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Chapter 1

Why stochastic integration is
needed ?

1.1 Introduction

Let xt and yt measurable functions R+ 7→ R, where xt has finite variation and
yt is bounded on every compact interval.

A function of finite variation has a representation

xt = x0 + x⊕t − x	t ,

where x⊕t , x
	
t are non-decreasing functions with x⊕0 = x	0 = 0. We can always

choose a representation where the corresponding measures x⊕(dt), x	(dt) are
mutually singular. Then, the variation of the function x over the interval [0, t]
is defined as

vt(x) := x⊕t + x	t = sup
Π

∑
ti∈Π

|xti+1
− xti |

where in the left side the supremum is taken over all finite partitions of [0, t]
Π = (0 = t0 < t1 < · · · < tn = t) with n ∈ N. For example when xt has almost
everywhere a derivative ẋt,

x⊕t =

∫ t

0

(ẋs)
+ds, x	t =

∫ t

0

(ẋs)
−ds and vt(x) =

∫ t

0

|ẋs|ds

where x± := max(±x, 0).
We have learned from the Probability Theory or Real Analysis courses that

in such case the integral

It =

∫ t

0

ysdxs

is well defined as a Lebesgue Stieltjes integral. When the integrand ys is piece-
wise continuous or it has finite variation this is a Riemann Stieltjes integral
defined as limit of Riemann sums.

It = lim
∆(Π)→0

∑
i

ysi(xti+1 − xti)

5
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where Π =
{

0 = t0 ≤ s0 ≤ t1 ≤ s1 ≤ t2 ≤ · · · ≤ tn−1 ≤ sn ≤ tn = t
}
is a

partition of [0, t] and ∆(Π) := maxi≤n(ti − ti−1)
This Riemann-Stieltjes integral does not depend on the sequence of parti-

tions and the choice of the middle point.

When f ∈ C1(R→ R), we have the change of variable formula of differential
calculus

f(xt)− f(xs) =

∫ t

s

f ′(xτ )dxτ

In 1900, Louis Bachelier in his Ph.D. thesis Theorie de la speculation in-
vented a new probabilistic model to descibe the behaviour of the stock exchange
in Paris. This is a stochastic process (Bt(ω))t∈R+ , defined in continuous time
as follows:

Definition 1. 1. B0 = 0, and the increments (Bt(ω) − Bs(ω)) are stochat-
ically independent over disjoint intervals, and have Gaussian distribution
with 0 mean and variance (t− s).

2. for (P -almost) all ω the trajectory t 7→ Bt(ω) is continuous.

In 1905 Albert Einstein introduced independently the very same mathemati-
cal model and results to explain the thermal motion of pollen particles suspended
in a liquid, which haad been observed by the botanist Brown.

Unfortunately, the importance of the work of Bachelier was not recognized
at his times, so that Bt is called Brownian motion or Wiener process, after
Norbert Wiener who started the theory of stochastic integration. In textbooks
it is also denoted by Wt. In honour of Bachelier we like to use the Bt notation.

In fact, although A.N. Kolmogorov (1933) showed that the paths Bt(ω) are
almosty surely Hölder continuous that is the random quantity

sup

{
|Bt(ω)−Bs(ω)|
|t− s|α

: 0 ≤ s, t,≤ T, s 6= t

}
<∞ P − almost surely

for all 0 < α < 1/2 in every compact [0.T ], and with probability 1 the paths are
nowhere differentiable and have infinite variation.

For integrand paths hs(ω) of finite variation using the integration by parts
formula we define for every ω∫ t

0

hs(ω)dBt(ω) := Bt(ω)ht(ω)− h0(ω)B0(ω)−
∫ t

0

Bs(ω)dhs(ω)

This trick does not work for the integral∫ t

0

Bs(ω)dBs(ω)

It was in 1944 that Kyoshi Ito extended Wiener integral to the class of non-
anticipative integrand processes. This was the beginning of modern stochastic
analysis.

http://en.wikipedia.org/wiki/Louis_Bachelier
http://en.wikipedia.org/wiki/Albert_Einstein
http://en.wikipedia.org/wiki/Norbert_Wiener
http://en.wikipedia.org/wiki/Andrey_Kolmogorov
http://en.wikipedia.org/wiki/Kiyoshi_Ito
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For the history, in 1940 the german-french mathematician Wolfgang Doe-
blin fighting on the french side was surrounded by the nazis and, before com-
miting suicide, sent to the french academy of sciences a letter to be opened 60
years later. This letter, published in year 2000, contained many of the ideas on
stochastic differential equations that Ito was developing.

1.1.1 Quadratic variation and Ito-Föllmer calculus
In 1979 Hans Föllmer published a short paper with title “Ito calculus without
probabilities”, where he showed how the stochastic calculus invented by Ito,
using convergence in of Riemann sums in L2(Ω, P ) sense, applies surprisingly
also pathwise for some non-random functions, using some special sequences of
finite partitions.

We choose to start our journey into stochastic analysis from the modern
pathwise result of Föllmer, which is rather minimalist.

Later in the following chapters we develop the classical Ito calculus based
on martingales.

Note that in the real world is often the case that a random process say
(Bt(ω) : t ∈ [0, 1]) is realized only once, and convergence in mean square sense or
in probability remain rather abstract and unsatisfactory concepts, while almost
sure convergence results are the most meaningful, since we are mainly interested
in that single realized path.

This approach is also discussed by Dieter Sondermann in his book Introduc-
tion to stochastic calculus for finance .

Let (xt) be the integrator and (yt) integrand funktions
When (xt) has finite variation , that is xt = (x⊕t − x	t ), where x⊕, x	 are

non-decreasing (and therefore Borel-measurable), and (yt) is Borel measurable
and bounded, the Lebesgue-Stieltjes integral is well defined∫ t

0

ysdxs =

∫ t

0

ysdx
⊕
s −

∫ t

0

ysdx
	
s

When ys is also piecewise continuous, or it has finite variation on compacts,
the Lebesgue-Stieltjes and Riemann-Stieltjes integrals coincide. The differential
calculus is first order: for F (·) ∈ C1(R),

F (xt) = F (x0) +

∫ t

0

Fx(xs)dxs +
∑
s≤t

{
F (xs)− F (xs−)− Fx(xs−)(xs − xs−)

}
with correction terms appear at the discontinuities of xt.

What happens when the integrator is xt has infinite total variation ? Can
we make sense of the limit of Riemann sums for some class of integrands ?

For a path xt of infinite total variation we can do the following:
by summing p-powers of small increments for some p > 1 and taking supre-

mum we define the p-power variation of a continuous path xt as

v
(p)
t (x) = sup

Π

∑
ti∈Π

|xti+1 − xti |p

http://en.wikipedia.org/wiki/Wolfgang_Doeblin
http://en.wikipedia.org/wiki/Wolfgang_Doeblin
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Since the increments are small, there is a chance that v(p)
t (x) < ∞ even in the

case were the total variation vt(x) = v
(1)
t (x) =∞.

In Ito calculus we consider p = 2 but we use a weaker notion of p-variation,
where instead of taking a supremum over all finite partitions Π, we take the
limit under a given sequence of partitions.

Consider a sequence of partitions {Πn} where

Πn = {0 = tn0 < tn1 < . . . , < tnk < . . . }, lim
k→∞

tnk =∞, ∀n,

∀t > 0, ∆(Πn, t) = sup
tnk∈Πn

{
tnk+1 ∧ t− tnk ∧ t

}
→ 0 for n→∞ .

t ∧ s := min{t, s}. Usually we will use dyadic partitions

Dn =
{
tnk = k2−n : k ∈ N

}
, n ∈ N

Definition 2. A continuous function x : [0,∞) → R has pathwise quadratic
variation [x, x]t among the sequence {Πn}, when

lim
n→∞

∑
ti∈Πn

(xti+1∧t − xti∧t)2 = [x, x]t ∀t <∞ (1.1)

and t 7→ [x, x]t is continuous.

Remark For each n the approximating function

ξn(t) =
∑
ti∈Πn

(xti+1∧t − xti∧t)2

is continuous since t 7→ xt is continuous. However in order to show that the limit
[x, x]t would be continuous, we would need the stronger uniform convergence of
ξn(t) to [x, x]t on compact intervals, which is not guaranteed, if nothing else is
known about the continuous path xt, that’s why we need to include continuity
in the definition of [x, x]t.

Lemma 1. When it exists, t 7→ [x, x]t is non-decreasing with [x, x]0 = 0. For a
constant c, [cx, cx]t = c2[x, x]t. In particular, the quadratic variation is reflec-
tion invariant: [−x,−x]t = [x, x]t.

Let u < v and for each n large enough , let in < jn such that

tnin−1 < u < tnin < tnjn−1 < v < tnjn−1

Then

ξn(v)− ξn(u) =(xin − xtnin−1
)2 − (xu − xtnin−1

)2 +

jn−1∑
k=in+1

(xik − xtnik−1
)2 + (xv − xtnjn−1

)2

≥(xin − xtnin−1
)2 − (xu − xtnin−1

)2 .

As n → ∞ where the last expression vanishes since x is uniformly continuous
on compact intervals, and [x, x]v ≥ [x, x]u �
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Lemma 2. (Characterization): A continuous path t 7→ xt has quadratic vari-
ation [x, x]t among the sequence {Πn} if and only if the sequence of discrete
measures

ξn(dt) =
∑
ti∈πn

(xti+1 − xti)2δti(dt)

converges weakly1 on compact intervals to a Radon measure2 ξ(dt) without
atoms, which means that ξ({t}) = 0 ∀t.

Proof (Sufficiency) Consider a continuous integrand ys. Since y is uniformly
continuous on the compact [0, 1], ∀ε > 0, there are k,m, τ1, . . . , τm such that
the piecewise constant function

yε(s) =

m∑
j=1

yτj1(τj ,τj+1](s) satisfies sup
s≤t
|yε(s)− y(s)| < ε

It follows ∣∣∣∣ ∑
ti∈πn:ti≤t

yti(xtni+1
− xtni )2 −

∫ t

0

ysd[x, x]s

∣∣∣∣ ≤∣∣∣∣ ∑
ti∈πn:ti≤t

yεti(xtni+1
− xtni )2 −

∫ t

0

ysd[x, x]s

∣∣∣∣+ ε
∑
ti∈πn

(xtni+1
− xtni )2

=

∣∣∣∣ m∑
j=1

yτj
∑

tni ∈πn:τj<tni ≤τj+1∧t

(xtni+1
− xtni )2 −

∫ t

0

ysd[x, x]s

∣∣∣∣+ ε
∑
ti∈πn

(xtni+1
− xtni )2

−→
∣∣∣∣ m∑
j=1

yτj ([x, x]τj+1∧t − [x, x]τj∧t)−
∫ t

0

ysd[x, x]s

∣∣∣∣+ ε[x, x]t

=

∣∣∣∣ ∫ t

0

(yεs − ys)d[x, x]s

∣∣∣∣+ ε[x, x]t as n→∞ .

and as ε→ 0, from the definition of Riemann-Stieltjes integral it follows

lim
n→∞

∑
ti∈πn

yti(xtni+1
− xti)2 =

∫ t

0

ysd[x, x]s ,

and in the definition we have assumed that the non-decreasing function t 7→
[x, x]t is continuous, the corresponding measure ξ(dt) has no atoms.

Proof of necessity: We approximate pointwise the indicator 1[0,t](s) by piece-
wise linear continuous functions

yε(s) =

 1 s ≤ t
1 + (t− s)/ε t < s ≤ t+ ε

0 s > t+ ε
, yε(s) =

 1 s ≤ t− ε
(t− s)/ε t− ε < s ≤ t

0 s > t

1 Weak convergence on compacts (also called vague convergence) of ξn → ξ means that for
all continuous functions s 7→ ys with compact support∫

ysξn(ds)→
∫
ysξ(ds)

2 A Radon measure ξ lives on the Borel σ-algebra of an Hausdorff space, and it is locally
finite (every point has neighbourhood of finite measure) and it is inner regular, that is ξ(A) =
sup
{
ξ(K) : compact K ⊆ A

}
.
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such that
yε(s) ≤ 1[0,t](s) ≤ yε(s), (1.2)

which implies ∫
yε(s)ξn(ds) ≤ ξn([0, t]) ≤

∫
yε(s)ξn(ds)

As n→∞∫
yε(s)d[x, x]s ≤ lim inf

n
ξn([0, t]) ≤ lim sup

n
ξn([0, t]) ≤

∫
yε(s)d[x, x]s

which implies ∀ε > 0

lim sup
n

ξn([0, t])− lim inf
n

ξn([0, t]) ≤
∫

(yε(s)− yε(s))d[x, x]s ≤ ξ((t− ε, t+ ε]) ∀ε > 0

=⇒ lim sup
n

ξn([0, t])− lim inf
n

ξn([0, t]) ≤ ξ({t}) = 0

since by assumption the measure ξ(dt) has no atoms �

Remark 1. Note that for s < t < u,

|xu − xs| ≤ |xu − xt|+ |xt − xs|

but

(xu − xs)2 = (xu − xt)2 + (xt − xs)2 + 2(xu − xt)(xt − xs)

which is not necessarily smaller than (xu − xt)2 + (xt − xs)2.
The quadratic variation behaves differently than the first variation, by refin-

ing the partition the approximating sum is not necessarily non-increasing.
That’s the reason while in the definition of first variation we can take the

supremum over all partitions, while with this definition of quadratic variation
we follow a given sequence of partitions.

Remark 2. When xt is continuous with finite total variation in [0, t], it follows
that [x, x]t = 0:∑

ti∈πn:ti≤t

(xti+1 − xti)2 ≤ sup
ti∈πn:ti≤t

|xti+1 − xti |
∑

ti∈πn:ti≤t

|xti+1 − xti |

≤ sup
ti∈πn:ti≤t

|xti+1
− xti |vt(x)→ 0 kun n→∞,

where vt(x) < ∞ is the first variation of the path. If for some sequence of
partitions {Πn} exists strictly positive quadratic variation [x, x]t > 0, necessarily
the first variation is vt(x) =∞.

We show that for continuous paths with quadratic variation a second order
differential calculus holds.

Proposition 1. (Föllmer 1979): Let t 7→ xt a continuous path with pathwise
quadratic variation among {Πn} with ∆(Πn, t)→ 0 ∀t, and let F (x) ∈ C2(R).
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Then Ito formula holds:

F (xt) = F (x0) +

∫ t

0

Fx(xs)dxs +
1

2

∫ t

0

Fxx(xs)d[x, x]s , t > 0 (1.3)

where the pathwise Ito-Föllmer integral with respect to x exists as the limit of
Riemann sums among the sequence {Πn}.∫ t

0

Fx(xs)d
−→x s := lim

n

∑
t≥ti∈πn

Fx(xti)(xti+1
− xti)

This is also called pathwise forward integral.

Proof: take telescopic sums

F (xt)− F (x0) = lim
n

∑
t≥ti∈πn

(
F (xti+1

)− F (xti)
)

and use Taylor expansion ∑
t≥ti∈πn

(
F (xti+1)− F (xti)

)
=

∑
Fx(xti)(xti+1

− xti) +
1

2

∑
Fxx(xti)(xti+1

− xti)2 +
∑

r(xti , xti+1
)(xti+1

− xti)2

where by the middle-point theorem

r(xti , xti+1
) =

(
Fxx(x∗i )− Fxx(xti)

)
for some x∗i ∈ (xti , xti+1 ]. Note that

Rn(t) := sup
{
r(xti , xti+1

) : ti ∈ Πn ∩ [0, t]
}
−→ 0 (1.4)

uniformly as ∆(Πn)→ 0 since the map t 7→ Fxx(xt) is uniformly continuous on
compacts.

As n ↑ ∞, by definition of quadratic variation the second Riemann sums
converges towards

1

2

t∫
0

Fxx(xs)d[x, x]s

and the remainder term is dominated by

Rn(t)
∑

ti∈πn,tt≤t

(xti+1 − xti)2 → 0 · [x, x]t when n→∞ .

Therefore the limit of Riemann sums among {Πn} exists, and it is given by∫ t

0

Fx(xs)d
−→x s := lim

n

∑
t≥ti∈πn

Fx(xti)(xti+1
− xti)

= F (xt)− F (x0)− 1

2

∫ t

0

Fxx(xs)d[x, x]s �
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Remark 3. 1. In general the existence and the value of such pathwise for-
ward integral may depend on the particular sequence of partitions. When
[x, x] exists for all {Πn}-sequences with ∆(Πn) → 0 and its value does
not depend on the particular sequence,the forward integral

∫
Fx(xs)d

−→x s is
well defined independently of the sequence of partitions.

2. The existence of quadratic variation in the sense of weak convergence on
compacts was the minimal assumption which we used to derive Ito formula.

3. We have the following extension of Ito formula: if F (x, a) ∈ C2,1 and
t 7→ at is continuous with finite variation, then∫ t

0

Fx(xs, as)d
−→x s := lim

n

∑
t≥ti∈πn

Fx(xti , ati)(xti+1
− xti)

= F (xt, at)− F (x0, a0)−
∫ t

0

Fy(xs, as)das −
1

2

∫ t

0

Fxx(xs, as)d[x, x]s �

4. When F ∈ C1(R) and x is continuous with pathwise quadratic variation
among {Πn}, then the function wt := F (xt) has also quadratic variation
among {Πn} given by

[w,w]t =

∫ t

0

Fx(xs)
2d[x, x]s

Proof: by Taylor expansion and Lemma 2:∑
tni ∈πn:tni ≤t

{
F (xtni+1

)− F (xtni )
}2

=
∑
i

Fx(xtni )2
(
xtni+1

− xtni
)2

+
∑
i

r
(
xtni , xtni+1

)(
xtni+1

− xtni
)2 −→ ∫ t

0

Fx(xs)
2d[x, x]s as n→∞

where for some t∗ni ∈ [tni , t
n
i+1],

r
(
xtni , xtni+1

)
= Fx(xt∗ni )2 − Fx(xtni )2 −→ 0 ,

uniformly on the compact interval [0, t] since s 7→ Fx(xs)
2 is uniformly

continuous.

5. If xt and at are continuous, at has finite first variation on compacts and
xt has quadratic variation [x, x]t among (Πn), then yt = (xt+at) has also
quadratic variation among (Πn) with [y, y]t = [x, x]t. Proof∑

i

(∆x+ ∆a) = (∆x)2 + (∆a)2 + 2∆a∆x

Therefore∑
tni ∈Πn

(ytni ∧t − ytni−1∧t)
2

=
∑
tni ∈Πn

(xtni ∧t − xtni−1∧t)
2 +

∑
tni ∈Πn

(atni ∧t − atni−1∧t)
2 + 2

∑
tni ∈Πn

(xtni ∧t − xtni−1∧t)(atni ∧t − atni−1∧t) −→ [x, x]t
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, where since a has first variation vt(a) <∞, [a, a]t = 0 and∣∣∣∣ ∑
tni ∈Πn

(xtni ∧t − xtni−1∧t)(atni ∧t − atni−1∧t)

∣∣∣∣ ≤ max
i

∣∣xtni ∧t − xtni−1∧t
∣∣vt(a) −→ 0 �

6. Note that since

zt =

∫ t

0

Fx(xs)d
−→x s = F (xt)− F (x0)− 1

2

∫ t

0

Fxx(xs)d[x, x]s

(zt − f(xt)) has finite variation on compacts and it follows that

[z]t = [f(x)]t =

∫ t

0

Fx(xs)
2d[x, x]s

7. We have defined the pathwise forward integral∫ t

0

ysd
−→x s

for integrands yt = F (xt, zt) with F ∈ C2,1 and zt of finite variation.
What about more general integrands ?

Let (Πn) a sequence of partitions with ∆(Πn)→ 0 and y ∈ C([0, t],R). Note
that

Int (y) :=
∑

t≥ti∈πn

yti(xti+1 − xti)

is a linear operator. When xt has infinite total variation, in particular when
[x, x]t > 0 among the sequence (Πn), the integral operator

It(y) :=

t∫
0

ysd
−→x s (1.5)

it is not well defined for all continuous integrands, (I mean in the case yt has
infinite variation but it not of the form f(xt, t) with f ∈ C1), and it is not a
continuous operator on (C([0, t],R), | · |∞).

