>
0

So > 0, Uy >0
dSt = St(,utdt + O'tdBt), dUt = Utptdt

here uy, oy, U; are adapted to the Brownian filtration .7:tB.
Denote the discounted process

S < t t o?
Sp = =Soexp| [ osdBs+ [ (e —pe— —)dt
Ut 0 0 2
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satisfying
dgt = gt (O'tdBt + (Mt — pt)dt)

Denote

t _ t _
B, .= B, +/ Mds = / (SSUS)_ldSu
0 Os 0

We want to represent the discounted value of the option F(w) := F(w)(Sz(w)) ™"

as a stochastic integral with respect to the discounted stock Sy, which is also a
stochastic integral with respect B;. However B; is not Brownian motion under
the measure P since it has a drift.

In order to use the Ito representation theorem we must first change the
measure in order to kill the drift of B;, which becomes a Brownian motion
under the new measure Q.

Ep(f(Br)1(B} > a)) = /Rf(x)\/lfv<a+\|xﬁv_ﬂ>dx

Ep(f(Br)U(Br > a)|Ft) = Ep(f(Br)1(By > a)| By, By)

=1(B; > a)Ep(f(z + VT —tQ))

r=DB;¢
Tr — Bt

+1(B; < a)Ep(f(x + Wr_ )L (Wi_, > (a— a:)))

r=B;¢

a— By + |z —a

1 > a) [ ) (S22 Yo 11057 <) [ o) (R = g,

By using Ito formula and stochastic Fubini theorem

Ep(f(Br)L(Br > a)|Fi) =

t _ _
+ [ s o [ 1) g (2 e i,
a— Bs+ |z —q]

+/0t1<3:3a></Rf(x)\/TL_Sv< — )“%ff“'dz)d&
Ep(f(Br)(Br — B,)|F.)

= Bp(f (BB > )+ [ 1B > a) s 4,
L Ep(f(Br)(a — B, + |Br — al)| Fs)
—5—/0 1(B: <a) — dB;

We also write the joint law of B}, B;:

P(B: >y, B, < x) = P(Hy <t,(B;—Bpu,) < (z —y))
- /:@(%)P(Hy € de)

t . 2
o

Ep(f(Br)1(Bt > a))
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and the joint density is given by

P(B} € dy, B; € dx) o?

= — P| B; By <
dxdy Oxdy ( ¢ =Y t_m>

() () )

By differentiating w.r.t. a we obtain the density of B}:

P(B; € da)
da

\/jﬁ eXp(—;LZ)l(a >0) = 27(\%)1(@ > 0)

We now compute the regular conditional density given the o-algebra F7,
t>0.
For any bounded measurable function g

=DPB; (a) =

EP(g(Ha)|ftB) = g(Ha)l(Ha < t) +EP<9(Ha)|BtaHa > t)l(Ha > t) =

g(H)1(H, <t)+ Ep(g(t + Ha_2))

1(H, > t)
r=DB¢
where have derived the Markov property of Brownian motion, and there is a
regular version of the conditional probability which up to the stopping time H,
has density

P(H, € d¢|By, H, > 1)
dl

M(0,t) == 100> t)

— (21)" 2 exp (_ (B: — a)2> (a — By)

200—1t) ) (£ —1t)3/2
Note that since the process
Bp(g(H)\Fin,) = [ M(LEN Ho)g(t)de
0
is a martingale for every bounded measurable g, M(¢,t A H,) is a martingale

for all values ¢ > 0. We use Ito formula to find the martingale representation
with respect to the Brownian motion:

dM(L,t) = (2m) " /2L, t>{(Bt —a)"'dB, + ;(6 — 1)~ Ldt - WdBt - ﬁdt
(Bt —a)?® 1(Bi—a) (B, —a) _

B A N (T CA N 1y > _a)‘“} =

M t){ (B 1— o " (a[_]jt) }dBt =M((,t)F(L —t,a— By)dB,

We have the stochastic exponential representation

uteen ) = v | {5+ E fam) -

a

MO (/oH { Fma e—ap -3 /OH{ it o }2)
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Note that the process (B, B;) is Markovian:

Ep(f(B})|Fy) = 1(¢ < $)f(B}) + 1(¢ > ) Ep (f (max{z,y + W;_ VT —5}))

z=B3,y=B;

=10 < 9B+ 0) [ flmax{B5(w). ) +0) jfv( W)d
— 1< $)f(B})+1(L> s){f(Bj)(Z@(%) ) : £(v) \/%'y(l:/g_i;)dv}

Assume absolute continuity f(z) = f(0) + [ f'(y)dy.
For s < ¢ we use integration by parts obtaining

Be (1 (BrB; > B)IF) = [ f’(v)\/;isy(i}/;i;)dv _

18 (B )+ s () (-
- f(BZ)\/f_—sv(Bje__iB;) +Ep (f(B?)(Bé_SBS)l(B} > BY) ]-'S>

Therefore Ito representation gives
¢
* * Bj — BS * *
peii) + [ {Ee(s00 = > B)
0 _

P(W/_, € dv|Wy = By)
dv

%)

() (B - Bs>}st

T
— Ep(f(B])) + / Ep(f(BI)1(B; > BY)|7.)dB,

where (W) is an independent Brownian motion. The last expression holds only
when f(z) is absolutely continuous.

Suppose now we want to compute the representation of f(Br(w), B} (w)) €
L?(P) We need to compute the joint conditional laws P(Byr € dz, By € dy|F;) =
P(Br € dz, B} € dy| By, B).

7.5 Stochastic differential equation

Given a Brownian motion (B;) we look for a stochatic process (X; : ¢ € [s,T])
such that

t t
Xe=mn +/ b(u, Xy)du +/ o(u,X,)dB, 0<s<t (7.16)

with 7(w) FZ-measurable. If such process exists and it is adapted to the (F7)
we say that it is a strong solution of the stochastic differential equation (|7.17))
In differential notation we write

dXt = b(t,Xt)dt+U(t,Xt)dBt, t Z S (717)
with initial condition X (w) = n(w).
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7.5.1 Generator of a diffusion

Lemma 36. Assume that the SDE has a strong solution and that p(t,xz) €
CL2(RT x R™;R). Then

dp(t, X+) LO%(t, Xy) | Op(t, X¢) .
dp(t, X;) = o7 dX; + 3 9.2 d(X) + ot dt =
dp(t, X+) et ) 19p(t, Xy) o Op(t, Xy)
o o(t, X;)dB; + { 5o b(t, X¢) + 5 92 o(t,X¢)" + T dt
Define the space-time generator operator
_ dp(t,x) 1 2Pp(t,x) | dp(t )
(Lt¢)(t7x) - b(t7x)T + §U(t7l‘) o2 + ot
It follows that
t t o 7)(S
Mile) = (8, X0) = (0. X0) = [ (Lop)(o. Xo)ds = [ 2R (s x, ),
0 0

is a continuous local martingale with Moy(p) = 0, such that for any local mar-
tingale (Ny)

L op(s, X
(). Ny, = [ 2o xaim. ),
0 x
In particular for another (t,z) € C%1!
L 0p(s, Xs) 0(s, Xs)
M M — I S ) S
(M) M) = [ FELEA
Exercise 22. Using the definition show that

(M (), M(8)): = / (La(pt)) — oLuth — $Lug) (s, X.)ds

Hint: By polarization it is enough to consider the case ¥(t,x) = (t,z) For
simplicity you can consider the time-homogeneous case with o(t,x) = o(x)

b(t,x) = b(z) and o(t,x) = p(z).
Note that by construction for H(s,w) progressively measurable the Ito inte-

o(s, Xs)?ds

gral X; = (H - B); = fot H.dBy is the continuous local martingale (unique up
to indistinguishability) such that

((H - B), M), = / H.d(B, M),

for any local martingale (M;). This implies that for another progressively mea-
surable K (s,w)

¢ ¢
Y, = (K- X), :/ K.dX; :/ K,H,dB;, = (KH) - B);
0 0
since for any local martingale (M})

(Y, M), = /Othd<X,M>S =

/t K, Hyd(B,M) = (((KH) - B), M),
0

since this associative property holds for Lebesgue Stieltjes integrals.
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7.5.2 Stratonovich integral