Proposition 2. (From Protter book) If for all y ∈ C(R) exists

It(y) := lim
n
Int (y),

it follows that xt has finite first variation and therefore [x, x]t = 0.

Proof: ∀n there is a continuous function yn(t) such that

yn(ti) = sign(xti+1
− xti) ∀ti ∈ πn,

and |yn|∞ = 1.
For the operator norm

‖ In ‖≥ |In(yn)| =
∑

t≥ti∈πn

sign(xti+1
− xti)(xti+1

− xti) =
∑

t≥ti∈πn

|xti+1
− xti |,
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and

sup
n
‖ In ‖≥ v(x)t,

since

vt(x) = lim
n→∞

∑
t≥ti∈πn

|xti+1
− xti |

for any sequence of partitions with ∆(Πn)→ 0.
If ∀y ∈ C(R) there exists I(y) = limn In(y) < ∞ among {Πn}, necessar-

ily supn |In(y)| < ∞, and by the Banach Steinhaus theorem3 from functional
analysis it follows that supn ‖ In ‖<∞, which means v(x)t <∞.

1.1.2 Ito-Föllmer calculus for random paths

Definition 3. Let (Xt(ω) : t ≥ 0) a stochastic process with almost surely con-
tinuous paths defined on the probability space (Ω,F , P ). We say that X has
stochastic quadratic variation process ([X,X]t(ω) : t ≥ 0) when for all sequence
of finite partitions {Πn} with ∆(Πn, t)→ 0∑

ti∈Πn

(Xti+1∧t −Xti∧t)
2 P→ [X,X]t

with convergence in probability

It follows that for any sequence of finite partitions {Πn} with ∆(Πn) → 0
there is a deterministic subsequence4 {Πn(m)} such that (first for all t ∈ Q ∩
[0,∞) and then by continuity of [X,X] for all t ≥ 0)∑

t≥ti∈Πn(m)

(Xti+1
(ω)−Xti(ω))2→[X,X]t(ω) P -almost surely ω (1.6)

i.e. the stochastic quadratic variation and the pathwise quadratic variation
among {Πn(m)} coincide P -almost surely. We also obtain a stochastic Ito for-
mula where the stochastic forward integral is defined as limit in probability of
Riemann sums:

Proposition 3. Let Xt(ω) be a stochastic process which has continuous paths P -
almost surely and with stochastic quadratic variation in the sense of convergence
in probability. Then Ito formula (1.3) hold where the stochastic forward integral

3 Let’s recall Banach-Steinhaus theorem: Let (Iν : ν ∈ J) a family of linear continuous
operators, Iν : X1 −→ X2, where (Xi, | · |Xi ), i = 1, 2 are normed-spaces. If ∀y ∈X1

,

sup
ν∈J
|Iν(y)|X2

<∞,

then sup
ν∈J
‖ Iν ‖< ∞, where ‖ Iν ‖:= sup

{
|Iν(y)|X2

/
|y|X1

: y ∈ X1} is the strong operator-

norm.
4 Recall that ξn

P→ 0 (in probability) if and only if for every subsequence (nk) there is
a further subsequence (nk` ) such that ξnk` (ω) → 0 P -almost surely. The P -null set where
convergence fails may depend on the subsequence.
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is defined as limit in probability of Riemann sums for any sequence of partitions
(Πn) with ∆(Πn, t)→ 0:

P − lim
n→∞

∑
tni ∈Πn

Fx(Xtni−1
)
(
Xtni ∧t −Xtni−1∧t

)
(1.7)

=

∫ t

0

Fx(Xs)d
−→
X s = F (Xt)− F (X0)− 1

2

∫ t

0

Fxx(Xs)d[X,X]s (1.8)

Proof For any sequence of partitions (Πn), and any subsequence (nk), there
is a further subsequence nk` such that P -almost surely∑

ti∈Π
nk`

(
Xti∧t −Xti−1∧t

)2 −→ [X,X]t.

in pathwise sense. With probability (P = 1) Ito formula (1.3) holds pathwise
where the pathwise forward integral

lim
`→∞

∑
ti∈Π

nk`

Fx(Xti−1
)
(
Xti∧t −Xti−1∧t

)
=

∫ t

0

Fx(Xs)d
−→
X s = F (Xt)− F (X0)− 1

2

∫ t

0

Fxx(Xs)d[X,X]s

is defined with respect to the sequence of partitions
(
Πnk`

)
, and it does not

depend on the partitions (Πn). The stochastic Ito formula (1.7) follows by the
subsequence characterization of the convergence in probabiity �

Consider dyadic partitions

Dn = {tnk = k2−n : k = 0, . . . , n2n}

Proposition 4. ( by Paul Lévy ) Brownian motion has P -almost surely pathwise
quadratic variation [B,B]t = t among the dyadic sequence {Dn}, which is also
the stochastic quadratic variation in the sense of convergence in probability.

Proof: the variance of the approximating sums is

E

({∑
tnk≤t

(Btnk+1
−Bntk)2 − (tnk+1 − tnk )

}2)
=
∑
tnk≤t

E
({

(Btnk+1
−Bntk)2 − (tnk+1 − tnk )

}2)
( since increments are independent the cross-product terms have zero expecta-
tion).

=
∑
tnk≤t

{
E({∆Btnk }

4) + (∆tnk )2 − 2(∆tnk )E({∆Btnk }
2)
}

=

2
∑
tnk≤t

(
tnk+1 − tnk )2 = 2bt2nc2−2n ≤ 2t2−n

Let ε > 0 and

Aεn =
{
ω : |t−

∑
tnk≤t

(Bntk+1
(ω)−Bntk(ω))2| > ε

}

http://en.wikipedia.org/wiki/Paul_Pierre_Levy
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by Chebychev inequality

P (Aεn) ≤ 2t2−nε−2

Therefore ∑
n

P (Aεn) ≤ ε−24t <∞

Applying Borel Cantelli lemma, ∀ε > 0

P
(
lim sup

n
Aεn
)

= 0

Taking ε = 1/m, m ∈ N and countable intersection of the complements

P

( ⋂
m≥0

⋃
k≥0

⋂
n≥k

A1/m
n

)
= 1

which is the probability that the path t 7→ Bt(ω) has pathwise quadratic varia-
tion [B,B]t = t when we take the limit among the dyadic sequence.

Remark 4. 1. Essentially we used∑
n

(∑
tnk≤t

(
tnk+1 − tnk )2

)
<∞

In order to obtain almost sure convergence starting from convergence in
probability, it is enough to have∑

n∈N
∆(Πn, t) <∞

2. The set of measure zero where convergence fails may well depend on the
sequence of partitions. Since the collection of partition sequences is un-
countable, we don’t get almost sure convergence if we take supremum over
partitions.

3. By a backward martingale argument his theorem extends to refining se-
quences of partitions with Πn ⊆ Πn+1, ∆(Πn, t) → 0 when n → ∞ ( you
find in the book by Revuz and Yor, Continuous martingales and Brownian
motion,Proposition 2.12 ) .

1.1.3 Cross-variation
Definition 4. Let xt, yt continuous paths with pathwise quadratic variations
[x, x]t and [y, y]t among the sequence of partitions (Πn) with ∆(Πn, t) = 0 ∀t.

We define their pathwise cross-variation among the sequence of partitions
(Πn) as

[x, y]t = [y, x]t = lim
n→∞

∑
tni ∈Πn

(xtni ∧t − xtni−1∧t)(ytni ∧t − ytni−1∧t)

when it exists and t 7→ [x, y]t is continuous.
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Lemma 3. When the continuous paths (xt + yt) and (xt − yt) have pathwise
quadratic variation among the sequence of partitions (Πn) , their cross variation
among (Πn) exists and it is given by the polarization formula.

[x, y]t =
1

4

(
[x+ y, x+ y]t − [x− y, x− y]t

)
. (1.9)

Therefore the cross-variation has finite variation on compacts since it is the
difference of two non-decreasing functions.

Proof Observe that (1.9) for the approximating sums before taking limits,
since

∆x∆y =
1

2

(
(∆x+ ∆y)2 − (∆x−∆y)2

)
Lemma 4. The continuous path xt, yt have cross-variation [x, y]t among (Πn),
the sequence of measures

ξn(dt) =
∑
ti∈Πn

δtni−1
(dt)(xtni ∧t − xtni−1∧t)(ytni ∧t − ytni−1∧t)

converges vaguely to the measure ξ(dt) with ξ((s, t]) = [x, y]t − [x, y]s.

Proof By polarization and Lemma 2.

Proposition 5. When xt, yt are continuous with pathwise qudratic variations
[x, x]t,[y, y]t and cross variation [x, y]t among the sequence of partitions (Πn)
and f(r, s) ∈ C2.2, the following Ito Föllmer formula holds:

f(xt, yt) = f(x0, y0) +

∫ t

0

∇f(xs, ys)

(
d−→x
d−→y

)
+

1

2

∫ t

0

fxx(xs, ys)d[x.x]s +
1

2

∫ t

0

fxx(xs, ys)d[x.x]s +

∫ t

0

fxy(xs, ys)d[x, y]s

where∫ t

0

∇f(xs, ys)

(
d−→x
d−→y

)
=

(∫ t

0

fx(xs, ys)d
−→x s +

∫ t

0

fy(xs, ys)d
−→y s
)

=

lim
n→∞

∑
tni ∈Πn

{
fx(xtni−1

, ytni−1
)
(
xtni − xtni−1

)
+ fy(xtni−1

, ytni−1
)
(
ytni − ytni−1

)}
Remark Note that at this stage we are not able to define separately the

pathwise integrals ∫ t

0

fx(xs, ys)d
−→x s and

∫ t

0

fy(xs, ys)d
−→y s .

when [x]t[y]t > 0, but their sum is well defined.
Proof As before, use a telescopic sums and a second order Taylor approxi-

mation, together with Lemma 4 �

Proposition 6. Let Bt andWt independent Brownian motions. Then P -almost
surely their pathwise cross-variation among the dyadic partitions (Dn) exists,
and [B,W ]t = 0.

Proof By definition (Bt + Wt)/
√

2 and (Bt −Wt)/
√

2 are Brownian mo-
tions, and [B + W,B + W ]t = [B −W,B −W ]t = 2t and the result follows by
polarization.
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1.1.4 Pathwise Stratonovich calculus
If in the approximating Riemann sums we evaluate the integrand at the mid-
point rather than in the left point we obtain∑
ti∈Dn:ti≤t

Fx(B(ti+1+ti)/2)(Bti+1 −Bti) =

=
∑

Fx(Bti)(Bti+1
−Bti) +

∑
(Fx(B(ti+1+ti)/2)− Fx(Bti))(Bti+1

−Bti)

=
∑

Fx(Bti)(Bti+1 −Bti) +
∑

Fxx(Bti)(B(ti+1+ti)/2 −Bti)(Bti+1
−Bti)+

+
∑

r(B(ti+1+ti)/2, Bti)(B(ti+1+ti)/2 −Bti)(Bti+1
−Bti)

=
∑

Fx(Bti)(Bti+1 −Bti) +
∑

Fxx(Bti)(B(ti+1+ti)/2 −Bti)
2+

+
∑

Fxx(Bti)(B(ti+1+ti)/2 −Bti)(Bti+1
−B(ti+1+ti)/2)+

+
∑

r(B(ti+1+ti)/2, Bti)(B(ti+1+ti)/2 −Bti)(Bti+1 −Bti)

Lemma 5. For the Brownian path∑
ti∈Dn:ti≤t

(B(ti+1+ti)/2 −Bti)
2 → 1

2
[B,B]t =

1

2
t , (1.10)

∑
ti∈Dn:ti≤t

(B(ti+1+ti)/2 −Bti)(Bti+1 −B(ti+1+ti)/2)→ 0 , (1.11)

Proof: Hint: among the lines of Proposition (4).

It follows that the Riemannin sums among the dyadics converge P -a.s.
among the dyadics (Dn) to the pathwise Stratonovich integral∫ t

0

Fx(Bs) ◦ dBs :=

∫ t

0

Fx(Bs)d
−→
B s +

1

2

∫ t

0

Fxx(Bs)ds

= F (Bt)− F (B0)− 1

2

∫ t

0

Fxx(Bs)ds+
1

2

∫ t

0

Fxx(Bs)ds = F (Bt)− F (B0) ,

which follows the ordinary first order calculus. By evaluating in the Riemann
sums the integrand at the right point we obtain the pathwise backward integral∫ t

0

Fx(Bs)d
←−
B s = lim

n→∞

∑
tni ∈Dn

Fx(Btni+1
)(Btni+1∧t −Btni )

= F (Bt)− F (B0) +
1

2

∫ t

0

Fxx(Bs)ds =

∫ t

0

Fx(Bs)d
−→
B s +

∫ t

0

Fxx(Bs)ds

Proof: exercise.

References H. Föllmer, “Calcul d Ito sans probabilites” (1980). Séminaire
de Probabilités XV, pp 143-149 Springer

D. Sondermann, “ Intoduction to stochastic calculus for finance ” Springer.

http://www.numdam.org/numdam-bin/item?id=SPS_1981__15__143_0


Chapter 2

Paul Lévy’s construction of
Brownian motion

2.0.1 Preliminaries on Gaussian random variables
Definition 5. A random vector X = (X1, . . . , Xn) with values in Rn is jointly
Gaussian iff there is a µ ∈ Rn and a non-negative definite matrix K such that
the joint characteristic function is given by

φX(θ) := E(exp(iθ ·X)) = exp(iθµ− 1

2
θKθ>)

where y ·x is the usual scalar product. Equivalently the joint density is given by

pX(x) = (2π)−n/2 det(K)−1/2 exp

(
−1

2
(θ − µ)K−1(θ − µ)>

)
Lemma 6. Let G(ω) ∈ R a standard Gaussian random variable with E(G) =
0, E(G2) = 1.

EP (G2n) =
(2n)!

n!2n
, EP (G2n+1) = 0 ∀n ∈ N

Since Lp(P ) ⊃ L2n(P ) for p ≤ 2n, it follows that G ∈ Lp(P ) ∀0 < p <∞.

Proof: Hint: by using the moment generating function

dn

dtn
exp
(
t2/2

)
=

dn

dtn
EP
(
exp(tG)

)
= EP (Gn exp(tG)) = EP (Gn) at t = 0

where you need to justify interchanging the order of derivation and integration.
By expanding the exponential at t = 0

E(Gn) =
dn

dtn

∞∑
k=0

t2k

2kk!

∣∣∣∣
t=0

we see that only the term with 2k = n contributes giving the result �

When the limit of a Gaussian random variable exists, it is necessarly Gaus-
sian:

19
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Lemma 7. Let {ξn} be a sequence of Gaussian r.v. with respective distributions
N (µn, σ

2
n), defined possibly on different probability spaces, together with a r.v.

ξ. If ξn
d→ ξ (convergence in distribution) then ξ is Gaussian N (µ, σ2) where

the limits µ = limn µn and σ2 = limn σ
2
n exist.

When σ2 = 0, we agree that the constant random variable µ is Gaussian
with zero variance.

Proof Since convergence in distribution is equivalent to the convergence of
characteristic functions, it follows that

φξn(θ) = exp

(
iµnθ −

1

2
θ2σ2

n

)
→ φξ(θ) ∀θ

where ∀θ

|φξn(θ)| = exp

(
−1

2
θ2σ2

n

)
→ |φξ(θ)| = exp

(
−1

2
θ2σ2

)
Arg(φξn(θ)) = µnθ → Arg(φξ(θ)) = µθ

therefore

φξ(θ) = exp

(
iµθ − 1

2
θ2σ2

)
�

Corollary 1. In particular if {ξn} are Gaussian random variables on the same
probability space with ξn

P→ ξ in probability, then ξ is Gaussian and ξn → ξ in
Lp(Ω) ∀p <∞.

Obviously |ξn − ξ|p
P→ 0, and the family {|ξn − ξ|p : n ∈ N} is uniformly

integrable, since it is bounded in Lp+ε for ε > 0:

sup
n
‖ ξn − ξ ‖p+ε≤ 2 sup

n
‖ ξn ‖p+ε<∞

which follows since µn → µ, σ2
n → σ2, and Gaussian random variables have all

moments.
Remark We can replace convergence in distribution the lemma 7 with

stronger convergence in probability or in Lp convergence,

Corollary 2. If Xn → 0 in probability and Xn ∼ N (µn, σ
2
n), then µn, σ2

n → 0
and Xn → 0 in Lp(Ω) for all p <∞.

Definition 6. A family of real valued random variables {ξt : t ∈ T} is a Gaus-
sian process if ∀ n, t1, . . . , tn ∈ T the law of (ξt1 , . . . , ξtn) is jointly Gaussian.

Lemma 8. (Gaussian integration by parts and tail probabilities)

• The standard Gaussian density

φ(x) :=
1√
2π

exp

(
−x

2

2

)
satisfies

dφ

dx
(x) = −xφ(x)
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• For a standard Gaussian random variable G(ω) with E(G) = 0, E(G) = 1
we have the Gaussian integration by parts formula:

EP

(
f ′(G)h(G)

)
= EP

(
f(G)(Gh(G)− h′(G))

)
In particular for h(x) ≡ 1

EP

(
f ′(G)

)
= EP

(
f(G)G

)
• For x > 0 we have the upper bound

P (G > x) =

∫ ∞
x

φ(y)dy ≤
∫ ∞
x

y

x
φ(y)dy = − 1

x

∫ ∞
x

φ′(y)dy =

1

x

{
φ(x)− φ(∞)

}
=

1

x
φ(x)

2.1 Paul Lévy’s construction
We have defined Brownian motion but we haven’t yet shown that such stochastic
process exists.

We construct recursively the Brownian motion on the dyadics Dn ⊆ [0, 1].
Given the values (Bt : t ∈ Dn), we obtain by linear interpolation a continuous

path (B
(n)
t (ω) : t ∈ [0, 1]).

Then we show that B(n)
t (ω) converges uniformly for t ∈ [0, 1].

More precisely, let (Gd(ω) : d ∈ D) i.i.d. standard Gaussian random vari-
ables, where the dyadics D =

⋃
n∈NDn are countable.

At level n = 0, for D0 = {0, 1} set

B0(ω) = 0, B1(ω) = G0(ω),

and by linear interpolation B(0)
t (ω) := tB1(ω), t ∈ [0, 1]

Define the increasing sequence of σ-algebrae Gn = σ(Bd : d ∈ Dn).
Let d ∈ Dn \Dn−1 and d−, d+ ∈ Dn−1 with d− < d < d+ and d+ − d− =

2n−1. d± are the nearest neighbours of d at the previous level (n− 1).
Since the increments of (Bt) are independent,

P (Bd ∈ dx|Gn−1) = P (Bd ∈ dx|Bd− , Bd+)

which is a Gaussian law with mean (Bd− +Bd+)/2 and variance

((d− d−)−1 + (d+ − d)−1)−1 = 2−(n+1)

We check this: it follows from Bayes’ formula, that for a jointly Gaussian
vector, the conditional expectation of a coordinate given the other coordinates
coincides with the best linear estimator in L2(P ), and we have

E(Bd|Bd− , Bd+) = E(Bd|Bd−) +

(
Bd+ − E(Bd+|Bd−)

)
Cov(Bd, Bd+ |Bd−)

Var(Bd+|Bd−)

= Bd− + (Bd+ −Bd−)2(n−1)2−n = (Bd− +Bd+)/2

Var(Bd|Bd− , Bd+) = Var(Bd|Bd−)− Cov(Bd, Bd+ |Bd−)2

Var(Bd+|Bd−)
= 2−n − 2−2n 2n−1 = 2−(n+1)
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We define inductively for d ∈ Dn \Dn and corresponding d± ∈ Dn−1

Bd(ω) :=
Bd−(ω) +Bd+(ω)

2
+Gd(ω)2−(n+1)/2 (2.1)

We show that, for t ∈ D

Bt(ω) :=
∑
d∈D

Gd(ω)ηd(t) =
∑
d∈D

Gd(ω)

∫ t

0

η̇d(s)ds = (2.2)

=
∑
d∈Dn

Gd(ω)ηd(t) =
∑
d∈Dn

Gd(ω)

∫ t

0

η̇d(s)ds, when t ∈ Dn (2.3)

where η̇0(s) ≡ 0, η̇1(s) := 1[0,1](s) and for d ∈ Dn \Dn−1, n > 0,

η̇d(s) =

{
1[d−,d)(s)− 1[d,d+)(s)

}
2(n−1)/2

and d± are the nearest neighbours of d ∈ Dn \Dn−1 at level (n− 1).
To visualize the function t 7→ Bt(ω), is the infinite sums of sawtooth function

each with support on some dyadic interval [k2−n, (k+ 1)2−n) with independent
Gaussian weights.

Note that for d ∈ DN \DN−1 with neighbours d−, d+ ∈ DN−1,∫ 1

0

η̇d(s)
2ds =

∫ d+

d−
η̇d(s)

2ds =
(
2(n−1)/2

)2
(d+ − d−) = 1

0 =

∫ 1

0

η̇d(s)ds =

∫ d+

d−
η̇d(s)ds

so that ∫ t

0

η̇d(s)ds = 0

for all t 6∈ (d−, d+). Since DN−1 ∩ (d−, d+) = ∅ necessarily∫ t

0

η̇d(s)ds = 0

for d ∈ DN \ DN−1 and t ∈ DN−1. This shows that Bt has a finite series
expansion when t ∈ D.

The functions
(
η̇d : d ∈ D) are orthogonal in L2([0, 1], dt) and form the Haar

system : when d 6= d′ ∈ D, either both d, d′ ∈ DN \DN−1 for some N , and∫ 1

0

η̇d(s)η̇d′(s)ds = 0

since they have joint support, or d ∈ DN \ DN−1 and d′ ∈ DN−1 for some N
(or the other way around), and orthogonality follows since η̇′d is constant on the
support of η̇d (the constant is zero when the supports are disjoint).
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Let’s show that for each t ∈ D the series expansion (2.2) satisfies the recur-
sion step (2.1).

Note first that for t ∈ [0, 1],∀n ∈ N , there is one and only one d ∈ Dn\Dn−1

such that t ∈ support(ηd).
Assume that t ∈ DN \DN−1 with neighbours t−, t+ ∈ DN−1.
Then

Bt =
Bt−(ω) +Bt+(ω)

2
+Gt(ω)2−(N+1)/2 =

N−1∑
n=0

∑
d∈Dn

Gd(ω)
1

2

(∫ t−

0

η̇d(s)ds+

∫ t+

0

η̇d(s)ds

)
+Gt(ω)

∫ t

0

η̇t(s)ds

where for t ∈ DN \DN−1, ηt(s) ≥ 0 with maximum

ηt(t) =

∫ t

0

η̇t(s)ds =

∫ t

t−

η̇t(s)ds = 2−N2(N−1)/2 = 2−(N+1)/2

and ∀d ∈ DN−1, t ∈ DN \DN−1,

1

2

(∫ t−

0

η̇d(s)ds+

∫ t+

0

η̇d(s)ds

)
=

∫ t

0

η̇d(s)ds

since when d ∈ DN−1, η̇d(s) is constant in the interval (t−, t+). We have
obtained the series expansion (2.2) of Bt(ω).

We show that for P -almost surely the infinite series representation of Bt(ω)
is converging uniformly on t ∈ [0, 1],

We use the Gaussian tail estimates: given c > 0 for n ≥ (2π)−1c−2 , Gd ∼
N (0, 1)

P (|Gd| > c
√
n) ≤ 1

c
√

2πn
exp
(
−c

2n

2

)

P
(
ω : ∃d ∈ Dn \Dn−1 with |Gd(ω)| > c

√
n
)
≤

∑
n∈Dn\Dn−1

P (|Gd| > c
√
n)

≤ 2n−1 exp
(
−c

2n

2

)
≤ exp(−αn)

when c >
√

2α+ 2 log 2 >
√

2 log 2, for some α > 0.
For such c, since∑

n≥0

exp(−αn) = (1− exp(−α))−1 <∞

by Borel Cantelli lemma

P

(
ω : ∃N(ω) with |Gd(ω)| ≤ c

√
n, ∀n ≥ N(ω), d ∈ Dn \Dn−1

)
= 1

Therefore for P -almost all ω and n ≥ N(ω), and ∀t ∈ [0, 1]∣∣∣∣ ∑
d∈Dn\Dn−1

Gd(ω)

∫ t

0

η̇d(s)ds

∣∣∣∣ ≤ c√n2−(n+1)/2
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since for d ∈ Dn \Dn−1, with neighbours d−, d+ ∈ Dn−1∫ t

0

η̇d(s)ds = 0

when t 6∈ (d−, d+), and for t ∈ (d−, d+)

0 ≤
∫ t

0

η̇d(s)ds ≤
∫ d

0

η̇d(s)ds = 2−(n+1)/2 .

It means that, P -almost surely and uniformly in [0, 1], the series

∑
n≥0

∑
d∈Dn\Dn−1

Gd(ω)

∫ t

0

η̇d(s)ds = lim
n→∞

B
(n)
t (ω)

is absolutely convergent. Note: by computing the series: for 0 < p < q < 1,∑
n

√
npn < ∞, since for n large enough

√
n < (q/p)n and

∑
n
qn < ∞. This

means that P -almost surely {t 7→ B
(n)
t (ω) : n ∈ N} is a Cauchy sequence on the

space of continuous functions C([0, 1],R) equipped with the uniform norm. By
completeness, for P -almost all ω a continuous limiting function t 7→ Bt(ω) exists.

The random process (Bd(ω) : d ∈ D) is a Brownian motion on the dyadics,
since by construction at every dyadic level Dn the distribution of (Bd : d ∈ Dn)
coincides with the finite dimensional distribution of the Brownian motion.

Let’s fix k ≥ 0 and 0 = t0 < t1 < · · · < tk ≤ 1.
We find a sequence (t

(n)
1 , . . . , t

(n)
k ) ⊆ Dn such that max

0≤i≤k
|t(n)
i − ti| ≤ 2n.

For P -almost all ω the path t 7→ Bt(ω) is continuous, and(
B
t
(n)
1

(ω), . . . , B
t
(n)
k

(ω)
)
→ (Bt1(ω), . . . , Btk(ω)

)
Since (B

t
(n)
1

(ω), . . . , B
t
(n)
k

(ω)
)
is a jointly Gaussian vector and almost sure con-

vergence implies convergence in distribution, by the multivariate version of
lemma 7 it follows that the limit is a Gaussian random vector.

Morever since the increments are bounded in L2(Ω)

lim
n→∞

E

(
(B

t
(n)
i
−B

t
(n)
i−1

)(B
t
(n)
j
−B

t
(n)
j−1

)

)
= lim
n→∞

δij(t
(n)
i − t(n)

i−1)

= δij(ti − ti−1) = E

(
(Bti −Bti−1)(Btj −Btj−1)

)
where since Gaussian variables have moments of all order, in the last equality
we can pass the limit inside the expectation by uniform integrability. Since
we have shown that the increments of Bt(ω) over disjoint intervals are jointly
Gaussian and uncorrelated, with E((Bt − Bs)

2) = (t − s), we conclude that
(Bt(ω) : t ∈ [0, 1]) is a Brownian motion.
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2.2 Wiener integral, isonormal Gaussian pro-
cesses, and white noise

Definition 7. Define the Cameron-Martin space of absolutely continuous func-
tions with square integrable derivative

H =

{
t 7→ h(t) =

∫ t

0

ḣ(s)ds : ḣ ∈ L2([0, 1], dt)

}
For h, f ∈ H with h(t) =

∫ t
0
ḣ(s)ds, f(t) =

∫ t
0
ḟ(s)ds we define the scalar

product

(h, f)H := (ḣ, ḟ)L2([0,1]) =

∫ 1

0

ḣ(s)ḟ(s)ds

H equipped with the scalar product is an Hilbert space. ‖ h ‖H :=
√

(h, h)H is a
norm.

The functions {η̇d(s) : d ∈ D} used in Lévy construction form the Haar
system, which is a complete orthonormal basis of the Hilbert space L2([0, 1], dt),
meaning that

(ηd′ , ηd′′)H = (η̇d′ , η̇d′′)L2([0,1]) =

∫ 1

0

η̇d′(s)η̇d′′(s)ds = δd′,d′′

and every ḣ ∈ L2([0, 1], dt) has expansion

ḣ(t) =
∑
n≥0

∑
d∈Dn

η̇d(t)(η̇d, ḣ)L2([0,1])

where the series converges in L2([0, 1], dt)-sense.
Equivalently the primitives

t 7→ ηd(t) =

∫ t

0

η̇d(s)ds

form a complete orthonormal basis in H, so that every h ∈ H has the expansion

h(t) =
∑
n≥0

∑
d∈Dn

ηd(t)(ηd, h)H

converging in ‖ · ‖H norm.

Definition 8. An isonormal Gaussian space {B(h) : h ∈ H} is a collection of
zero mean jointly Gaussian random variables such that the covariance structure
matches the scalar product in H

E
(
B(h)B(f)

)
= (h, f)H =

∫ 1

0

ḣ(s)ḟ(s)ds

for h, f ∈ H.
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In particular we have the isometry between the subspace {B(h) : h ∈ H} of
L2(Ω,F , P ) and H

‖ B(h) ‖2L2(Ω,P )= E
(
B(h)2

)
=

∫ 1

0

ḣ(s)2ds =‖ h ‖2H

Note that if (hn : n ∈ N) ⊆ H is a Cauchy sequence in H-norm, then by the
isometry the Gaussian variables (B(hn) : n ∈ N) ⊆ L2(Ω, P ) form a Cauchy se-
quence, and since L2 is complete necessarily it has a limit in L2 sense. Moreover
the limit must be Gaussian, since limits in distribution of Gaussian variables are
Gaussian, and L2-convergence is stronger than convergence in probability which
implies convergence in distribution.

In this way we define stochastic integrals of functions ḣ(s) ∈ L2([0, 1], dt):
We approximate ḣ(s) by piecewise constant functions

ḣn(s) =
∑
tni ∈Πn

ḣni 1(tni−1,t
n
i ](s)

in L2([0, 1], dt), for some (ḣ1, . . . , ḣn) and Πn finite partition of [0, 1] The saw-
tooth function

hn(t) =

∫ t

0

ḣn(s)ds approximates h(t) =

∫ t

0

ḣ(s)ds

is an element of the Cameron Martin space H, is in correspondance with its
piecewise constant derivative ḣn(s).

For a piecewise constant integrand ḣn(s) we define the stochastic integral as
the Riemann sum

B(hn) :=

∫ 1

0

ḣn(s)dBs =
∑
tni ∈Πn

ḣni (Btni ∧1 −Btni−1∧1)

we check that this satisfies the isometry, which then is used to define the stochas-
tic integral

B(h) =

∫ 1

0

ḣ(s)dBs

as the limit in L2(Ω, P ) of the Cauchy sequence (B(hn)).
This was historically the first construction of a stochastic integral with deter-

ministic integrands and it is due to Norbert Wiener. Using martingales, Kiyoshi
Ito extended the construction to a much wider class of random integrand pro-
cesses.

These Gaussian variables are identified with the Wiener integrals

B(h) =

∫ 1

0

ḣ(s)dBs, h ∈ H

Let {Gd(ω) : d ∈ D} i.i.d. standard Gaussian variables on the probability
space (Ω,F , P ). We construct the isonormal Gaussian space indexed by h ∈ H
as follows:
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For the elements of the Haar basis, define∫ 1

0

η̇d(s)dBs := Gd, d ∈ D

For h ∈ H By using the Haar expansion,

B(h) =

∫ 1

0

ḣ(s)dBs :=
∑
n≥0

∑
d∈Dn\Dn−1

Gd(ω)(ḣ, η̇d)L2([0,1])

where the infinite sum converges in L2(Ω,F , P ).
In particular for t ∈ [0, 1] and ḣ(s) = 1[0,t](s)

B(h) =

∫ 1

0

1[0,t](s)dBs =

∫ t

0

dBs = Bt =

∑
n≥0

∑
d∈Dn\Dn−1

Gd(ω)

∫ 1

0

η̇d(s)1[0,t](s)ds

=
∑
n≥0

∑
d∈Dn\Dn−1

Gd(ω)

∫ t

0

η̇d(s)ds

where the convergence is in L2(Ω,F , P ).
Note this is exactly the series expansion used in Paul Lévy construction

of Brownian motion, and it was shown that it converges P -almost surely in
the Banach space of continuous functions equipped with uniform norm, which
implied that P -almost surely t 7→ Bt(ω) is continuous.

This construction works also by replacing the Haar system with any another
complete orthonormal system in L2([0, 1], dt).

Another insight is given by using white noise. Let {Ḃt(ω) : t ∈ [0, 1]} a
zero-mean Gaussian generalized process with the covariance defined formally as
the generalized function

E(ḂtḂs) = δ0(t− s)

where δ0(t− s) is the Dirac delta function of distribution theory, meaning that
for t 6= s Ḃt and Ḃs are uncorrelated while Ḃt has infinite variance. Such object
does not exists pointwise since there are not Gaussian variables with infinite
variance.

Formally Ḃt = dBt
dt is the derivative of Brownian motion (whose paths are

almost surely is nowhere differentiable as we will see ).
Define for h ∈ H

B(h) =

∫ 1

0

ḣ(s)dBs =

∫ 1

0

ḣ(s)
dBs
ds

ds =

∫ 1

0

ḣ(s)Ḃ(s)ds

= (ḣ, Ḃ)L1([0,1]) = (h,B)H

Note that (h,B)H is not defined ω-wise but it will be well define in L2(Ω, P )
sense as the limit of the smooth truncated series
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We see using Fubini that

E(B(h)B(f)) = E

(∫ 1

0

ḣ(s)dBs

∫ 1

0

ḟ(t)dBt

)
= E

(∫ 1

0

ḣ(s)Ḃ(s)ds

∫ 1

0

ḟ(t)Ḃtdt

)
=

∫ 1

0

∫ 1

0

ḣ(s)ḟ(t)E
(
Ḃ(s)Ḃ(t)

)
dt ds =

∫ 1

0

∫ 1

0

ḣ(s)ḟ(t)δ0(t− s)dtds =

=

∫ 1

0

ḣ(s)

(∫ 1

0

ḟ(t)δ0(t− s)dt
)
ds =∫ 1

0

ḣ(s)ḟ(s)ds = (ḣ, ḟ)L2([0,1],dt) = (h, f)H

Note that for the Haar system {ηd : d ∈ D}

Ḃ(s) :=
∑
n≥0

∑
d∈Dn

Gd(ω)η̇d(s)

satisfies formally the definition of white noise, since

E

(∑
d∈D

Gdη̇d(s)
∑
d′∈D

Gd′ η̇d′(t)

)
=
∑
d∈D

∑
d′∈D

η̇d(s)η̇d′(t)E
(
GdGd′

)
=
∑
d∈D

η̇d(s)η̇d(t)E(G2
d) =

∑
d∈D

η̇d(s)η̇d(t)

and by the Plancharel identity∫ 1

0

∫ 1

0

{∑
d∈D

η̇d(s)η̇d(t)

}
f(t)h(s)ds =

∑
d∈D

(∫ 1

0

f(t)η̇d(t)ds

)(∫ 1

0

h(s)η̇d(s)ds

)
=
∑
d∈D

(ḟ , η̇d)L2([0,1])(ḣ, η̇d)L2([0,1]) = (ḟ , ḣ)L2([0,1])

=

∫ 1

0

ḟ(t)ḣ(t)dt =

∫ 1

0

∫ 1

0

ḟ(t)ḣ(s)δ0(t− s)dtds

which shows that formally the covariance is the Dirac delta function

E(ḂtḂs) =
∑
d∈D

η̇d(s)η̇d(t) = δ0(t− s)

Conclusion the white noise Ḃt introduced formally as the derivative of
Brownian motion is a generalized random process which does not exist pointwise
but it makes sense to integrate a test function against it.

2.3 Hölder continuity of Brownian paths
Here we explain some ideas from Paul Malliavin book Stochastic analysis, chap-
ter 1. Let (H, (·, ·)H) be a separable Hilbert space, with an orthonormal basis
{en : n ∈ N} ⊂ H. This means that (en, em)H = δn,m, and

H = LinearSpan
(
en : n ∈ N

)
where we take closure in ‖ · ‖H -norm. It also implies that, if for h ∈ H we have
(h, en)H = 0 ∀n ∈ N, necessarly h = 0.
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Proposition 7. If H is infinite dimensional, a Gaussian measure γ(dω) on
the space (H,B(H)) such that the variables ξn(ω) := (en, ω) are i.i.d. standard
normal under γ does not exist.

Proof Otherwise

ω =
∑
n

(en, ω)en

‖ω‖2H =
∑
n

(en, ω)2‖en‖2H =
∑
n

ξn(ω)2 =∞ , γ(dω) almost surely

by applying Borel Cantelli lemma.
In other words, if {ξn} is a sequence of i.i.d. standard normal random

variables on a probability space (Ω,F , P ), then P -almost surely ,
( ∞∑
n=1

ξnen

)
6∈

H.

Proposition 8. Let U : H → H be a self-adjoint operator of Hilbert-Schmidt
class, which means that there is an orthonormal basis of eigenvalues {en} ⊂ H
with respective real eigenvectors {λn} with Uen = λnen such that∑

n

λ2
n <∞

Equip H with the scalar product (h, g)B = (U(h), U(g))H and denote by B = H̄
the completement of H under this norm.

Then
(∑
n
ξnen

)
converges P -almost surely in | · |B norm to a random ele-

ment of B.

Proof since (ei, ej)B = δijλ
2
i ,

Yn :=

∣∣∣∣ n∑
k=1

ξkek

∣∣∣∣2
B

=

n∑
k=1

ξ2
kλ

2
k

Now Yn a submartingale with decomposition

Yn =
∑
k≤n

λ2
k +

∑
k≤n

(ξ2
k − 1)λ2

k = An +Mn

Now Mn is a martingale bounded in L2 since

E

({∑
k≤n

(ξ2
k − 1)λ2

k

}2)
= 2

∑
k≤n

λ4
k < 2

∞∑
k=1

λ4
k <∞

It follows that Mn is an uniformly integrable martingale since it is bounded in
L2(Ω, P ) and therefore as n→∞ the limits M∞ and Y∞ exist P -almost surely.

Therefore P -almost surely
(∑n

k=1 ξkek
)
is a Cauchy sequence in B and by

completeness it has a limit.



30CHAPTER 2. PAUL LÉVY’S CONSTRUCTION OF BROWNIAN MOTION

By construction H is dense in B with respect to the |.|B norm.

For h ∈ H and ω ∈ B , P -almost surely exist the limit

W (h)(ω) =
∑
n

(en, h)Hξn =
∑
n

(en, ω)H(en, h)H := (h,W (·)(ω))H

because

EP

(∑
n

(en, h)Hξn

)2

=
∑
n

(en, h)2
H =

∥∥∥∥∑
n

(en, h)en

∥∥∥∥
H

= ‖h‖H

This can be interpreted as an extension of the scalar product (h, ω)H which is
well defined for h ∈ H and P almost all ω ∈ B.

Definition 9. We say that {B(h) : h ∈ H} ⊂ L2(Ω, P ) is the isonormal gaus-
sian process indexed by H.

The map h 7→ B(h) is an isometry from (H, (·, ·))H to L2(Ω, P ) with B(h) ∼
N (0, ‖ h ‖2H) and EP (B(h)B(g)) = (h, g)H , h, g ∈ H.

We extend this construction following the ideas of Paul Malliavin, to show
the following:

Take H = L2([0, 1], dt) which is identified with the Cameron-Martin space
H1 of the Brownian motion (Bt : t ∈ [0, 1]). Let {ėn} be an orthogonal basis in
L2([0, 1], dt), and (ξn) a sequence of i.i.d. standard normal random variables,
then

Bn(t) :=

n∑
k=1

ξk

∫ t

0

ėk(s)ds

P -almost surely converges in supremum norm | · |∞ to a random element B(t, ω)
of C0([0, 1]).