Let M; be a continuous local martingale and X; a semimartingale. We define
the Stratonovich integral as

t t
1
/ X, 0dM, = / XodM, + 5 [X, M],
0 0

The idea is that the Ito integral corresponds with the forward integral which
is the limit in probability of the approximating Riemann sums

t
/(; .Xvsd_]\4S = (P) A(lll[l)n_)() t;_[ Xti (Mti+1/\t — Mti/\t)

This corresponds adapted piecewise constant approximating integrands
X, =X;, when s e (t;,ti41]
The choice
X=X

i1 when s € (ti7ti+1}

does not give necessarily an adapted integrand. Nevertheless it is clear that
since

Xti+1(Mti+1/\t - Mti/\t) = Xti (Mti+1/\t - Mti/\t) + (Xt Xt )(Mti+1/\t - Mti/\t) =

i+1 i
necessarily the backward integral

t t
X dtM, = (P) 1 X (M, — M;. = Xed Mg+ [ X, M
/ () i 30 X e = M) = [0 X0

is also well defined.
The Stratonovich integral is approximated by picking the middle point

XJ = X(ti+ti+1)/2 when s € (tivti-‘rﬂ
We have

Z X(ti+ti+1)/2(Mti+l/\t - Mti/\t) =

t;, €11

> X0, (Mot = Mips) + > (Xtgtiiny/z = Xe) (M4t 200 — Miat)
t, €Il t, €Il

+ Z (X(ti+ti+1)/2 - Xti)(MtH»l/\t - M(ti+ti+1)/2/\t)
t; €Il

t
1
ER / Xod™ M, + 5[M, X]; +0
0

as A(IT) — 0
Therefore

t t t
/ X, 0dM, = 1(/ Xod~ M, +/ Xsd+MS>
0 2 0 0
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the Stratonovich integral is the average of forward integral and a backward
integral.

Note the Stratonovich integral obeys the law of standard calculus. Assuming
for simplicity that f € C3, By Ito formula,

f(Mt) = f(MO) + ) f/(MS)diMs + %f”(MS)d<M>s = f(MO) +/0 f/(MS)OdMs

onan, = { [ ronaar) - [ (), 1),

7.5.3 Doss-Sussman explicit solution of a SDE

In the one-dimenstional case, sometimes we are able to proceed as follows:
Consider the SDE in Stratonovich sense

dXt = b(Xt)dt + O(Xt) o th
= b(X;)dt + o(X;)dW, + %d@(){), B)y = (b(X;) + %Jl(Xt)o(Xt))dt + o (Xy)dW,

where in the first line the stochastic integral is in Stratonovich sense and on the

second line in Ito sense. Here o/(z) = Lo (z)

We look for a solution of the form X; = u(Wy,Y;) for some smooth function
u(z,y) and a continous process of finite variation Y;.

Taking Stratonovich differential we get

0 0
ax, = %U(Wt’ Y;) o dW; + a*yU(Wt,Yt)dﬁ

which means that
9 (a,y) = olula,y))
or YY) = Y
P —1
dY; = (au(Wt,Y})) b(u(Wy, Y:))dt
Yy
We get also

o) = o' g)o(ue ). 5oulany) = o (u(e. ) g uln),

We impose the additional condition «(0,y) = y, from which follows

) T 92 T 9 , B
souten) =1+ [ outeie =1+ [ uco'tule s -
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Substituting
t W,
Y, =Y, +/ exp(—/ o' (u(é, YS))d§> b(u(Ws, Yy))ds
0 0
By solving these ODE we obtain the solution X; = u(W;, ;).
Example Consider the SDE
1
dXt = COS(Xt)dt + Xt o th = (COS(Xt) + §Xt)dt + Xtth

written respectively with Stratonovich and Ito differentials
the ODE

0
5@ y) = ulz,y), u(0,y) =y
has solution
u(z,y) = yexp(z)
and

¢
Vi =Y, +/ exp(—Ws) cos(Y; exp(Ws))ds
0

The solution is X; = Y; exp(W;). In fact by using integration by parts,

0 dX; = exp(W;)dY; 4 Y; o dexp(Wy)

exp(Wy) exp(—Wy) cos(Y; exp(Wy))dt + Yi exp(Wy) o dWy = cos(Xy)dt + X o dW,
7.6 Existence and Uniqueness of solutions of SDE