Definition 10. A Radonifying norm | · | on H is a norm such that there
is a countable family of dense (in the original H-norm) mutually orthogonal
finite dimensional subspaces δn ⊂ H with respective dimensions dn, such that if
(en1 , . . . , e

n
dn

) is an orthonormal basis of the subspace δn w.r.t. (·, ·)H , for

Γn =
(
en1 ξ

n
1 + · · ·+ endnξ

n
dn

)
we have∑

n

P
(
|Γn| > n−2

)
<∞

where (ξnj ) is a sequence of i.i.d. standard normal random variables.

Proposition 9. Let | · | a Radonifying norm for H , and let {δn} and {Γn} as
in the definition. Denote by B the completion of H under | · |.

Then P -almost surely
( ∞∑
n=1

Γn

)
converges in (B, | · |), where B is the com-

pletement of H under the | · | norm.
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Proof By Borel Cantelli lemma, almost surely |Γn| ≤ n−2 for all n large
enough, which implies

∑
n |Γn| <∞. Therefore

∑
k≤n Γk is a Cauchy sequence

w.r.t. the | · | norm and it has a limit in B. �

We have seen that the original Hilbert norm | · |H is never a Radonifying
norm (Proposition 7) when H is infinite dimensional.

Consider the Cameron-Martin space of Brownian motion,

H1 =

{
functions h defined on [0, 1] with h(t) =

∫ t

0

ḣ(s)ds where ḣ ∈ L2([0, 1], dt)

}
with (h, g)H1 := (ḣ, ġ)L2([0,1],dt).

Let {ėn(t)} be an orhonormal basis of L2([0, 1], dt), (for example in the Lévy
construction of Brownian motion we use the Haar basis), then

{
en(t) =

∫ t

0

ėn(s)ds : n ∈ N
}

is an orthonormal basis in H1 by taking limit in L2(Ω,F , P ) we construct the
gaussian process

Wt(ω) =

∞∑
n=1

ξn(ω)en(t) =

∞∑
n=1

ξn(ω)

∫ t

0

ėn(s)ds

where ξn ∼ N (0, 1) are i.i.d. real gaussian r.v.
(Wt(ω) : t ∈ [0, T ]) are jointly gaussian r.v.
We show that (Wt) is a Brownian motion by computing the covariance: by

using independence and Parseval identity

EP (WtWs) =

∞∑
n=1

∞∑
k=1

E(ξnξk)

(∫ t

0

ėn(u)du

)(∫ s

0

ėk(v)dv

)
=

∞∑
n=1

E(ξ2
n)(ėn,1[0,t])L2([0,1])(ėn,1[0,s])L2([0,1]) = (1[0,t],1[0,s])L2([0,1]) = t ∧ s

Theorem 1. The supremum norm | · |∞ is a Radonifying norm for H1.

Proof Denote by H1
n the subspace of functions which are piecewise linear

on the dyadic intervals (k2−n, (k + 1)2−n).
These are finite dimensional subspaces, H1

n has dimension 2n and H1
n ⊃

H1
n−1. Let δn be the orthogonal complement of H1

n−1 in H1
n:

δn = {η ∈ H1
n : η(k2−(n−1)) = 0 ∀k}

δn has dimension 2n−1. We can take as orthonormal basis in δn the Haar
functions {ηnk (t)} with

ηnk (t) =

∫ t

0

η̇nk (s)ds where

η̇nk (s) = 2(n−1)/2
(
1(2k2−n,(2k+1)2−n](s)− 1(2k+12−n,(2k+2)2−n](s)

)
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Let

Γn(t) =

2n−1−1∑
k=0

ξnk η
n
k (t)

where {ξnk } are i.i.d. standard normal. Note that for a fixed dyadic level n, the
functions ηnk (t), k = 0, . . . , 2n−1 − 1, have disjoint support.

|Γn|∞ = sup
t∈[0,1]

|Γn(t)| = sup
k
|ξnk |

∫ (2k+1)2−n

2k2−n
η̇nk (s)ds = 2−(n+1)/2 sup

k
|ξnk |

P (|Γn|∞ > n−2) = P

(2n−1⋃
k=1

{
|ξnk | > n−22(n+1)/2

})
≤ 2n−1P (|ξ| > n−22(n+1)/2) = 2nP (ξ > n−22(n+1)/2) ≤ 2nP (ξ > 2n/4)

when n is large enough, since 2n/4 = o(n−22(n+1)/2).
By the integral criteria of convergence of series,∑

n

2nP (ξ > 2n/4) <∞⇐⇒
∫ ∞

0

2xP (ξ > 2x/4)dx <∞

by changing variables, y = 2x/4, x = 4 log y/ log 2

⇐⇒
∫ ∞

1

y4P (ξ > y)

(
dx

dy

)
dy <∞

⇐⇒
∫ ∞

1

y3P (ξ > y)dy <∞

= ( integrating by parts ) =
1

4

∫ ∞
1

y4P (ξ ∈ dy) ≤ 1

8
E(ξ4) =

3

8
<∞

The result follows by proposition 9. �

For α ∈ (0, 1] introduce the Hölder norm

|g|α := |g(0)|+ sup
t,s∈[0,1]

|g(t)− g(s)|
|t− s|α

The space Cα of α-Hölder continuous functions g form a Banach space Cα
with norm | · |α.

The following result says that we can realize the Brownian motion as a
gaussian measure on Cα for every α ∈ (0, 1/2). All these realizations have the
same Cameron-Martin space H1.

Theorem 2. For α < 1/2 the norm | · |α is Radonifying. Consequently, P -
almost surely the series

∑
n
ξn(ω)en converges in | · |α norm. This means that

almost surely the paths of the Brownian motion are Hölder continuous of order
α, for all α < 1

2 .
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Proof We construct Γn(t) as in the proof of Theorem 1.1. and show that
| · |α is a Radonifying norm. We must bound the quantity

|Γn|α = sup
s,t

|Γn(t)− Γn(s)|
|t− s|α

=

max
k=0,...,2n−1−1

{(
|ξnk |2−(n+1)/22αn

)
∨ max
h=0,...,k−1

(
|ξnk − ξnh |2−(n+1)/22(n−1)α(k − h)−α

)}
since at every dyadic level n, the functions ηnk (t), k = 0, . . . , 2n−1 − 1, have
disjoint support. Now

P (|Γn|α > n−2) =

P

( ⋃
k=0,...,2n−1−1

{
|ξnk |2−n( 1

2−α)2−1/2 > n−2
}
∪

⋃
h=0,...,k−1

{
|ξnk − ξnh |2−n( 1

2−α)2−( 1
2 +α)(k − h)−α > n2

})

= P

(2n−1−1⋃
k=0

{
A

(n)
k ∪

k−1⋃
k=0

B
(n)
h,k

})
≤

2n−1−1∑
k=0

{
P (A

(n)
k ) +

k−1∑
k=0

P (B
(n)
h,k)

}

To show that the Hölder norm is Radonifying, is enough to check that

∞∑
n=0

2n−1−1∑
k=0

P (A
(n)
k ) +

∞∑
n=0

2n−1−1∑
k=0

k−1∑
h=0

P (B
(n)
h,k) <∞

For the first sum we proceed as in Theorem 1.1, using the assumption that
(1/2− α) > ε > 0, it is enough to check that for a standard Gaussian r.v. ξ

∑
n

2nP (|ξ| > 2nε) <∞⇐⇒
∫ ∞

0

xP (|ξ|1/ε > x)dx =
1

2
E(|ξ|2/ε) <∞

which holds since the standard Gaussian random variable ξ has all moments.
Recall that by Fubini,∫ ∞

0

xP (|Y | > x)dx =

∫ ∞
0

∫ ∞
0

1(y > x)P (|Y | ∈ dy)xdx =

∫ ∞
0

(∫ y

0

xdx

)
P (|Y | ∈ dy) =

1

2

∫ ∞
0

y2P (|Y | ∈ dy) =
1

2
EP
(
Y 2
)
.

and we have used this for Y = |ξ|1/ε. For the second term, note first that for
k 6= h, (ξh − ξk)

L
= ξ
√

2. We get

∞∑
n=0

2n−1−1∑
k=0

k−1∑
h=0

P
(
|ξ|2−n( 1

2−α)2−α(k − h)−α > n2
)
≤ C +

∞∑
n=0

2n−1−1∑
k=0

k−1∑
h=0

P
(
|ξ|(k − h)−α > 2nε

)
fore some finite constant C, since for 0 < ε < (1/2− α), and n large enough

2nε < n−22n( 1
2−α)2α.
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Using the integral criterium for the convergence of the series∫ ∞
0

∫ 2x

0

∫ y

0

P
(
|ξ|(y − z)−α > 2xε

)
dzdydx =

∫ ∞
0

∫ 2x

0

∫ y

0

P
(
|ξ|z−α > 2xε

)
dzdydx =

1

log 2

∫ ∞
1

dw
1

w

∫ w

0

dy

∫ y

0

P
(
|ξ|z−α > wε

)
dz =

1

log 2

∫ ∞
1

dw

∫ w

0

w − z
w

P
(
|ξ|z−α > wε

)
dz ≤

1

log 2

∫ ∞
0

dw

∫ w

0

w − z
w

P
(
|ξ|z−α > wε

)
dz =

1

log 2

∫ ∞
0

dw

∫ 1

0

uP
(
|ξ|(wu)−α > wε

)
wdu =

1

log 2

∫ 1

0

u

∫ ∞
0

wP
(
|ξ|u−α > wε+α

)
dwdu =

1

log 2

∫ 1

0

u

∫ ∞
0

wP
(
|ξ|1/(ε+α)u−α/(ε+α) > w

)
dwdu =

1

2 log 2
E(|ξ|2/(ε+α))

∫ 1

0

u(ε−α)/(ε+α)du =
(ε+ α)

4ε log 2
E(|ξ|2/(ε+α)) <∞,

since (ε− α)/(ε+ α) > −1 �



Chapter 3

Stochastic process:
Kolmogorov’s construction

3.1 Kolmogorov’s extension

We skipped this section during the lectures since we have used Lévy’s
construction

We prove first Daniell-Kolmogorov extension theorem which tells when a
stochastic process (Xt) indexed by a time parameter t ∈ T exists as collection
of random variables.

Whether this collection of random variables can be combined together into
a random path with some continuity properties with respect to the parameter,
is the content of Kolmogorov’s continuity theorem.

Definition 11. Let (Ω,F , P ) be a probability triple. A stochastic process is a
collection of random variables (Xt(ω))t∈T with values in (Rd,B(Rd) with pa-
rameter set T .

In these lectures we will consider T = N,Z,R,R+,Q but some other index
sets may appear.

Definition 12. Let X = (Xt(ω))t∈T and X ′ = (X ′t(ω))t∈T R-valued stochastic
processes on the respective probability spaces (Ω,F , P ) and (Ω′,F ′, P ′). We say
that X and X ′ are versions the same process if their finite dimensional laws
coincide: ∀k ∈ N, t1. . . . tk ∈ T B1, . . . Bk ∈ B(Rd)

P

(
Xt1 ∈ B1, . . . , Xtk ∈ Bk

)
= P ′

(
X ′t1 ∈ B1, . . . , X

′
tk
∈ Bk

)
Definition 13. Let X = (Xt(ω))t∈T and Y = (Yt(ω))t∈T R-valued stochastic
processes on the same probability space (Ω,F , P ) We say that X and Y are
modifications of each other if ∀t ∈ T

P
(
Xt = Yt

)
= 1

35
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Definition 14. Let X = (Xt(ω))t∈T and Y = (Yt(ω))t∈T R-valued stochastic
processes on the same probability space (Ω,F , P ) We say that X and Y are
indistinguishable when

P
(
ω : Xt(ω) = Yt(ω) ∀t ∈ T

)
= 1

Exercise 1. When X and Y are indistinguishable, they are modification of each
other. When X and Y are each others’ modifications, they share the same finite
dimensional laws. Show a simple example of a X,Y which are modfication of
each other but not indistinguishable.

Definition 15. We say that the family of finite dimensional distributions

Pt1,...,tn : B(Rn)→ [0, 1], with n ∈ N, t1, . . . , tn ∈ T

is consistent , when

•

Pt1,...,tn(A1 × · · · ×An) = Ptπ(1),...tπ(n)

(
Atπ(1)

· · · ×Atπ(n)

)
∀n ∈ N, A1, . . . An ∈ B(R), t1, . . . , tn ∈ T, ∀ permutation π

•
Pt1,...,tn(A1 × · · · ×An) = Pt1,...,tn,tn+1(A1 × · · · ×An,R)

Theorem 3. (Daniell-Kolmogorov,1933) Let(
Pt : t ∈

∞⋃
n=1

Tn
)

a consistent family of finite dimensional probability distributions with arbitrary
index set T .

There exist a unique probability measure P on the product space Ω = RT
equipped with the cylinder σ-algebra generated by the product topology, such that
∀n ∈ N, t1, . . . , tn ∈ N, Bn ∈ B(Rn),

P

(
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ Bn

)
= Pt1,...,tn(Bn) (3.1)

Proof
The elements of Ω = RT are functions t 7→ ωt. σ(C) coincides with the small-

est σ-algebra on Ω = RT which makes the canonical evalutions ω 7→ Xt(ω) = ωt
measurable for all t ∈ T .

We define the cylinders’ algebra C with typical elements

C =

{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ Bn

}
where n ∈ N, t1, . . . , tn ∈ N, Bn ∈ B(Rn).

We take (3.1) as a definition of the map P : C → [0, 1].
By using the consistency assumption you can check that P(C) does not

depend on the particular representation of a cylinder C ∈ C.
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Since every finite number of cylinders can be represented on a common
index set, since the finite dimensional distributions are probabilities, it is also
not difficult to check that P is finitely additive on C.

The next step is to use Charatheodory’s theorem to extend P to a σ-additive
probability measure defined on the σ-algebra σ(C).

All we need to show is that P is σ-additive on the algebra C, that is
If {Cn : n ∈ N} ⊆ C is a sequence of cylinders such that

Cn ⊇ Cn+1∀n, and
⋂
n∈N

Cn = ∅,

necessarily limn→∞P(Cn) = 0.

We proceed by contradiction, assuming P(Cn) ≥ ε > 0 ∀n and showing that⋂
n∈N

Cn 6= ∅.

By choosing the representations and eventually repeating the cylinders in
the sequence, we always find a sequence (tn) ⊆ T and a sequence of cylinders
{Dn : n ∈ N} with representations

Dn =

{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ An

}
where An ∈ B(Rn), such that Dn ⊇ Dn+1∀n, and for all m ∈ N there is some n
such that Dn = Cm.

It follows that P(Dn) ≥ ε > 0 ∀n and
⋂
n∈N Cn =

⋂
n∈NDn.

Now since Pt1,...,tn is a probability measure on Rn, and An is Borel mea-
surable, there is a closed set En ⊆ An with Pt1,...,tn(An \ En) < ε2−n. By
σ-additivity, intersecting En with a ball large enough centered around the ori-
gin we find also a compact Kn ⊆ An with

Pt1,...,tn(An \Kn) < ε2−n

Consider the cylinders

Fn =

{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ Kn

}
Since these are not necessarily included into each other we take the intersections

F ′n =

n⋂
m=1

Fk =

{
ω ∈ RT : (ωt1 , . . . , ωtn) ∈ K ′n

}
where K ′n ⊆ Kn are compacts. We have

Pt1,...,tn(K ′n) = P(F ′n) = P(Dn)−P(Dn \ F ′n) =

Pt1,...,tn(An)− Pt1,...,tn
( n⋃
m=1

(An \ (Km × Rm−n)

)

≥ Pt1,...,tn(An)− Pt1,...,tn
( n⋃
m=1

(Am \Km)× Rn−m
)

≥ P(Dn)−
n∑

m=1

P(Dm \ Fm) ≥ ε−
n∑

m=1

ε2−m > ε/2 > 0
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Therefore for each n, ∃(x(n)
1 . . . , x

(n)
n ) ∈ K ′n 6= ∅.

Since the sequence F ′n is non-increasing, necessarily the sequence (x
(n)
1 ) ⊆

K ′1. By compactness, there is a convergent subsequence x(nl)
1 → x∗1 ∈ K ′1.

The subsequence (x
(nl)
1 , x

(nl)
2 ) ⊆ K ′2, and there is a convergent subsequence

with limit (x∗1, x
∗
2) ∈ K ′2.

By induction, we find a sequence (x∗n) with (x∗1, . . . , x
∗
n) ∈ K ′n ∀n. The set

D∗ =

{
ω ∈ RT : ωtn = x∗n ∀n

}
⊆ F ′n ⊆ Dn ∀n ∈ N

is nonempty, and D∗ ⊆
⋂
n Fn contradicting the hypothesis �

Definition 16. A Borel space (S,S) is a measurable space which can be mapped
by a one-to-one measurable map f with measurable inverse to a Borel subset of
the unit interval ([0, 1],B([0, 1])).

Lemma 9. In a Borel space, the σ-algebra S is countably generated.

Corollary 3. Kolmogorov extensions theorem applies to processes (Xt(ω))t∈T
taking vaues in a Borel space (S,S), (for example Rd), without restrictions on
the parameter set T .

Proof By using a measurable bijection f : S ↔ B ∈ B([0, 1]), we define first
a stochastic process (Yt(ω)) with values in [0, 1] and obtain Xt(ω) = f−1(Yt(ω))
with values in S.

Exercise 2. A separable metric space (S, d) equipped with the Borel σ-algebra
generated by the open sets is a Borel space.

Hint: there is countable set {xn}n∈N which is dense in S. ∀x ∈ S there is a
subsequence {xnk}k∈N such that d(xnk , x)→ 0.

Solution: We construct such subsequence explicitely as follows: let

nk = arg min
1≤m≤2k

{d(xm, x)}

where we use lexicographic order in case of ambiguity.
Since nk ≤ 2k it has a binary expansion

nk =

k−1∑
m=0

x(k)
m 2m, x(k)

m ∈ {0, 1}

so we can code nk by the word (x
(k)
0 , . . . , x

(k)
k−1) ∈ {0, 1}k, By concatenating

these words we obtain the binary expansion of some u ∈ [0, 1]. This map is
one-to-one, from u we can recover the subsequence and (xnk) and the limiting
point x0. Although this map is not continuous, it is measurable with measurable
inverse: a ball centered around some xn is mapped to a Borel set in [0, 1], and
the inverse image of a dyadic interval (k2−n, (k + 1)2−n] is a Borel set in S.

Warning: Working with random processes taking values in non-separable
spaces can be tricky, since Kolmogorov theorem does not apply directly. During
this lecture course we will stay on the safe side.
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3.2 Continuity
We skipped also this section during the lectures since we have used
Lévy’s construction

So far we have constructed the probability measure P on (Ω = RT , σ(C))
such that the canonical process Xt(ω) = ωt follows the specified family of fi-
nite dimensional distribution. Suppose T is a topological space which is not
countable, for example T = R. In such case, the set

A = {ω : t 7→ ωt is continuous at all t ∈ T }

does not belong to σ(C) simply because to check continuity in an uncountable
set we need uncountably many evaluations of the function t 7→ ωt. In other
words, 1A(ω) is not a random variable.

Theorem 4. (Kolmogorov’s continuity criterium)
We denote the dyadic subsets of [0, 1]d by

D =
⋃
m∈N

Dm where Dm := {2−m(k1, . . . , kd) : 0 ≤ ki ≤ 2m}, m ∈ N.

Note that D is countable and dense in [0, 1]d.
On a probability space (Ω,F , P ), let (Xt : t ∈ T = [0, 1]d) a stochastic process

with values in a normed vector space (E, ‖ · ‖E) (for example E = Rm) When
for p, r > 0

E

(
‖ Xt −Xs ‖pE

)
≤ c|t− s|d+r

for all t, s ∈ T , then for all 0 < α < r/p

‖ Xt(ω)−Xs(ω) ‖E≤ Kα(ω)|t− s|α ∀s, t ∈ D

with Kα ∈ Lp(Ω), in particular Kα(ω) <∞ P -almost surely.