Definition 45. In a filtration F = (F; : t > 0), for p > 1 let Cp([0,T], LP(Q))
the space of F-adapted stochastic processes X (w,t) with

e X; € LP(Q,}},P) Vit € [O,T]
hd H X ”CB([O,TLLP):: SUP¢elo,T] || Xy ||LP(Q)< o)
[ )

vt €10,7], lim Ep<|Xt — Xuy”) =0
u—t

i.e. the process is continuous in LP(£2).

If we differantiate formally with respect to the initial condition, assumin
smoothness of the coefficient we obtain the SDE

¢ ¢
0: X7 = 1+/ 8xb(u,X;’f)81Xffdu+/ Oxo(u, X3 )0, X, dB,
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Consider the system of SDE

Xf=z+ f; b(u, XZ)du + f; Oro(u, XE)0, X dB,
& =1+ [L dxb(u, X2)exdu + [ dzo(u, X2)ELdB,

If the coefficients (b(s,z),d:b(s,x)) (o(s,x),0,b(s,)) are jointly continuous
and satisy the Lipschitz and linear growth conditions, There exists an unique
solution (X7,&7).

We show that necessarily

T : 1 z+h T T
& :}{%E(XtJr _Xt) = 0z X}

X:E-‘rh _ X;z; t t
Tl hox Xy = / (b(u, XY —b(u, X™) — hdxb(u, Xff)fﬁ)du Jr/ (O’(U,Xerh) —o(u, X*) -

/ (0b(u, X2) — Bublu, X2)) (XEH — XE)du + / (0b(u, X2) — 0ub(u, X)) (X — X7)du / t (0(

7.7 Cameron-Martin-Girsanov theorem

7.7.1 Discrete time heuristics

Let (ABy,...,ABy,) iid. Gaussian random variable with Ep(AB;) = 0,
Ep(AB?) = At, let F,, =c(AB; :i=1...,n).

Consider another measure @ on (£2, F,,) such that under @ the AB; are i.i.d.
with mean Ep(AB;) = H;At and variance Ep(AB?) = At.

On (Q, F,,) the likelihood ratio factorizes as

dQ|Fn (ABy — A At)? (ABy)?\
dP|F, ~ HeXp(_ oAt oA )T

k=1

exp <i ALAB; — % i AiAt)
i=1

i=1

This extends to the case when under Q the random variables ABj are condi-
tionally Gaussian given Fj_1, with

Eq(ABy|Fr—1) = ArAt,
where Ay, is predictable, and
Eq((ABg)?|Fr-1) — AL AL = At

If A, € L*(P) Vk then under Q

k k
M, = ZABZ- - ZAiAt
=1 i=1

is a Q-martingale with predictable variation (M) = Zle At.
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7.7.2 Change of drift in continuous time

We denote by P; the restriction of P on the o-algebra F;.
Let (M) a continuous {F;}-local martingale under the measure P and(H})
an {F; }-progressive process such that for all 0 < ¢t < +oo

t
/ HZ2d(M), < oo P almost surely
0
We want to find a probability measure () such that
. t
M = M, + / Hod(M),, (7.18)
0

is a local martingale with respect to the measure Q) and Q; < P; Vt < oo.
l
(notation @ <P )

l
Lemma 37. Assume that Q <O<C P. The likelihood ratio process

_ 49

Zt(b.)) = dPt

(w) (7.19)

s a true martingale with respect to the reference measure P.
Proof For s < t,if A € Fy C Fy,
Q(A)=Ep(Z;14) = Ep(Zs1a)

which gives the martingale property under P.