Proof
Let Nm =

{
(s, t) ∈ Dm : |s − t| = 2−m

}
, the set of nearest neighbors pairs

at level m.
Since #Nm = 1

2

∑
s∈Dm #

{
neighbors of s

}
≤ 2−12d(m+1)2d

E

(
sup

(s,t)∈Nm
‖ Xt −Xs ‖p

)
≤

∑
(s,t)∈Nm

E
(
‖ Xt −Xs ‖p

)
≤ (2d(m+1)d)(c2−m(d+r)) = 2ddc2−mr

(3.2)

For t ∈ D let tm the nearest element in Dm.
Either tm+1 = tm or |tm+1 − tm| = 2−(m+1), that is (tm, tm+1) ∈ Nm+1.

Define analogously (sm) for s ∈ D. Since t, s ∈ D implies t, s ∈ Dk for some k
large enough, by using telescopic sums

Xt −Xs = (Xtm −Xsm) +

∞∑
k=m

(Xtk+1
−Xtk)−

∞∑
k=m

(Xsk+1
−Xsk)

where we sum over finitely many non-zero terms. Note that if t, s ∈ D, t 6= s,
necessarily 2−(m+1) < |t− s| ≤ 2−m for some m ∈ N. In such case, (tm− sm) =
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2m that is tm and sm are neighbors in Dm By starting the telescoping sum from
such m,

‖ Xt −Xs ‖≤‖ tm − sm ‖ +

∞∑
k=m

‖ Xtk+1
−Xtk ‖ +

∞∑
k=m

‖ Xsk+1
−Xsk ‖

which gives

sup
{
‖ Xt −Xs ‖p: t, s ∈ D, 2−(m+1) < |t− s| ≤ 2−m} ≤ 3

∞∑
k=m

sup
(t,s)∈Nm

‖ Xtk+1
−Xtk ‖p

By the triangle inequality in Lp(Ω, P, E) and (3.2)

E

(
sup

s,t∈D:|s−t|<2−m
‖ Xt −Xs ‖p

)1/p

≤ 3

∞∑
k=m

EP

(
sup

(t,s)∈Nk
‖ Xt −Xs ‖p

)1/p

≤ c̄
∞∑
k=m

2−kr/p = c̄2−mr/p

Fix α < (r/p). By taking union over disjoint sets

E

(
sup

(s,t)∈D:s6=t

{
‖ Xt −Xs ‖
|t− s|α

}p)1/p

≤ c̄
∞∑
m=0

2mα2−mr/p <∞

which implies

Kα(ω) := sup
(s,t)∈D:s 6=t

‖ Xt(ω)−Xs(ω) ‖
|t− s|α

<∞ P -almost surely (3.3)

Note that ω 7→ Kα(ω) is measurable and Kα ∈ Lp(Ω). By taking countable
intersections of these events with αn = r

p

(
n
n+1

)
, almost surely (3.3) holds simul-

taneously for all α < r/p �

Corollary 4. Under the assumptions of Theorem 4, when (E, ‖ · ‖) is complete,
there is a modification X̃t(ω) of the process Xt(ω) with α-Hölder continuous
trajectories for all 0 < α < r/p.

Proof It follows outside a measurable set N with P (N ) = 0, the paths
t 7→ Xt(ω) are uniformly continuous on the compact D.

Therefore for each t ∈ [0, 1]

X̃t(ω) :=

{
lim

s→t,s∈D
Xs(ω) ω ∈ N c

x0 ω ∈ N

is well defined and measurable (x0 ∈ E is chosen arbitrarily).

This follows since, for ω ∈ N c, if sn, s′n ∈ Dn are dyadic sequences with
sn → t and s′n → t, ∀ε > 0 ∃nε(ω) such that ∀m,n > nε(ω)

max

{
‖ Xsn(ω)−Xs′n

(ω) ‖, ‖ Xsm(ω)−Xsn(ω) ‖, ‖ Xs′m
(ω)−Xs′n

(ω) ‖
}
< ε
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Therefore for ω ∈ N c Xsn(ω) and Xs′n
(ω) are Cauchy sequences in the complete

space E with a common limit.

Note that X̃s(ω) = Xs(ω) for s ∈ D, and since (Xs(ω))s∈D is α-Hölder
continuous when ω ∈ N c, 0 < α < 2/p by construction (X̃s(ω))s∈[0,1]d is α-
Hölder continuous ∀ω and all 0 < α < r/p.

From the hypothesis on increments’ moments, by Chebychev inequality we
get for fixed t ∈ [0, 1]d

Xs
P→ Xt as s→ t, s ∈ T

in probability. By starting with a dyadic sequence, we find a subsequence (sk) ⊆
D such that sk → t and P -almost surely

lim
k
Xsk(ω) = Xt(ω)

Since Xs(ω) = X̃s(ω) ∀s ∈ D, it follows that ∀t ∈ [0, 1]d

P ({ω : Xt(ω) = X̃t(ω)}) = 1

that is X̃t(ω) is a continuous modification of Xt(ω).
In particular X̃t and Xt have the same finite dimensional distributions �

Note that this continuous modification is unique up to indistinguishability.
If X̂t(ω) is another continuous modification of Xt(ω), necessarily

P (X̂s(ω) = Xs(ω) = X̃s(ω) ∀s ∈ D) = 1

=⇒ P (X̂t(ω) = X̃t(ω) ∀t ∈ [0, 1]d) = 1

Corollary 5. On the probability space (Ω = (R)R, σ(C)), there is a probability
measure PW ( the Wiener measure) and a stochastic process Bt(ω) which sat-
isfies definition 1. Morover there is a modification which has locally α-Hölder
continuous paths t 7→ Bt(ω) ∀ω ∈ Ω for any 0 < α < 1/2.

Locally means that α-Hölder continuity holds on compacts.
Note by taking images, the Wiener measure PW is also defined on the spaces

C(R+;R), Cα(R+;R) of continuous and locally α-Hölder continuous functions,
for 0 < α < 1/2. Under the Wiener measure, in these function spaces the
canonical process is a Brownian motion.

Proof We first take T = [0, 1] Ω = R[0,1] Definition 1 determines consis-
tently the family of finite dimensional distributions of Brownian motion. By
Kolmogorov extension theorem, there a probability measure PW on (Ω, σ(C))
consistent with the finite dimensional distributions’ specification. In particular
the canonical process Xt(ω) = ωt has Gaussian increments (Xt(ω)−Xs(ω)) ∼
N(0, t− s).

The Gaussian distribution has the following property: if G(ω) is a Gaussian
random variable with E(G) = 0, then E(G2n+1) = 0 ∀n, and there are constants
(cn) such that

E(G2n) = cn{E(G2)}n
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By the continuity theorem with d = 1 and p = 2n, n ∈ N we get

E(|Xt −Xs|2n) = cn|t− s|n = cn|t− s|1+(n−1) ∀n ∈ N

from which it follows that (Xt(ω)) has a modification (Bt(ω)) which is α-Hölder
continuous for all α with

α < sup
n∈N

(n− 1)

2n
= 1/2

Let (B
(n)
t )t∈[0,1] a sequence of independent copies of the Brownian motion

defined on the canonical space of continuous function Ωn = C([0, 1],R) equipped
with the Wiener measure. Note that since C([0, 1],R) is separable there is not
problem to apply Kolomogorov theorem to define the product measure on the
infinite product space.

By concatenating these independent copies into a single continuous path we
obtain a Brownian motion indexed by T = [0,+∞), or T = R.



Chapter 4

Probability theory,
complements

4.1 Change of measure
For a random variable X(ω) we say X ∈ F , or X ∈ L0(Ω,F), when X is
F-measurable.

For X ∈ F and X(ω) ≥ 0∀ω denote X ∈ F+.
If X ∈ F and X(ω) ≥ 0 P -a.s. denote X ∈ L0

+(Ω,F).
Let

X(ω) =

n∑
i=1

xi1Ai(ω)

for xi ∈ R and Ai ∈ F , n ∈ N. We say that X is a simple r.v. and denote
X ∈ YF . Denote also YF+ = YF ∩ F+.

On the probability space (Ω,F , P ), let Z(ω) ≥ 0 P -a.s. with 0 < EP (Z) <
∞, which implies P ({ω : Z(ω) > 0}) > 0 .

We introduce a new probability measure Q : F → [0, 1]

Q(A) :=
EP (Z1A)

EP (Z)
∀A ∈ F

Q is a probability: clearly it is additive and Q(Ω) = 1. It is also σ-additive:
An ↑ Ω, ( which means An ⊆ An+1 ja

⋃
n
An = Ω), also Z(ω)1An(ω) ↑ Z(ω)

P -a.s. Using the monotone convergence theorem, it follows

Q(An)EP (Z) = EP
(
Z1An

)
↑ EP (Z) = Q(Ω)EP (Z) =⇒ Q(An) ↑ 1

We can also use the normalized r.v.

Z̃(ω) :=
Z(ω)

EP (Z)

with EP (Z̃) = 1, and write Q(A) = EP
(
Z̃1A

)
.

43
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Theorem 5. ∀A ∈ F P (A) = 0 =⇒ Q(A) = 0. We say that Q is absolutely
continuous with respect to P , and denote Q� P .

Proof P (A) = 0 =⇒ Z(ω)1A(ω) = 0 P a.s.

Theorem 6. When X ∈ F+, (which means X(ω) ≥ 0 P -a.s. and F-measurable)
,

EQ(X) =
EP (XZ)

EP (Z)
,

and X ∈ L1(Ω,F , Q) if and only if (XZ) ∈ L1(Ω,F , P ).

Proof: when X(ω) is a simple random variable taking finitely many non-
negative values ( denote X ∈ YF+), it follows straight from the definition
and linearity of the expectation. When X ∈ F+ there is monotone sequence
of simple random variables such that 0 ≤ Xn(ω) ↑ X(ω) ∀ω. By applying
twice the monotonisen convergence theorem under Q and under P , we see that
EQ(Xn) ↑ EQ(X) and

EQ(Xn) =
EP (XnZ)

EP (Z)
↑ EP (XZ)

EP (Z)
�

Exercise 3. Elementary conditional probability
For B ∈ F with P (B) > 0, we change the probabity measure using the r.v.

Z(ω) = P (B)−11B(ω), obtaining

P (A|B) := EP (Z1A) =
EP (1A1B)

P (B)
=
P (A ∩B)

P (B)
, A ∈ F

The map P ( · |B) : A ∈ F 7→ P (A|B) ∈ [0, 1] is a probability measure on (Ω,F),
which is called the conditional probability given the event B.

The chain rule

P (A ∩B) = P (B)P (A|B) = P (A)P (B|A)

is very useful to evaluate the probabilities of complicated events.
The conditional expectatio of X ∈ L1(P ) conditionally on B with P (B) > 0

EP (X|B) :=
EP (X1B)

P (B)
=

∫
Ω

X(ω)P (dω|B)

Note that these elementary conditional probabilities are defined only when P (B) >
0 for the conditioning event. What about conditioning on P -null events ?

From an initial probability P on (Ω,F) We have built a probability measure
Q� P by using a random variable 0 ≥ Z(ω) ∈ L1(P ).

This works also in the opposite direction: when when Q� P are probability
measures on (Ω,F) there is a random variable 0 ≤ Z(ω) ∈ L1(P ) such that the
change of measure formula Q(A) = EP (Z1A) holds.

Theorem 7. (Radon-Nikodym) On a probability space (Ω,F) let P,Q probabil-
ity measures (more in general P could be a σ-finite measure), such that A ∈ F
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and P (A) = 0 imply Q(A) = 0. (notation: Q
F
� P ). Then ∃ 0 ≤ Z(ω) ∈

L1(Ω,F , P ) with EP (Z) = 1 such that

Q(A) = EP (Z1A) ∀A ∈ F

Z(ω) is uniquely determined up to P -null sets. We denote

Z(ω) =
dQ

dP
(ω)

which is called likelihood ratio ( finnish: uskottavuus-osamäärä ) or Radon-
Nikodym derivative

The proof will be given later by using martingales.

We write the change of measure formula as

EQ(X) =

∫
Ω

X(ω)Q(dω) =

∫
Ω

X(ω)
dQ

dP
(ω) P (dω)

Definition 17. On a probability space (Ω,F) the probabilities P and P ′ are
singular (notation: P ⊥ P ′), when there is A ∈ F such that P (A) = 0 ja
P ′(A) = P ′(Ω) = 1.

Exercise 4. On a probability space (Ω,F , P ), let F = σ(X) where X(ω) is a
standard Gaussian r.v. with E(X) = 0, E(X2) = 1, and

P (X ∈ dx) =
1√
2π

exp
(
−x

2

2

)
dx

Let P ′ another probability such that

P ′(Xi ∈ dx) =
1√
2π

exp
(
− (x− µ)2

2

)
dx

We compute the likelihood ratio

Z ′(ω) =
dP ′

dP
(ω) and Z(ω) =

dP

dP ′
(ω) =

1

Z ′(ω)

From the R-N theorem it follows that Z ′(ω) is σ(X)-measurable. There is a
Borel-measurable function z : R→ R+ such that Z ′(ω) = z′(X(ω)).

For all Borel measurable f(x) ≥ 0

1√
2π

∫
R
f(x) exp

(
− (x− µ)2

2

)
dx = EP ′(f(X)) = EP (f(X)Z ′)

= EP (f(X)z′(X)) =
1√
2π

∫
R
f(x)z′(x) exp

(
−x

2

2

)
dx

which implies

z′(x) = exp
(
µx− 1

2
µ2
)
,

Z ′(ω) = exp
(
µX(ω)− 1

2
µ2
)

Since EP (Z ′) = 1, it follows

EP
(
exp(µX)

)
= exp

(1

2
µ2
)
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4.1.1 Lebesgue decomposition

Let P, P ′ probabilities on (Ω,F).
Then Q := 1

2 (P + P ′) is a probabilty measure which satisfies P � Q and
P ′ � Q on F .

By the R-N theorem (7) the likelihood-ratio processes

ζ(ω) :=
dP

dQ
(ω) ja ζ ′(ω) :=

dP ′

dQ
(ω) ,

do exist, non-negative and F-measurable.
Note that ∀ω

ζ(ω) + ζ ′(ω) =
2dP

d(P + P ′)
(ω) +

2dP ′

d(P + P ′)
(ω) = 2

d(P + P ′)

d(P + P ′)
(ω) = 2 .

Since ζ(ω) ≥ 0, ζ ′(ω) ≥ 0 it follows

ζ(ω) ≤ 2, ζ ′(ω) ≤ 2 Q a.s. , and Q
(
{ω : ζ(ω) = 0} ∩ {ω : ζ ′(ω) = 0}

)
= 0.

We define ∀ω ∈ Ω

Z(ω) =
dP

dP ′
(ω) :=

ζ(ω)

ζ ′(ω)
and Z ′(ω) =

dP ′

dP
(ω) :=

ζ ′(ω)

ζ(ω)
=

1

Z(ω)

where by convention 0/0 takes an arbitrary value, for example 0.
For X ∈ F+ we have the generalized change of measure formula

EP ′(X) = EP (XZ ′) + EP ′(X1(ζ = 0))

Proof

EP ′(X) = EP ′
(
X{1(ζ > 0) + 1(ζ = 0)}

)
= EQ

(
Xζ ′1(ζ > 0)

)
+ EP ′

(
X1(ζ = 0)

)
= EQ

(
X
ζ ′

ζ
ζ1(ζ > 0)

)
+ EP ′

(
X1(ζ = 0)

)
= EQ(XZ ′ζ) + EP ′

(
X1(ζ = 0)

)
= EP (XZ ′) + EP ′

(
X1(ζ = 0)

)
= EP (XZ ′) + EP⊥(X)

where

P⊥(dω) := 1(ζ(ω) = 0)P ′(dω) ,

Therefore

P ′(dω) = Z ′(ω)P (dω) + 1(ζ(ω) = 0)P ′(dω) = Z ′(ω)P (dω) + P⊥(dω)

P ja P⊥ are singular, since for A := {ω : ζ(ω) = 0}

P (A) = 0 and P⊥(A) = P⊥(Ω)

Since P⊥(Ω)+EP (Z ′) = P ′(ζ = 0)+EP (Z ′) = 1, P⊥ is a probability measure if
and only if P ⊥ P ′, (equivalently P⊥ = P ′). Also EP (Z ′) ≤ 1 and EP (Z ′) = 1
if and only if P ′ � P , in such case P⊥ = 0.
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4.2 Conditional expectation
Let (Ω,F , P ) a probability space and G ⊆ F a sub σ-algebra. Let X(ω) ≥ 0 be
a random variable F ≥ 0. A G-measurable random variable Y (ω) is a version
of the conditional expectation EP (X|G)(ω) if ∀G ∈ G

EP (X1G) = EP (Y 1G)

More in general when X(ω) = X+(ω)−X−(ω) with X±(ω) ≥ 0, we take define

EP (X|G)(ω) = EP (X+|G)(ω)− EP (X−|G)(ω)

the right hand side is well defined. Otherwise the conditional expectation does
not exists.

Altough in most of the textbooks it is assumed EP (|X|) <∞, our extended
definition makes sense and could be useful.

For example, let Z(ω) = bX(ω)c ∈ Z, the integer part of the random variable
X, and let G = σ(Z).

Then the random variable

Y (ω) :=
∑
z∈Z

∫
[z,z+1)

xPX(dx)

PX([z, z + 1))
1(Z(ω) = z)

with the convention that 0
0 = 0, satisfies the definition of EP (X|G)(ω) even

when X in not integrable (in such case Y is also not integrable).

Lemma 10. X(ω) ≥ 0 P a.s =⇒ EP (X|G)(ω) ≥ 0.

Proof By contradiction, assume that Y (ω) = EP (X|G)(ω) < 0 with positive
probability. Then ∃n such that P (G) > 0, where

G =
{
ω : Y (ω) < −1/n

}
is G-measurable since Y is. Then by the definition of conditional expectation

0 ≤ EP (X1G) = EP (Y 1G) ≤ − 1

n
P (G) < 0

which gives a contradiction since the last inequality is strict.

Proposition 10. These properties follow directly from the definition of condi-
tional expectation and positivity, when the conditional expectations do exist.

1. Linearity

2. Monotone convergence: if 0 ≤ Xn(ω) ↑ X(ω) P a.s. =⇒ EP (Xn|G)(ω) ↑
EP (X|G)(ω) P a.s.

3. Fatou lemma: 0 ≤ Xn(ω) =⇒ EP (lim inf Xn|G)(ω) ≤ lim infnEP (Xn|G)(ω)
P a.s.

4. Dominated convergence: if |Xn(ω)| ≤ Y (ω) where Y (ω) is G measurable
and Xn(ω) → X(ω) P almost surely, then EP (Xn|G)(ω) → EP (X|G)(ω)
P -almost surely.
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5. if Y is G measurable,

EP (XY |G)(ω) = Y (ω)EP (X|G)

6. when H ⊆ G ⊆ F are nested σ-algebrae

EP (X|H) = EP
(
EP (X|G)

∣∣H)
7. When H is independent from the σ-algebra σ(X) ∨ G,

EP (X|G ∨ H) = EP (X|G)

Hint: it is enough to use independence checking the definition of condi-
tional expectation for the sets {G∩H : H ∈ H, G ∈ G} which generate the
σ-algebra G ∨ H.

8. Jensen inequality: if f(x) is a convex function (for example f(x) = |x|p
for p ≥ 1),

f
(
EP (X|G)

)
≤ EP (f(X)|G)

Theorem 8. When X ∈ L2(Ω,F , P ) , then the conditional expectation Y =
EP (X|G) exists as the orthogonal projection of X to the closed subspace L2(ω,G, P ).