Note We recall also that a non-negative local martingale Z; is a super-
martingale, since if 7,, T oo is a localizing sequence, for s < t by the Fatou
lemma for conditional expectation

Ep(Z,|F,) = Ep (lirr% inf Zinr, | Fs) < lim inf Ep (Zir, |7)

<liminf Zsp,, = Zs
ntoo

Moreover Z; is a true martingale if and only if Ep(Z;) = 1, since in such case
Zs— Ep(Zi|Fs) >0 and Ep(Zs) = Ep(Z;) =1
implies Zs = Ep(Z|Fs) P-almost surely.
l
Lemma 38. Let () <0<C P probability measures on (2, F) equipped with the

filtration F = {F;} Then Xy is a Q (local)-martingale if and only if the product
process (X+Zy) is a P (local)-martingale.

Proof for s <t A € F, we have

Eo(X14) = Ep(Z,X,14)
Eq(Xo14) = Ep(Z,X,14)
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therefore the right hand sides coincide if and only if the left hand sides do.
Moreover if 7, T oo is a localizing sequence of stopping times, by the abstract
Bayes formula,

EP(Zt/\TnXt/\Tn ‘]:5)
Zs/\‘rn
— EP(Zt/\TnXt/\Tn |fs) - Xs/\Tn ZS/\Tn

Xopr, = EQ(Xt/\Tn|-7:S) =

where by Doob optional sampling theorem for bounded stopping times
EP(Zt/\T|-FS/\T) = Zs/\'r = Zs]-(T > S) + ZT]_(Tn < S) =

it is Fs-measurable and coincides with Ep(Zsnr|Fs)

Theorem 36. (Cameron-Martin-Girsanov) Let Q l<o<c P probability measure on
(Q, F) equipped with the filtration F = (F; : t > 0), and My a continuous F-local
martingale such that change of drift formula holds.

Necessarily

dQy ¢ 1/t B
7y =—=Y H,dM, — — Hzd(M
t P, texp(/o sd M 2/0 sd< >s

where Yy > 0 is a P-martingale with Ep(Yy) =1 and [M,Y]; = 0 Vt.
We rewrite the the change of drift formula as

t
~ 1
Mt:Mtf/ 7d<M,Z>9
0

S

In particular when Yy = 1 Vt, the change of measure is minimal, in the sense
that P = Q on the initial o-algebra Fy, and every P-(local) martingale X; such
that [X, M]; =0 is also a Q-(local) martingale.

Proof By the assumption and lemma the product (ZtJ\Z) is a local
martingale under P. Using integration by parts, we obtain the martingale de-
composition under @)

d(ZMy) = ZydM, + ZyHyd{M), + MydZ, + d(M, Z), =
(Z:dM; + MydZ;) + (ZeHyd(M); + d(M, Z);)

which implies
t
<Ma Z>t = _/ ZsHsd<M>s
0
This is satisfied if and only if
1
7dZt = —thMt + d}/t
Zy

where Y; is a P-martingale with (M,Y) = 0.
Let’s assume first that Y; = 0.
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Then by Ito formula the solution of the linear stochatic differential equation
dZy = —ZyHydM, is the exponential martingale

Zy = ZoE(H - M), = ZoE (/ Hdes> =
0 t

t t
Zoexp(—/ Hdes—/ Hfd<M>s>
0 0

Here Zp(w) = z%‘; (w) is Fo-measurable.

More in general

Zt - Zog(HM+Y)t - Zog(HM)tE(Y)t O

where the stochastic exponential £(Y); satisfies

EY) =1+ /tE(Y)des ;
0

and when Y; is continuous

E(Y)y =exp(Y; — %(Yﬁ) .

Notes Igor Vladimirovich Girsanov| (1934-1965) was a Russian mathematician.

7.8 Stochastic filtering

Lemma 39. Let M; be a continuous local martingale under P with respect
to a filtration (Gi)i>0, and assume that (M) is adapted to a smaller filtration
(J—"t)tZO; with .7:,5 Q g

Then M is also a (Fy)-local martingale.

Proof

Let 7, = inf{¢ : |[M;| > n}. Since M, is (F;)-adapted, 7, are stopping times
in the (F)- filtration, with 7, T 0o, and we know that for each n, the stopped
process M;™ = M., is a true (G;)-martingale since it is bounded, which means
that in particular for 0 < s <t VA € G,

EP((Mt/\'rn - Ms/\‘rn)]-A) =0

But this holds in particular YA € F;, which means that (M;");>¢ is a true
(Fi)-martingale.

Note Without the continuity assumption we are not able to to produce a
localizing sequence of (F;)-stopping times, just knowing that there is a localizing
sequence of (G;)-stopping times.

Lemma 40. Let (By) be a Brownian motion with the martingale property in the
filtration (G;) and obviously also with respect to the smaller filtration (FP) C
(Gi) generated by itself.


http://en.wikipedia.org/wiki/Igor_Vladimirovich_Girsanov
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Let H(s,w) a

(Gi)-adapted process which is not necessarily (F{)-adapted
such that

¢
/ Ep(H?)ds < 0o

0

t T
Ep</ H,dB,|F} ) :/ Ep(H,|FBYdB
0 0

Moreover if My is a (Gi)-martingale with (M, B)s =0, V0 < s < ¢ then

Then

Ep(M, — My|FP) =

Proof Let A € FP. By the Ito-Clarck representation theorem

t
1, = P(A) +/ K.dB,
0

for some K € L2([0,t] x Q) adapted to (FP).

t t t t
Ep <1A/ HsdBS) = P(A)Ep (/ HSdBS> + Ep (/ KSdBS/ HSdBS)
0 0 0 0
t
_O+Ep<<K~B,H-B>t) _Ep(/ K Hyds ) =
/ EPKH)ds_/ Ep (K Ep(H,|F,))ds
0

—Ep<</KdBS,/Epr >)
— 0+ Ep (/Ot K,dB, /Ot EP(HS|]-"S)dBS> = Ep <1A/ EP(HS|fS)dBS) -

0
where we used the Ito isometry and the definition of conditional expectation [J

For the second part of the lemma, if My =0, (M,B), =0, s <t, A€ FP
as before,

t

K.dBy) =
0

0+Ep</0thd<M7B>s> =0

Ep((My — Mo)1a) = P(A)Ep(M; — Mo) + Ep((M; — Mo)

which means Ep(M; — My|FP) =00

Consider the stochastic filtering settings in the St Flour lecture notes by E
Pardoux :

dX, = b(s,Y, X,)ds + f(s,Y, X.)dVs + g(s,Y, X, )dW,
dY, = h(s,Y, X,)ds + dW,
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with (V, W) are independent P-Brownian motions and consider the filtration
{F} with F, = F™ and {),} with Y, = FY.

Here X; is the state process, and the problem is to estimate “on-line” X,
using the information from the observation filtration {);} which gives in noisy
observations of the signals h(s,Y, X;).

For simplicity, it is assumed all all coefficient processes are bounded and
Lipshitz.

We introduce a reference measure ) under which

dX, = {b(saKXs) - h(S,KXS)g(S,Y, Xs)}ds + f(S,Y, Xs)d‘/s +g(S,KXs)dY;

and Y is a Brownian motion w.r.t @ in the {F;} filtration. It follows that
P, < Q, with

dP, t 1 [t
= —' = exp (/ h(s,Y, X,)dY, — 7/ h(s,KXS)2d3>

satisfying the linear SDE dZ; = Z,h(t,Y, X;)dY;.
For a function ¢ € C%, bounded and with bounded derivatives, by abstract
Bayes formula

Z

T () == Ep(p(Xe)|Mr) = EQ;%;({XZ?%L%) _ Z((f))

Here 7 is the posterior probability measure process, and o is the unnormalized
posterior measure.

o1(p) = Eq(o(X+)Z¢|V:) satisfies the following SDE driven by the ) Brow-
nian motion (Y;) in the ();) filtration:

o1(i0) = o0() + / 0u(Loyo)ds + / o(Lly@)dYs  (7.20)

where L,y and L;’Y are differential operators on C? depending on time and on
the past observations of Y:

_ 1o 2 02 0

Lsy ¢ = 2(f (s,Y,))+g (S7Yv ))821_90"_1)(87}/7 )ax@
0

Li,Y Y= h(s,Yv’ )(P + 9(87K )%w

To check this step, note that by the integration by parts formula
d(p(Xe)Zi) = Zydp(Xy) + o(Xe)dZy + d{p(Xy), Z)
1
= ZtQD/(Xt)dXt + §ZtQ0//(Xt)d<X>t -+ Zth(Xt)h(t, Y, Xt)d}/t + ZtQD/(Xt)g(t, }f, Xt)h(t, Y, Xt)dt