Hint. By using completeness one shows the orthogonal projection is well
defined as the element of L2(ω,G, P ) minimizing

EP ((X − Z)2)

among all Z ∈ L2(ω,G, P ). Since (Y + tZ) ∈ L2(ω,G, P ) for every t ∈ R,

EP ((X − Y − tZ)2) ≥ EP ((X − Y )2)⇐⇒ t2EP (Z2)− 2tEP ((X − Y )Z) ≥ 0

for all t. Letting t → 0 we see that necessarily EP ((X − Y )Z) = 0, so that
Y = EP (X|G) according to the definition.

Corollary 6. When X ∈ L1(Ω,F , P ) the conditional expectation Y = EP (X|G)
exists in L1(Ω,G, P )

Proof When X(ω) ≥ 0 take X(n)(ω) = (X(ω) ∧ n) ∈ L2. By the pre-
vious theorem and positivity exists 0 ≤ Y (n) = EP (X(n)|G) ↑ Y (ω), with G-
measurable limit. By using the monotone convergence theorem we then check
that Y (ω) satisfies the definition of conditional expectation. More in general by
decomposing X(ω) = (X+(ω)−X−(ω)) with X± = (±X, 0) the result follows
from linearity.

4.3 Conditional expectation as Radon-Nykodim
derivative

Let X ∈ L1(Ω,F , P ). We decompose X(ω) = X+(ω) − X−(ω) where x± =
(±x) ∨ 0 ≥ 0, and consider X±(ω) separately. Without loss of generality, let
X(ω) = X+(ω) ≥ 0.
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We define a finite positive measure on (Ω,F):

µX(A) = EP (X1A) ∀A ∈ F

Note that µX(A) = 0 when P (A) = 0, so that µX
F
� P (µX is dominated

by P σ-algebra F), and X(ω) = dµX
dP (ω) is the corresponding Radon-Nikodym

derivative.
Let G ⊆ F a sub-σ-algebra. Obviously µX

G
� P , µX is dominated by P on

the σ-algebra G. By the Radon-Nikodymin theorem a R-N derivative

Y (ω) :=
dµX |G
dP |G

(ω)

exists as an element of L1(Ω,G, P ) which satisfies the change of measure formula

EP (X1A) = µX(A) = EP (Y 1A) ∀A ∈ G .

By Kolmogorov’s definition of conditional expectation follows Y (ω) = EP (X|G)(ω)
P a.s.

Remark 5. The existence of the conditional expectation of X ∈ L1(P ) follows
by RN-theorem. We have not proved yet RN-theorem but we will, using a mar-
tingale argument where we need conditional expectations. In order to avoid a
circular proof, we showed that the conditional expectations by using approximat-
ing L2(P )-projections.

4.4 What can we say when EP (|X|) =∞ ?
Let 0 ≤ X(ω) ∈ L0(Ω,F , P ) with EP (X) = ∞. Also in this case we can
truncate, take approximations in L2(P ) and apply the monotone convergence
theorem (which does not require integrability), to show that the conditional
expectation

Y (ω) = EP (X|G)(ω) ∈ [0,+∞]

which is G-measurable and satisfies ∀A ∈ G.

EP (X1A) = EP (Y 1A) ∈ [0,+∞]

Note that Y (ω) could also take value +∞, and in any case EP (Y ) = EP (X) =
∞.

Consider the case X(ω) = (X(ω)+ −X(ω)−) with EP (|X|) =∞. Then the
conditional expectation

EP (X|G)(ω) := EP (X+|G)(ω)− EP (X+|G)(ω) ∈ [−∞,+∞]

is well defined on the complement of

U :=
{
ω : EP (X+|G)(ω) = EP (X−|G)(ω) = +∞

}
When P (U) = 0 the conditional expectation is well defined almost everywhere.
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4.5 Regular conditional probability and kernels
The conditional probability of the event A ∈ F conditionally on the sub-σ-
algebra G is defined P -almost surely as

P
(
A
∣∣G)(ω) = EP

(
1A
∣∣G)(ω)

Since the conditional expectation is a non-negative operator, it follows that
P
(
A
∣∣G)(ω) ∈ [0, 1] P -a.s.

Can we say that for P -almost all ω, the map A 7→ P
(
A
∣∣G)(ω) ∈ [0, 1] is a

probability measure on (Ω,F) ?

Let {An} ⊆ F with An ↓ ∅. By the monotone convergence theorem condi-
tional expectation that there is a set N with P (N) = 0 such that

P (An|G)(ω) ↓ 0 ∀ω ∈ N c (4.1)

The event N may depend on the sequence {An}, the set of such sequences
ios not countable, it is not guaranteed that outside a P -null set (4.1) holds
simultaneously for all sequences of events with An ↓ ∅.

The conditional probabilities defined above are not always σ-additive.

Definition 18. Let (Ω,F) and (Ω̃, F̃) probability spaces.
A map (A, ω̃) 7→ K(A, ω̃) ∈ [0, 1] is a probability kernel when

• For every fixed ω̃ ∈ Ω̃ the map A 7→ K(A, ω̃) is a probability measure on
(Ω,F)

• For fixed A ∈ F , the map ω̃ 7→ K(A, ω̃) is F̃-measurable.

For the regular conditional probability consider Ω̃ = Ω and F̃ = G ⊆ F .

Definition 19. The conditional probability has regular version when there is a
(Ω,G) measurable kernel K(A,ω) on (Ω,F) such that for all A ∈ F

P (A|G)(ω) = K(A,ω) P a.s

Remark 6. When the conditional probability P (A|G)(ω) has a regular version
K(A,ω) we have

E(X|G)(ω) =

∫
Ω

X(ω′)K(dω′|ω)

Definition 20. A probability space (Ω,F) is Borel if there is an 1-1 (injective)
function f : (Ω,F)→ [0, 1],B([0, 1]) such that on the image, the inverse f−1 is
also measurable.

Here B([0, 1]) is the Borel σ-algebra generated by the open sets.

Theorem 9. Let (Ω,F , P ) a probability space, G ⊆ F a sub-σ-algebra, and
X(ω) a random variable taking values in a Borel space (Ω′,F ′). Then the con-
ditional probabilities

P (X ∈ A′|G)(ω), A′ ∈ F ′

have regular version.
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For a proof, see Kallenberg ’Foundations of Modern Probability’, Thm 6.3,
6.4.

Remark 7. A separable topological space (which contains a dense countable set)
equipped with its Borel σ-algebra is a Borel space. In particular the euclidean
space Rd is separable, and also the space C([0, 1],Rd) of continous functions
where the Brownian motion lives, and we can always work with the regular
version of the conditional probability.

4.6 Computation of conditional expectation un-
der P -independence

Proposition 11. On a probability space (Ω,F), let G ⊆ F a sub-σ-algebra,
Y (ω) G-measurable r.v. with values in the measurable space (S,S). Let also
X(ω) ∈ (S̃, S̃) P -independent from G.

Let f : (S̃ × S)→ R+ a non-negative Borel-measurable function.
The conditional expectation has integral-representation

EP
(
f(X,Y )

∣∣G)(ω) = EP
(
f(X, y)

)∣∣∣∣
y=Y (ω)

=

∫
S̃

f(x, Y (ω))PX(dx) (4.2)

with PX(B) = P ({ω : X(ω) ∈ B}).

Proof: When f(x, y) = f1(x)f2(y), ∀G ∈ G from P -independence follows

EP
(
f1(X)f2(Y )1G

)
= EP

(
f1(X))EP (f2(Y )1G) = EP

(
f2(Y )EP (f1(X))1G

)
=

∫
Ω

∫
Ω

f1(X(ω′))f2(Y (ω))1G(ω)P (dω′)P (dω) =

∫
Ω

EP (f(X, y))

∣∣∣∣
y=Y (ω)

1G(ω)P (dω)

More in general by definition of jointly measurable functions we find a se-
quence

0 ≤ f (n)(x, y) =

n∑
k=1

f
(n,k)
1 (x)f

(n,k)
2 (y) ↑ f(x, y), as n→∞

and the results follows by the monotone convergence theorem.

4.7 Computing conditional expectations by chang-
ing the measure: abstract Bayes’ formula

Lemma 11. The conditional expectation is a self-adjoint operator, meaning
that for X ∈ L1(Ω,F , P ) , and G ⊆ F is a sub-σ-algebra, ∀A ∈ F

EP
(
X EP (1A|G)

)
= EP

(
EP (X|G) EP (1A|G)

)
= EP

(
EP (X|G) 1A

)
Proof: straight from the definitions.



52 CHAPTER 4. PROBABILITY THEORY, COMPLEMENTS

We have shown two cases where we are able to compute conditional expecta-
tions: when the σ-algebra G is generated by a countable set of atoms, or under
independence using proposition (11).

When independence does not hold under the original measure P , is often
possible to work with another simpler measure under which independence holds.

The next formula is a change of measure inside the conditional expectation.

Theorem 10. (Abstract Bayes’ formula ). On the probability space (Ω,F), let

G ⊆ F and P
F
� Q probability measures Q(A) = 0 =⇒ P (A) = 0 when A ∈ F .

Radon-Nikodym it follows that there is a R-N-derivative, which means a
random variable

0 ≤ Z(ω) :=
dP

dQ
(ω) ∈ L1(Ω,F , Q)

for which the change of measure formula for the expectation holds:

EP (X) = EQ(XZ) ∀X ∈ L1(Ω,F , P )

Then the conditional expectation satisfies Bayes formula:

EP
(
X
∣∣G)(ω) =

EQ
(
XZ

∣∣G)(ω)

EQ
(
Z
∣∣G)(ω)

∈ L1(Ω,G, P )

Proof. Let G ∈ G. From the change of measure formula and the deifinition
of conditional expctation it follows

EP
(
X1G

)
= EQ

(
ZX1G

)
= EQ

(
EQ(ZX1G|G)

)
= EQ

(
EQ(ZX|G)1G

)
= EQ

(
EQ(Z|G)

EQ(Z|G)
EQ(ZX|G)1G

)
= EQ

(
Z
EQ(ZX|G)

EQ(Z|G)
1G

)
= EP

(
EQ(ZX|G)

EQ(Z|G)
1G

)
�

Exercise 5. (Bayes formula for densities) On a probability space (Ω,F), let
and X(ω) ∈ Rd, Y (ω) ∈ Rm random variables, let F = σ(X,Y ) and G = σ(Y ).

Let P
F
� Q probability measures such that X

Q

⊥⊥ Y with RN-derivative

0 ≤ Z(ω) := z(X(ω), Y (ω)) =
dP

dQ
(ω) ∈ L1(Ω,F , Q)

where z(x, y) ≥ 0 is Borel measurable.
Let f(x, y) ≥ 0 Borel-measurable. From the abstract Bayes formula

EP
(
f(X,Y )

∣∣G)(ω) =
EQ
(
f(X,Y )Z

∣∣G)(ω)

EQ
(
Z
∣∣G)(ω)

=

∫
Ω
f(X(ω̃), Y (ω)) z(X(ω̃), Y (ω))P (dω̃)∫

Ω
z(X(ω̃), Y (ω))P (dω̃)

=

∫
Ω

f(X(ω̃), Y (ω))K(ω, dω̃) where

K(ω, dω̃) =
z(X(ω̃), Y (ω))∫

Ω
z(X(ω′), Y (ω))P (dω′)

P (dω̃)
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is the regular version of the conditional probability. We can also integrate directly
on the space Rd where X(ω) takes values:

EP
(
f(X,Y )

∣∣G)(ω) =

∫
Rd f(x, Y (ω))z(x, Y (ω))PX(dx)∫

Rd z(x, Y (ω))PX(dx)
=

∫
Rd
f(x, Y (ω))k(Y (ω), dx)

where

k(y, dx) =
z(x, y)∫

Rd z(x
′, y)PX(dx′)

PX(dx)

When the distribution of the vector (X,Y ) has density with repect to the (d+m)-
dimensional Lebesgue measure,

P (X ∈ dx, Y ∈ dy) = pX,Y (x, y)dxdy,

from Fubini’s theorem it follows that also the marginal distributions PX and PY
have densities

P (X ∈ dx) = pX(x)dx =

∫
Rm

pX,Y (x, y)dy

P (Y ∈ dy) = pY (y)dy =

∫
Rd
pX,Y (x, y)dx

Taking as probability space Ω = Rd ×Rm and consider the probability measures

QX,Y (dx, dy) := (PX ⊗ PY )(dx, dy) = pX(x)pY (y)dxdy, PX,Y (dx, dy) = pX,Y (y)dxdy

From the assumption PX,Y � (PX ⊗ PY ), it follows that the Radon-Nykodim
derivative is given by

dPX,Y
dQX,Y

(x, y) =
dPX,Y

d(PX ⊗ PY )
(x, y) = z(x, y) =

pX,Y (x, y)

pX(x)pY (y)

We write the regular transition probability in terms of the densities

k(y, dx) =
z(x, y)∫

Rd z(x
′, y)PX(dx′)

PX(dx) =
pX,Y (x, y)

pY (y)
dx = pX|Y (x|y)dx

We have obtained the ’classical’ Bayes’ formula

pX|Y (x|y) =
pX,Y (x, y)

pY (y)
=
pX(x)pY |X(y|x)

pY (y)
.

4.8 Conditioning on P -null events : a warning
Let X(ω), Y (ω) independent standard Gaussian, with EP (X) = EP (Y ) = 0,
EP (X2) = EP (Y 2) = 1. Consider

W (ω) = (X(ω)− Y (ω)), Z(ω) = 1(Y (ω) 6= 0)
X(ω)

Y (ω)
,

and set N := {ω : Y (ω) = 0}. Clearly P (N) = 0 and

N c ∩ {ω : X(ω) = Y (ω)} = N c ∩ {ω : W (ω) = 0} = N c ∩ {ω : Z(ω) = 1}
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Let f : R→ R+ a non-negative Borel-measurable function.

i) EP (f(X)|{X = Y }) =

∫∫
R×R

f(x)δ0(x− y)pX(x)pY (y)dxdy∫∫
R×R

δ0(x− y)pX(x)pY (y)dxdy

ii) EP (f(X)|W = 0) =

∫
R
f(x)pX|W (x|W = 0)dx

iii) EP (f(X)|Z = 1) =

∫
R
f(x)pX|Z(x|Z = 1)dx

are not all equal !

Exercise 6. Show that i) = ii) 6= iii).

A set of measure zero can be represented by using different random variables.
The corresponding pointwise values of the conditional expectation may differ.
This is not in contradiction with the theory, since we can always change the
value of the conditional expectation on a set of probability zero.



Chapter 5

Martingale theory

5.1 Martingales

Definition 21. Let (Ω,F) a probability space. A filtration is an increasing
collection of σ-algebrae (Ft : t ∈ T ) where T = N,R+,Z,R such that for all
s ≤ t Fs ⊆ Ft ⊆ F

Definition 22. A stochastic process (Xt : t ∈ T ) is adapted to the filtration
(Ft : t ∈ T ), if Xt is Ft-meaasurable for all t ∈ T .

Definition 23. A random variable τ(ω) ∈ T = R+,N is a (Ft)-stopping time
if

{ω : τ(ω) ≤ t} ∈ Ft ∀t ∈ T

Equivalently the counting process Nt(ω) := 1(τ(ω) ≤ t) is adapted to the filta-
tion.

Definition 24. Let τ(ω) an (Ft)-stopping time, the stopped σ-algebra is defined
as

Fτ :=
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft ∀t ∈ T

}
.

Exercise 7. • Check that Fτ is a σ-algebra.

• If 0 ≤ σ(ω) ≤ τ(ω) ∀ω where σ, τ are (Ft)-stopping times then Fσ ⊆ Fτ

Proof of Fσ ⊆ Fτ :
A ∈ Fσ ⇐⇒ A ∩ {σ ≤ t} ∈ Fτ , ∀t ≥ 0,
Also {τ ≤ t} ∈ Ft, which implies

A ∩ {τ ≤ t}A ∩ {σ ≤ t} ∩ {τ ≤ t} ∈ Ft

Definition 25. A (sub,super)-martingale with respect to the filtration (Ft)t∈T
is an adapted and integrable process (Xt : t ∈ T ) ⊆ L1(P ) which satisfies the
martingale property: for s ≤ t

EP (Mt|Fs) = Ms

(respectively ≥,≤)

55
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Note the martingale property depends both on the probability measure and
on the filtration.

Exercise 8. Let (Xt : t ∈ N) ⊆ L1(P ) independent random variables with
E(Xt) = 0, and Ft = σ(X1, X2, . . . , Xt) Then Mt = (X1 + · · · + Xt) is a
(Ft)-martingale

Exercise 9. Let (Xt : t ∈ N) ⊆ L1(P ) independent random variables with
E(Xt) = 1, and Ft = σ(X1, X2, . . . , Xt) Then Mt = (X1 × · · · × Xt) is a
(Ft)-martingale

Exercise 10. Let (Bt(ω) : t ≥ 0) a Brownian motion. Consider the filtration
F = {FBt : t ≥ 0} generated by B with FBt = σ(Bs : 0 ≤ s ≤ t) Then

(Bt : t ≥ 0), (B2
t − t : t ≥ 0), and

(
exp(θBt − θ2t/2

)
: t ≥ 0

)
are F-martingales.

Exercise 11. Let Xn(ω) ∈ Rd a discrete time Markov chain with initial distri-
bution π and transition kernel K

Define the operator (Kf)(x) =
∫
Rd f(y)K(y, dx) = Ex(f(X1))

Check that this is a martingale

Mt(f) =

t∑
s=1

(f(Xs)− (Kf)(Xs−1))

Taking telescopic sums

f(Xt) = f(X0) +

t∑
s=1

(f(Xs)− f(Xs−1) =

f(X0) +

t∑
s=1

(f(Xs)−Kf(Xs−1) +

t∑
s=1

((Kf)(Xs−1)− f(Xs−1))

= f(X0) +Mt(f) +At(f)

(decomposition into martingale and predictable part)

Definition 26. A process (Yt(ω) : t ∈ N) is predictable with respect to the
discrete-time filtration (Ft : t ∈ N), if Yt is Ft-measurable for all t ∈ T .

Proposition 12. Let (Xt) be a martingale and (Yt) a predictable process in the
discrete-time filtration F = (Ft : t ∈ N). Define the martingale transform

Mt(ω) =

t∑
s=1

Ys(Ms −Ms−1)

When E(|Ys∆Ms|) <∞ ∀s ∈ T , (Mt) is a martingale.

Proof From the definition we see thatMt is adapted and integrability follows
from triangle inequality. We check the martingale property:

EP (Mt−Mt−1|Ft−1) = EP (Yt(Xt−Xt−1)|Ft−1) = YtEP (Xt−Xt−1|Ft−1) = 0



5.1. MARTINGALES 57

where we use predictability of Yt together with the definition of conditional
expectation.

In order to check integrability it is enough to use Hölder inequality,

E(|Ys∆Ms|) ≤‖ Ys ‖Lp‖ ∆Ms ‖Lq

for conjugate exponents p, q ∈ [1,+∞], p−1 + q−1 = 1.

Corollary 7. Let (Mt : t ∈ N) an F-martingale, and τ(ω) ∈ N a F-stopping
time. Then the stopped process

Mτ
t (ω) = Mt∧τ (ω) = M0 +

∑
s=1

1(τ(ω) ≥ s)
(
Ms(ω)−Ms−1(ω)

)
is a F-martingale.

Proof: since 1(τ(ω) ≥ s) = 1(τ(ω) > s− 1) ∈ Fs−1, we see that Mt∧τ is the
martingale transform of a bounded F-predictable integrand.

5.1.1 Martingale convergence
Theorem 11. ( Doob’s forward convergence) Let (Xt : t ∈ N) a supermartingale
with

sup
t∈N

EP (X−t ) <∞.

Notation: x± = max(±x, 0).
Then

lim
t→∞

Xt(ω) = X∞(ω) P -almost surely

with X∞(ω) ∈ L1(Ω)

Notes : although X∞(ω) ∈ L1(Ω) we don’t have necessarily convergence in
L1(P ) sense. Joseph Leo Doob(1910-2004) American probabilist, is the father
of martingale theory.