= Z{ ' (X0)g(t, Y, Xo) + o(X)h(t,Y, Xo) }dY, + Zo@' (X0) (1, Y, X1)dVi+

+Zt90,(Xt){b(ta }/’ Xt) - h(t7 Yv Xt)g(tv K Xt) + g(t, Y, Xt)h(t7 Y, Xt)}dt
1
+5 2" (X){f (1Y, X0)? + g(t, Y, X,)? }dt
= Z{¢ (X)g(t, Y, X¢) + @(Xo)h(t, Y, X;) }dY: + Zop' (Xy) f (2, Y, X)dV,

2 (XD Y, X0) + 5 200" () (1Y, X0+ 9(4, Y, X0) bt
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In integral form this means

P(X0)Zs = p(Xo) + / 2 (X)a(5,Y, Xo) + o(X.)h(s, Y, X.) Yot
/O 0 (X F(5. Y. X)dV,

t
1
4 [ 240 (b YiXo) + 50" (X0) (5. Yo X0 4 (5, Y. X)) Y
0
We take now conditional expectation under ) with respect to the o-algebra ).
o(p) = Eq(p(Xt)Z|Vt) =
Eq(¢(Xo)|Vr)

+Eq </0 ZS{W(XS)Q(S,Y,XS) + ‘P(Xs)h(S,Y,Xs)}dYs

yt)
1 Fq ( [ 2o xoss v xav. yt)
yt)

e (/0 28 (X)b(s, Y. Xo) + 50 (6 (5. Y, X)? + g5, Y, X)?) s

and [7.20] follows by lemma [40]
When ¢(z) =1 we get a linear SDE for the random normalizing constant in

Bayes formula:
=1+ [ o (VB X)D)a,
with solution
oi(1) = exp (/Ot Ep(h(s, Y, X.)[Y.)dY, - ;/Ot Ep(h(s.Y, XS)|yS)2ds)
Consequently by the Cameron Martin Girsanov theorem
i | B (h(s. Y, X.)V)ds

is a P Brownian motion in the {)}} filtration.

7.9 Final exam

: It is allowed to consult the literature and to collaborate with fellow students.
Question 1 ): Use the change of measure formula to show that

_ dP|Y:
dQ|V:

Question 2 ): Use integration by parts formula for the ratio m(p) =
ot(¢)/o+(1) to prove the Zakai filter equation

EqQ(Zi| V) = o4(1)

m(0) = mol) + / mo(Loy 9)ds + / [ra(LLy0) — ma(h(5, Y, ))ma(9)} (dYa — ma(B(s, Y, -))ds)
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Question 3) Show that

Y; 7/0 ms(h(s,Y,))ds

is a Brownian motion with respect to the measure P and the filtration ().

Consider the linear Gaussian case with

dXs = Xb(s)ds + f(s)dVs + g(s)dW
dY, = X h(s)ds + dW,

with b(s), h(s), f(s),g(s) deterministic functions.

Question 4):Write down the Zakai filter equation for the prediction process
Xi = BE(Xe| W)
Question 5): Write down the equation for the prediction error variance
&7 = E((X; — X1)*|)

Since the process (X, Y;) is jointly Gaussian (why ? for example one can study
the characteristic function ) you should get a deterministic equation, called Ric-
cati equation.

Since (X¢,Y;) is jointly Gaussian, it follows that conditionally on the o-
algebra )y, X; is conditionally Gaussian with (random) conditional mean X,
and (deterministic) conditional variance 7. You must use Gaussianity in order
to compute the conditional moments m;(z*) for k = 1,2,3 which will appear in
the Zakai equation.

For simplicity you can assume that the functions b(s), h(s), f(s),g(s) are
constant. If you want to simplify further, assume that g(s) = 0.

A standard reference on stochastic filtering theory is in Liptser and Shiryaev
statistics of random processes.
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