Proof Note first that by the supermartingale propery, ∀t ∈ N

E(X+
t ) ≤ E(X0) + E(X−t )

so that
sup
t
E(X+

t ) ≤ E(X0) + sup
t
E(X−t )

where E(|X0|) <∞, so that the sequence (Xt)t∈N is bounded in L1(P ).
Given a < b, we define a sequence of stopping times

σ0(ω) = inf
{
s ∈ N : Xs(ω) < a}, τi(ω) = inf

{
s > σi(ω) : Xs(ω) ≥ b},

σi(ω) = inf
{
s > τi−1(ω) : Xs(ω) < a}, i ≥ 1

We have 0 ≤ σi < τi < σi+1 < . . . , To check that these are stopping times, note
that for each t ∈ N the events

{ω : σi(ω) ≤ t} and {ω : τi(ω) ≤ t}

http://en.wikipedia.org/wiki/Joseph_Leo_Doob
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are Ft-measurable since they depend on the trajectory of the (Ft)-adapted pro-
cess Xt up to time t.

Define the investement strategy

Ct(ω) =

{
1 t ∈ (σi, τi] for some i ∈ N
0 t ∈ (τi, σi+1]

Note that since τi and σi are stopping times, for all t ∈ N

{Ct = 1} =
⋃
i∈N
{t ∈ (σi, τi]} =

⋃
i∈N
{σi ≤ (t− 1)} ∩ {τi ≤ (t− 1)}c ∈ Ft−1

Since Ct(ω) ∈ {0, 1} is a non-negative and bounded predictable process, it
follows that the martingale transform

Yt(ω) =

t∑
s=1

Cs(ω)∆Xs

has the supermartingale property.
Note that

Yt ≥ (b− a)U[a,b]([0, t])− (Xt − a)−,

where U(a,b)([0, t]) is the number of upcrossings of the interval [a, b] in the time
interval [0, t] by the X process, meaning that each time X starts below a and
crosses [a, b] ending up above b.

By taking expectation, since E(Yt) ≤ E(Y0) = 0 from the supermartingale
property, we obtain Doob upcrossing inequality

EP
(
U[a,b]([0, t])

)
≤ 1

(b− a)
EP
(
(Xt − a)−

)
Now since U[a,b]([0, t]) is non-decreasing, for every ω exists

U[a,b]([0,∞), ω) := lim
t→∞

U[a,b]([0, t]) ∈ N ∪ {+∞}

and by monotone convergence theorem, since

(Xt − a)− = max(a−Xt, 0) ≤ |a|+X−t

we obtain

EP
(
U[a,b]([0,∞), ω)

)
= lim
t→∞

EP
(
U[a,b]([0, t])

)
≤ 1

(b− a)

(
|a|+sup

t∈N
EP (X−t )

)
<∞

In particular U[a,b]([0,∞), ω) <∞ P -almost surely. Since

N =
{
ω : lim inf

t→∞
Xt(ω) 6= lim sup

t→∞
Xt(ω)

}
=

⋃
a<b∈Q

{
ω : lim inf

t→∞
Xt(ω) ≤ a < b ≤ lim sup

t→∞
Xt(ω)

}
=

⋃
a<b∈Q

{
U[a,b]([0,∞), ω) =∞

}
,

we see that P (N) = 0 since is the countable union of null sets, which means
that P -almost surely (Xt(ω))t∈N is a converging sequence. For all ω ∈ Ω we set
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X∞(ω) := lim supt→∞Xt(ω), and we have Xt(ω)→ X∞(ω) P -a.s. Note that a
priori X∞(ω) ∈ [−∞,∞].

By using Fatou lemma

E(|X∞|) = E(lim inf
t
|Xt|) ≤ lim inf

t
E(|Xt|) ≤ lim sup

t
E(|Xt|) ≤ sup

t
E(|Xt|) <∞,

since

|Xt| = Xt + 2X−t =⇒ E(|Xt|) = E(Xt) + 2E(X−t ) ≤ E(X0) + 2 sup
t
E(X−t )

by the supermartingale property. In particular, since X ∈ L1(P ), |X∞(ω)| <∞
P -almost surely �

Corollary 8. A non-negative supermartingale Xt ≥ 0 has almost surely an
integrable limit X∞ with EP (X∞) ≤ EP (Xt), ∀t <∞.

Proof For all t ∈ N

EP (|Xt|) ≤ EP (Xt) = EP
(
EP (Xt|F0)

)
≤ EP (X0) = EP (|X0|)

so that L1 boundedness follows for free and Doob convergence theorem applies
�

Corollary 9. Let (Xt : t ∈ N) a submartingale with EP (X+
t ) < ∞. Then for

P almost all ω ∃ limt→∞Xt(ω) = X∞(ω) ∈ L1(P ).

Proof Apply the theorem to the supermartingale (−Xt)

Remark 8. Even when supt∈NEP (|Xt|) < ∞, and Xn(ω) → X∞(ω) P -a.s.

with X∞ ∈ L1(P ), it does not follow that Xn
L1(P )−→ X∞. In order get conver-

gence in L1(P ) we need uniform integrability of (Xt : t ∈ N).

5.2 Uniform integrability
Definition 27. A collection of random variables C ⊆ L1(Ω,F , P ). is uni-
formly integrable (UI) with respect to P when

lim
K→∞

sup
X∈C

EP
(
|X|1(|X| > K)) =

∫
{ω:|X(ω)|>K}

|X(ω)|P (dω) −→ 0 when K →∞

Lemma 12. A finite collection C = {X1, X2, . . . , XM} ⊂ L1(Ω,F , P ),M ∈ N is
uniformly integrable. Proof: From the monotone convergence theorem it follows
that a single random variable X ∈ L1(P ) is uniformly integrable. A finite set
{X1, . . . , XM} ⊂ L1(P ) is uniformly integrable since

max
k=1,...M

|Xk(ω)| ≤
N∑
k=1

|Xk(ω)| ∈ L1(P )

Remark 9. To show that a sequence {Xn}n∈N is uniformly integrable it is
enough to find Y ∈ L1(P ) such that

sup
n∈N
|Xn(ω)| ≤ Y (ω)
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Lemma 13. X ∈ L1(Ω,F , P ), if and only if ∀ε > 0 ∃δ, such that ∀A ∈ F ,

P (A) < δ =⇒ EP
(
|X|1A

)
< ε

Proof, sufficiency: ∀ω,

Y (K)(ω) := |X(ω)|1(|X(ω)| ≤ K) ↑ |X(ω)|

and by (12)

EP (|X|)− EP (Y (K)) =

∫
{ω:|X(ω)|>K}

|X(ω)|P (dω) < ε

for K large enough so that P ({ω : |X(ω)| > K}) < δ. It follows that

EP (|X|) ≤ EP (Y (K)) + ε ≤ K + ε <∞

Proof of necessity, by contradiction: otherwise there would be ε > 0 and a
sequence of events {An : n ∈ N} ⊆ F such that

P (An) < 2−n =⇒ EP
(
|X|1An

)
≥ ε > 0

Denote A = lim sup
n

An. Since∑
n

P (An) ≤
∑
n

2−n = 1 <∞

P (A) = 0 by the Borel Cantelli lemma.
Let Bn =

⋃
k≥n

Ak. By definition An ⊆ Bn ↓ A, which means

|X(ω)|1An(ω) ≤ |X(ω)|1Bn(ω) ↓ |X(ω)|1A(ω) ∀ω

where the random variables above are integrable since X ∈ L1(P ). It follows
from the sufficiency part of the proof that

0 < ε ≤ EP (|X|1An) ≤ EP (|X|1Bn) ↓ EP (|X|1A) = 0

since P (A) = 0 �

Theorem 12. Characterization of convergence in L1(P ).
Consider {Xn : n ∈ N} ⊆ L1(Ω,F , P ), n ∈ N ja X ∈ L0(Ω,F).
Xn

P→ X and {Xn : n ∈ N} is uniformly integrable,

if and only if Xn
L1

→ X ∈ L1(P ),

Proof (necessity): When Xn
P→ X in probability, there is a deterministic

subsequence n(k) such thatXn(k)(ω)→ X(ω) P -almost surely. By Fatou lemma

EP (|X|) = EP (lim inf
k
|Xn(k)|) ≤ lim inf

k
EP (|Xn(k)|) <∞

where from the uniform integrability assumption

sup
k∈N

EP
(
|Xn(k)|

)
≤M + sup

k∈N
EP

(
|Xn(k)|1(|Xn(k)| > M)

)
<∞ ,
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which implies X ∈ L1(P ). For K > 0

EP
(
|Xn −X|

)
= EP

(
|Xn −X|1(|Xn −X| ≤ K)

)
+ EP

(
|Xn −X|1(|Xn −X| > K)

)
=

∫ K

0

P (|Xn −X| > t)dt−KP (|Xn −X| > K) + EP

(
|Xn −X|1(|Xn −X| > K)

)
≤
∫ K

0

P (|Xn −X| > t)dt+ EP

(
|Xn −X|1(|Xn −X| > K)

)
,

where we used Fubini theorem. Since (Xn : n ∈ N) is uniformly integrable and
X ∈ L1(P ), it follows that (|Xn−X| : n ∈ N) on tasaisesti integroituva, and ∀ε
∃K such that

sup
n
EP

(
|Xn −X|1(|Xn −X| > K)

)
< ε

Moreover, since P (|Xn − X| > t) is bounded and lim
n→∞

P (|Xn − X| > t) = 0

∀t > 0 by assumption, by Lebesgue convergence Theorem on the finite interval
[0,K] equipped with the Lebesgue measure it follows

lim
n→∞

∫ K

0

P (|Xn −X| > t)dt = 0

which means that ∃N such that ∀n ≥ N∫ K

0

P (|Xn −X| > t)dt < ε

which implies ∀n ≥ N

EP
(
|Xn −X|

)
≤
∫ K

0

P (|Xn −X| > t)dt+ sup
n
EP

(
|Xn −X|1(|Xn −X| > K)

)
≤ 2ε .

(Sufficiency). By Chebychev inequality, we know that convergence in L1(P )
is stronger than convergence in probability.

EP (|Xn −X|)→ 0 =⇒ Xn
P→ X .

Since Xn = X + (Xn −X), where by the assumptions X ∈ L1(P ), it is enough
to show that {

|Xn −X| : n ∈ N
}

is uniformly integrable. Let’s assume without loss of generality that X = 0 P
a.s.

Let ε > 0 and N such that ∀n > N

EP
(
|Xn|

)
< ε

Since {X1, . . . , XN} ⊂ L1(P ) is a finite subset , it is uniformly integrable,
and ∃K such that

sup
1≤n≤N

EP
(
|Xn|1(|Xn > K|)

)
< ε.
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For the same K we have also for ∀n ≥ N

EP
(
|Xn|1(|Xn| > K)

)
≤ EP (|Xn|) < ε

which implies

sup
n∈N

EP
(
|Xn|1(|Xn > K|)

)
< ε �

Uniform integrability is a compactness condition in L1(P ) when we replace the
L1-norm topology by the so called weak-star topology:

Theorem 13. (Dunford Pettis) A collection of random variables C ⊆ L1(P )
is UI if and only if it is weakly compact in L1(P ) that is for every sequence
(Xn;n ∈ N) ⊆ C there is a subsequence (nk) and a random variable X ∈ L1(P )
such that ∀A ∈ F

EP
(
(Xnk −X)1A

)
→ 0

We prove =⇒, for the other implication see Kallenberg Foundations of Mod-
ern Probability Lemma 4.13. It is enough to consider the case when X(ω) ≥ 0
∀X ∈ C, since weak compactness of C will follow from weak compactness of
(X+ : X ∈ C) and (X− : X ∈ C).

Banach-Alaoglu’s theorem from Functional Analysis says that closed balls
in the dual space of a Banach space are compact under the weak-star topology
of the dual.

This means that if X is Banach space with dual X′ and duality 〈x, x′〉X,X′ ,
and the sequence (x′n : n ∈ N) ⊂ X′ is bounded inX′-norm (the operator norm),

‖ x′ ‖X′= sup
x∈X

|〈x, x′〉X,X′ |
‖ x ‖X

there is a subsequence nk and x′ ∈ X′ such that

〈x, x′nk − x
′, 〉X,X′ −→ 0 ∀x ∈ X.

Note that the map x′ 7→ 〈x, x′〉X,X′ is linear and continuous in ‖ · ‖X′ norm, and
provides an embedding of X into the bidual space X′′. We say that a Banach
space is reflexive when X and X′′ are isomorphic. For example Lp(Ω,F , P ) is
reflexive for 1 < p < ∞, where the dual is Lq(P ) with conjugate exponential
satisftying (p−1 + q−1 = 1). L1(P ) is not reflexive since its dual is the space
of essentially bounded random variables L∞(P ), and the second dual (the dual
of the dual space) is the space of signed finitely additive measures which are
absolutely continuous w.r.t. P , denoted by ba(Ω,F , P ).

The unit ball of X = L1(P ) is mapped into the set of measures absolutely
continuous w.r.t. P contained in the unit ball of X′′ = ba(Ω,F) by the map

X(ω) 7→ X(ω)P (dω)

Let (Xn : n ∈ N) ⊆ L1(P ) with EP (|Xn|) ≤ 1. By using the Banach-Alaoglu
theorem on the bidual space, we obtain that there is a subsequence (nk) and a
finitely additive signed measure µ(dω)� P (dω) such that ∀A ∈ F ,

EP
(
Xnk1A

)
=

∫
Ω

1A(ω)Xnk(ω)P (dω) −→ µ(A), as k →∞.
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When µ is σ-additive, by the Radon-Nikodym theorem µ(dω) = X(ω)P (dω) for
some X ∈ L1(Ω,F , P ). However µ is finitely additive but does not need to be σ-
additive, it is not guaranteed that for any sequence of events (Am : m ∈ N) ⊆ F
with Am ⊇ Am+1 and

⋂
m∈N

Am = ∅, we would have

lim
m→∞

µ(Am) = lim
m∞

lim
k→∞

EP
(
Xnk1Am

) ?
= lim
k→∞

lim
m→∞

EP
(
Xnk1Am

)
= 0

because interchanging the order of the limits is not justified.
In order to bypass this problem we truncate the variables and work in the

space L2(P ) which is the dual of itself. Let (Xn : n ∈ N) ⊆ C and for M ∈ N
consider the truncated random variables X(M)

n := Xn(ω)∧M . For fixed M , the
sequence (X

(M)
n : n ∈ N) is bounded in L2(P ).

By the Banach Alaoglu theorem applied in L2(P ) it follows that for every
M ∈ N there is a subsequence (n(M,k) : k ∈ N) and a r.v. X(M) ∈ L2(P ) such
that ∀A ∈ F

EP

((
X

(M)
n(M,k) −X

(M)
)
1A

)
−→ 0 as k →∞

which means X(M)
n(M,k) → X(M) weakly in L1(P ) (the dual of L1(P ) is L∞(P ) the

space of essentially bounded random variables, by a monotone class argument
it is enough to check convergence using indicators). We use now a diagonal
argument: for the subsequence nk := n(k, k),

EP

(
(X(M)

nk
−X(M))1A

)
−→ 0 as k →∞

holds simultaneously for all M ∈ N. For M,N ∈ N,

E
(
|X(M+N) −X(M)|

)
= E

(
(X(M+N) −X(M))1(X(M+N) ≥ X(M))

)
+ E

(
(X(M) −X(M+N))1(X(M+N) < X(M))

)
= lim
k→∞

E

(
(X(M+N)

nk
−X(M)

nk
)1(X(M+N) ≥ X(M))

)
+ lim
k→∞

E

(
(X(M)

nk
−X(M+N)

nk
)1(X(M+N) < X(M))

)
by (5.2),

= lim
k→∞

E

(
|X(M+N)

nk
−X(M)

nk
|
)
≤ sup
n∈N

E

((
|Xn| −M

)
1(|Xn| > M)

)
≤ sup
n∈N

E
(
|Xn|1(|Xn| > M)

)
→ 0 as M →∞

by the UI assumption. Therefore (X(M) : M ∈ N) is a Cauchy sequence in the
complete space L1(P ) and it converges in L1(P ) norm to a limit X ∈ L1(P ).
For A ∈ F ,∣∣∣∣EP ((Xnk −X)1A

)∣∣∣∣
=

∣∣∣∣EP ((Xnk −X(M)
nk

)1A
)

+ EP
(
(X(M)

nk
−X(M))1A

)
+ EP

(
(X(M) −X)1A

)∣∣∣∣
≤ EP

(
|Xnk |1(|Xnk | > M)

)
+

∣∣∣∣EP ((X(M)
nk
−X(M))1A

)∣∣∣∣+ EP
(
|X(M) −X|)
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where we choose first M large enough to make

EP
(
|XM −X|) and sup

n∈N
EP
(
|Xn|1(|Xn| > M)

)
small, and then choose k large enough to make the middle term small �

Remark 10. The stronger convergence of the subsequence in L1(P ) does not
follow.

It is good to know the following characterization of uniform integrability:

Proposition 13. C ⊆ L1(P ) is uniformly integrable if and only if

sup
X∈C

EP (|X|) <∞ and ∀ε > 0 ∃ δ : P (A) < δ =⇒ sup
X∈C

EP
(
|X|1A

)
< ε

Proof. exercise

Remark 11. When C ⊆ L1(P ) is uniformly integrable, for K large enough

sup
X∈C

EP (|X|) < K + sup
X∈C

E(|X|1(|X| > K)) < K + ε <∞

Nevertheless the unit ball B1 = {X ∈ L1(P ) : EP (|X|) ≤ 1} is not uniformly
integrable: let {An : n ∈ N} ⊆ F such that P (An) = n−1, and Xn(ω) =
n 1An(ω). Clearly Xn ∈ B1 ∀n, and for all K > 0

sup
n
EP
(
|Xn|1(|Xn| > K)

)
= sup
n>K

EP (|Xn|) = 1

However we have the following criteria:

Lemma 14. Let C ⊂ Lp(Ω) for some p > 1, with

sup
X∈C

E(|X|p) <∞

Then C is uniformly integrable.

Proof. Recall that Lp(Ω,F , P ) ⊂ L1(Ω,F , P ) for p > 1

E(|X|p) ≥ Kp−1E
(
|X|1(|X| > K)

)
=⇒

sup
X∈C

E
(
|X|1(|X| > K)

)
≤ K1−p sup

X∈C
E(Xp) −→ 0, as K −→∞

Theorem 14. (A characterization of uniform integrability, by Leskelä and Vi-
hola 2011). A collection of random variables C is uniformly integrable if and
only if there exists a random variable 0 ≤ Y (ω) ∈ L1(P ) such that ∀K > 0

sup
X∈C

EP

(
(|X| −K)+

)
≤ EP

(
(Y −K)+

)
where x+ = x ∨ 0 = x1(x > 0).
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Proof We proof the ⇐= implication: from the inequality

x1(x > K) ≤ 2
(
x−K/2

)+
, K ≥ 0 ,

it follows

sup
X∈C

EP
(
|X|1(|X| > K)

)
≤ 2 sup

X∈C
EP
(
(|X| −K/2)+

)
≤ 2EP

(
(Y −K/2)+

)
→ 0 ,

as K →∞, where the Lebesgue’s dominated convergence theorem applies, since
Y (ω) ≥ (Y (ω) − K/2)+ ≥ 0 with (Y (ω) − K/2)+ → 0 P -almost surely

K →∞, with integrable upper bound Y (ω) �

Remark 12. When we interpret the random variable Y (ω) ≥ 0 as the market
price of a stock at a given maturity time in the future. the random variable
(Y (ω)−K)+ is called european call option with deterministic strike price K.
At maturity, when the option expires, the holder of the option has the right but
not the obligation to buy one stock at the predetermined price K. The option
holder uses the option only when the market price is higher than the strike
price. By selling the stock immediately at market price, the option holder gains
(Y (ω)−K)+. If at maturity Y (ω) ≤ K, the call option is worthless.

Application: taking a derivative inside the expectation

Proposition 14. On a probability space (Ω,F , P ) consider an uniformly in-
tegrable family of random variable {Y (t, ω) : t ∈ [a, b]} ⊆ L1(Ω,F , P ), with
a < b ∈ R. We also assume that

• For all ω ∈ Ω, the map t 7→ Y (t, ω) is continuous

It follow that:

1. the map t 7→ EP (Y (t)) is continuous.

2. Let

X(t, ω) :=

t∫
a

Y (s, ω)ds, t ∈ [a, b].

Then at all t ∈ (a, b) the derivative exists

d

dt
EP
(
X(t)

)
= EP

(
Y (t)

)
= EP

(
d

dt
X(t)

)
and it is continous.

Proof. From the continuity assumption lim
s→t

Ys(ω) = Yt(ω) and by uniform
integrability it follows

|EP (Yt)− EP (Ys)| ≤ EP |Yt − Ys| → 0 when s→ t.

Moreover

sup
t∈[a,b]

EP
(
|Yt|
)
< +∞
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and |Y (t, ω)| ∈ L1
(
[a, b]× Ω,B([a, b])⊗F , dt⊗ P (dω)

)
. By Fubini’s theorem

EP (Xt) = EP

(∫ t

a

Y (s)ds

)
=

∫
[a,b]×Ω

Y (s, ω) ds⊗ P (dω) =

∫ t

a

EP (Y (s))ds

and since t 7→ EP (Y (t)) is continuous, by the mid-value theorem of analysis

lim
∆→0

∆−1
{
EP (Xt+∆)− EP (Xt)

}
=

lim
∆→0

∆−1

∫ t+∆

t

EP (Y (s))ds = EP (Y (t)) �

5.3 UI martingales
Lemma 15. Let X ∈ L1(P ). Then the family{

Y = EP (X|G) : G ⊆ F sub-σ-algebra
}

is uniformly integrable.

Proof Since it is enough to prove it separately for X±, where X(ω) =
X+(ω) − X−(ω), we assume X(ω) ≥ 0. Then we apply Leskelä and Vihola’s
characterization Theorem 14: Since the function x 7→ (x − K)+ is convex, by
Jensen inequality for the conditional expectation, ∀K > 0

EP

((
EP (X|G)−K

)+)
= EP

(
EP (X −K|G)+

)
≤ EP

(
EP
(
(X −K)+

∣∣G)) = EP

((
X −K

)+)
�

Proposition 15. • Let (Mt : t ∈ N) an UI martingale. Then Mt(ω) −→
M∞ P -almost surely, and in L1(P ). Morevoer

Mt = EP (M∞|Ft)

• Let X(ω) ∈ L1(P ) and define Mt = EP (X|Ft). Then (Mt : t ∈ [0,+∞])
is an UI martingale with Mt −→M∞ = EP (X|F∞) P -almost surely, and
in L1(P ).

Proof

• From the UI property follows that for any K ≥ 0

sup
t∈N

EP (|Mt|) ≤ K + sup
t∈T

EP
(
|Mt|1(|Mt| > K)

)
<∞

so that Doob martingale convergence theorem applies, there exists M∞ ∈
L1(P ) such that Mt(ω)→ M∞(ω) P a.s. By the UI assuption, using the
characterization of L1(P ) convergence we have EP

(
|Mt −M∞|

)
→ 0.

To show the martingale property,let’s fix t ≥ 0 and A ∈ Ft.
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The sequenceMT (ω)1A(ω)→M∞(ω)1A(ω) as T →∞ and it is obviously
an UI family, so that by the martingale property and characterization of
L1(P ) convergence, for T ≥ t,

EP (Mt1A) = EP (MT1A)→ EP (M∞1A) �

• When X ∈ L1(P ) From the properties of the conditional expectation
it follows that Mt = EP (X|Ft) is integrable, adapted and satisfies the
martingale property. Uniform integrability follows from lemma (15)�.

5.3.1 Backward convergence of martingales
Definition 28. A backward filtration is an increasing family of σ-algebrae
(Ft : t ∈ T ) where T = −N,−R,−N ∪ { −∞} − R ∪ {−∞}. For 0 ≥ t ≥ u

F ⊇ Ft ⊇ Fu ⊇ F−∞ =
⋂
t∈T
Ft

where F−∞ is the tail σ-algebra . The interpretation is that the information in
Ft decreases as t ↓ −∞.

We consider a (sub,super)-martingale with respect to the backward filtration
(Ft)t≤0 is an adapted and integrable process (Xt : t ≤ 0) ⊆ L1(P ) which satisfies
the martingale property: for 0 ≥ t ≥ u

EP (Xt|Fu) = Xu

(respectively ≥,≤)

Theorem 15. (Doob’s martingale backward convergence) Let (Xt : −t ∈ N) a
be supermartingale in the backward filtration F = (Ft : t ∈ −N).

1. P -almost surely, exists the limit

X−∞(ω) = lim
t→−∞

Xt(ω) ∈ (−∞,∞]

2. Under the assumption
sup
t∈−N

E(X+
t ) < +∞

X−∞(ω) ∈ L1(P ) and is P -a.s. finite.

3. When (Xt) is martingale in the backward filtration the assumption (3)
holds automatically, (Xt = E(X0|Ft), t ∈ −N) is uniformly integrable and

X−∞(ω) = E(X0|F−∞)(ω)

i.e. the martingale property holds in the extended time index set (−N) ∪
{−∞}.

ProofWe copy the proof of the forward convergence theorem, where we play
the same supermartingale game in the shifted time interval {t, t+1, . . . ,−2,−1, 0},
with t ∈ (−N). The profit given by the martingale transform

Ys = (C ·X)s =

 0 for s ≤ t
s∑

r=t+1
Cr(Xr −Xr−) for t < s ≤ 0
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where Cr(ω) ∈ {0, 1} is F-predictable. It follows that (Ys : s ∈ −N) is a
supermartingale as well, and

0 = E(Yt) ≥ E(Y0) ≥ E(Ua,b([t, 0])(b− a)− (X0 − a)−

where Ua,b([t, 0]) the number of upcrossing of (Xs(ω)) in the interval [t, 0].

EP (U[a,b]([t, 0])) ≤ |a|+ EP (X−0 )

(b− a)
<∞ ∀t ≤ 0

Since U[a,b]([t, 0]) ↑ Ua,b((−∞, 0]) as t ↓ (−∞), by monotone convergence theo-
rem EP (U[a,b]((−∞, 0])) < ∞, which implies U[a,b]((−∞, 0]) < ∞ P a.s. Since
this holds for all a < b ∈ Q, it follows as in the forward theorem that

X−∞(ω) := lim sup
t→−∞

Xt(ω) = lim inf
t→−∞

Xt(ω) P -almost surely

When Xt is martingale by Fatou lemma

E(|X−∞|) = E(lim inf
t
|Xt|) ≤ lim inf

t
E(|Xt|) = lim inf

t
E
(
|E(X0|Ft)|

)
≤ lim inf

t
E
(
E(|X0||Ft)

)
= E(|X0|) <∞

In the supermartingale case, we have only

E(|X−∞|) = E(lim inf
t
|Xt|) ≤ lim inf

t
E(|Xt|) = lim inf

t

{
E(X+

t ) + E(X−t )}

From the supermartingale property

Xt ≥ E(X0|Ft) t ≤ 0

it follows

X−t ≤ E(X0|Ft)− ≤ E(X−0 |Ft) =⇒ E(X−t ) ≤ E(X−0 ) ,

which implies X−∞(ω) > −∞ P -a.s. Since we dont’ get for free an upper bound
for E(X+

t ), we need to assume (3).

Finally let A ∈ F−∞ ⊆ F−t ∀t ≤ 0. Since Xt = EP (X0|Ft) is uniformly
integrable, when we use the definition of conditional expectation we can take
the limit inside the expectation getting

EP (X01A) = EP (Xt1A)→ EP (X∞1A)

which means X−∞ = EP (Xt|F−∞).

Remark 13. When (Xt : t ∈ −N) is just a supermartingale bounded in L1(P )
and not a martingale, we could rewrite

Xt = Mt + X̃t, t ∈ −N

where Mt = EP (X0|Ft) and X̃t = (Xt−Mt) ≥ 0 is a non-negative supermartin-
gale bounded in L1(P ). Still although Mt(ω) → M∞(ω) P a.s. and in L1(P ),
we do not get the uniform integrability for free and we do not have Xt → X−∞
in L1(P ) sense.
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Strong law of large numbers by martingale backward convergence

Lemma 16. (Kolmogorov 0− 1 law) On a probability space (Ω,F , P ) consider
a sequence of P -independent σ-algebrae (Gn : n ∈ N), Gn ⊆ F .

This means that ∀d ∈ N, A1 ∈ G1, . . . Ad ∈ Gd

P (A1 ∩A2 ∩ · · · ∩Ad) = P (A1)P (A2) . . . P (Ad)

We introduce the σ algebrae

Fn =

n∨
k=0

Gk, F∞ =

∞∨
k=0

Gk, T−n =

∞∨
k=n

Gk, T−∞ =
⋂
n∈N
T−n

Then the σ-algebra T−∞ is P -trivial, i.e. A ∈ T−∞ =⇒ P (A) ∈ {0, 1}

Proof By assumption the σ-algebrae Fn−1 and Tn are P -independent.
Let A ∈ T−∞ ⊆ F∞, then for all n ∈ N A is P -independent from Fn.
It is easy to see that A is also P -independent from F∞: for B ∈ F∞ ,

consider

E(1B |Fn)(ω) = P (B|Fn)(ω)→ 1B(ω) P a.s. and in L1(P )

Then

P (A ∩B) = E(1A1B) = E
(
1A lim

n→∞
E(1B |Fn)

)
= lim
n→∞

E
(
1AE(1B |Fn)

)
= lim
n→∞

E(1A)E
(
E(1B |Fn)

)
= lim
n→∞

P (A)P (B) = P (A)P (B)

Since A ∈ F∞, A is P -independent from itself and

P (A) = P (A ∩A) = P (A)P (A) = P (A)2 =⇒ P (A) ∈ {0, 1}

Theorem 16. ( Kolmogorov’s strong law of large numbers)
Let (Xt(ω) : t ∈ N) i.i.d. with X1 ∈ L1(P ), and

St(ω) = X1(ω) + · · ·+Xt(ω)

Then
lim
t→∞

t−1St(ω) = EP (X1) P -a.s. and in L1(P ).

Proof Consider the backward filtration F = (F−t : t ∈ N) where for t ≤ 0

F−t = σ(St, St+1, . . . ),

the F-martingale

M−t = EP (X1|F−t) t ∈ N

The σ-algebra Ft is non-decreasing with respect to t ∈ (−N).
By symmetry, the random pairs (St, Xr) ja (St, X1) are identically dis-

tributed for 1 ≤ r ≤ t, and by P -independence for t ≥ 0

M−t := EP (X1|F−t) = EP (X1|St, St+1, St+2, . . . )

= EP (X1|St, Xt+1, Xt+2 . . . ) = EP (X1|σ(St)) = EP (Xr|σ(St)) ∀1 ≤ r ≤ t
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which means

St = EP (X1 + · · ·+Xt|σ(St)) =

t∑
r=1

EP (Xr|σ(St)) = tEP (X1|σ(S−))

and M−t(ω) = St(ω)/t for t ≥ 0.
By Doob’s martingale backward convergence theorem

lim
t→∞

t−1St(ω) = M−∞(ω) P a.s. and in L1(P )

where we define ∀ω ∈ Ω

M−∞(ω) := lim inf
t→∞

t−1St(ω)

Note also that ∀ω ∈ Ω, ∀n ∈ N

lim inf
t→∞

1

t
St(ω) = lim inf

t→∞

1

t

n∑
i=1

Xi(ω) + lim inf
t→∞

1

t

t∑
i=(n+1)

Xi(ω)

= 0 + lim inf
t→∞

1

t

t∑
i=(n+1)

Xi(ω)

is T−n = σ(Xn, Xn+1, . . . )-measurable ∀n, therefore it is measurable with re-
spect to the tail σ-algebra T−∞. Since the random variables (Xt)t∈N are P -
independent, by Kolmogorov’s 0 − 1 law it follows that M−∞(ω) is P -trivial:
P (t ≤ M−∞) ∈ {0, 1} ∀t and P (M−∞ < ∞) = 1, there is c ∈ R such that
P (M−∞ = c) = 1.

P almost surely and in L1(P )

1

t
St(ω)→ c = EP (X1|F−∞)(ω)

By taking expectation

c = EP (M−∞) = EP
(
EP (X1|F−∞)

)
= EP (X1).

Note t−1St(ω) = EP (X1|σ(St))(ω) follows from symmetry, and then we
applied martingale backward convergence P -a.s. and in L1(P ). Independence
was needed to show that the limit

EP (X1|σ(St))(ω) = EP (X1|σ(St, St+1, St+2 . . . ))(ω)

is P -trivial. Without the independence assumption, we obtain the limit is a
random variable. This extension is De Finetti’s theorem. Bruno De Finetti
(1906-1985) was an italian probabilist, economist and philosepher.

5.4 Exchangeability and De Finetti’s theorem
Definition 29. The sequence of random variables (Xt)t∈N where Xt(ω) takes
values in the measurable space (S,S) is infinitely exchangeable (suomeksi ääret-
tömästi vaihdettavissa) when ∀n, t1, . . . , tn ∈ N and any π permutation of
{1, . . . , n}, the random vectors (Xt1 , . . . , Xtn) and (Xtπ(1)

, . . . , Xtπ(n)
) have the

same distribution under P .

http://en.wikipedia.org/wiki/Bruno_de_Finetti
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Note that that when Xt(ω) takes values in R,

M−t(ω) = t−1St(ω) := E(X1|T−t), t ∈ N

is an uniformly integrable martingale in the backward filtration F which has a
limit P -a.s. and in L1(P ) as t→∞

M−∞(ω) = E(X1|T−∞)(ω) .

The tail σ-algebra T−∞ is not necessarly trivial and M−∞(ω) is a random vari-
able.

Definition 30. The random variables (Xt(ω) : t ∈ N) taking values in (S,S)
are conditionally indendent and identically distributed given the σ-algebra G
when, ∀n, t1, . . . , tn, A1 . . . An ∈ S,

P (Xt1 ∈ A1, . . . , Xtn ∈ An|G)(ω) =

n∏
i=1

P (X1 ∈ Ai|G)(ω) P a.s.

By taking expectation of the conditional expectation it follows that condi-
tionally i.i.d. random variables are infinitely exchangeable. The reverse impli-
cation holds.

Theorem 17. (De Finetti) Assume that (S,S) is a Borel space, and the random
sequence (Xt(ω) : t ∈ N) ⊆ S is infinitely exchangeable w.r.t. P .

Then (Xt(ω) : t ∈ N) are conditionally independent and identically dis-
tributed with respect to a tail σ-algebra T−∞ to be defined below.

Proof Let consider the empirical measure of the first t- variables

µt(dx;ω) = t−1
t∑
i=1

1(Xi(ω) ∈ dx)

which generated the σ-algebra

σ(µt) = σ{µt(A) : A ∈ S} ⊆ F .

Note that σ(µt) ⊆ σ(X1, . . . , Xt), and for t > 1 it is strictly smaller because
it contains the information about the realized values of the random variables
but it forgets their time order.

Define the decreasing sequence of σ-algebrae

T−t :=
∨
k≥t

σ(µk), T−∞ =
⋂
t∈N
T−t , is the tail σ-algebra .

Let 1 ≤ k ≤ t ∈ N and f(x1, . . . , xk) : Sk → R a bounded measurable func-
tion, not necessarily symmetric. By symmetry we compute EP (f(X1, . . . , Xk)|T−t)(ω):

Define the random probability measure

µ◦kt : S⊗k → [0, 1]
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which is a regular version of the conditional distribution of the random vector
(X1, . . . , Xk) conditionally on the σ-algebra σ(µt) (the regular version exists
since (S,S) is a Borel space).

By symmetry

EP (f(X1, . . . , Xk)|σ(µt))(ω) =

µ◦kt (f ;ω) :=

∫
Sk
f(x)µ◦kt (dx;ω) =

1

t!

∑
π

f(Xπ(1)(ω), . . . , Xπ(k)(ω)) =

(t− k)!

t!

∑
1≤i1,...,ik≤t distinct

f(Xi1 , Xi2 , . . . , Xik)

where we sum over the permutations π of the set {1, . . . , t}.
Note that µ◦k(dx;ω) is σ(µt)-measurable, since it depends only on the values

{X1(ω), . . . , Xt(ω)} and not by their ordering. Note also that µ◦kt (dx) is not a
product measure, since in the sum there are not terms with repeated indexes.

For k = 1

µ◦1t (A) = µt(A) =
1

t

t∑
k=1

1(Xk ∈ A)

is the empirical measure of (X1(ω), . . . , Xt(ω)).

For k ≤ t and any permutation π of {1, . . . , t}, by exchangeability (X1, . . . , Xk, µt)
and (Xπ(1), . . . , Xπ(k), µt) have the same distribution, which implies

EP (f(X1, . . . , Xk|σ(µt))(ω) = EP (f(Xπ(1), . . . , Xπ(k))|σ(µt))(ω)

By taking the normalized sum over the permutations,

µ◦kt (f ;ω) = EP (f(X1, . . . , Xk)|σ(µt))(ω)

Next we show that

EP (f(X1, . . . , Xk)|σ(T−t))(ω) = EP (f(X1, . . . , Xk)|σ(µt))(ω)

Note also that

T−t = σ(µt, µt+1, µt+2, . . . ) = σ(µt, Xt+1, Xt+2, . . . )

since the empirical measures µt(dx;ω) and µt+1(dx;ω) determine Xt+1(ω) by
the identity

(µt+1 − µt)(dx) =
1

t+ 1

(
1(Xt+1 ∈ dx)− µt(dx)

)
Exercise 12. (X1, . . . , Xt) and (Xt+1, Xt+2, . . . ) are conditionally independent
given σ(µt),

Solution Note that a random variable W (ω) is σ(µt)-measurable if and only
if W (ω) = g(X1, . . . , Xt) where g is measurable and symmetric, i.e.

g(x1, . . . , xt) = g(xπ(1), . . . , xπ(t)) ∀π permutations .
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Assume that g(x1, . . . , xt) is also bounded, and let Y (ω) be a bounded and
σ(Xt+1, Xt+2, . . . )-measurable random variab le and Z(ω) = f(x1, . . . , xt) bounded
and S⊗t-measurable, (not necessarly symmetric) random variable.

By infinite exchangeability it follows that ∀y ∈ N and for all permutations π
of the indexes {1, . . . , t}, the sequences

(X1, X2, . . . Xt, Xt+1, Xt+2, . . . )
L
= (Xπ(1), Xπ(2), . . . Xπ(t), Xt+1, Xt+2, . . . )

have the same distribution,

EP (W Z Y ) = EP
(
g(X1, . . . , Xt) f(X1, . . . , Xt) Y

)
= EP

(
g(Xπ(1), . . . , Xπ(t)) f(Xπ(1), . . . , Xπ(t)) Y

)
( since the sequence is exchangeable )

= EP
(
g(X1, . . . , Xt) f(Xπ(1), . . . , Xπ(t))Y

)
= EP

(
W f(Xπ(1), . . . , Xπ(t)) Y

)
( since g is symmetric )

=
1

t!

∑
π

EP
(
Wf(Xπ(1), . . . , Xπ(t))Y

)
= EP

(
W Y

1

t!

∑
π

f(Xπ(1), . . . , Xπ(t))

)
= EP

(
W Y µ◦tt (f)

)
By definition of conditional expectation

µ◦tt (f ;ω) = EP
(
f(X1, . . . , Xt)

∣∣σ(µt)
)
(ω) = EP

(
f(X1, . . . , Xt)

∣∣σ(µt, Xt+1, Xt+2, . . . )
)
(ω)

which means that under P , (X1, . . . , Xt) and (Xt+1, Xt+2, . . . ) are conditionally
independent conditionally on σ(µt).

In other words, T−t does not contain information about the time-order of the
first n values of the sequence.

Since M (k)
−t (f) := µ◦kt (f) is a martingale in the filtration (T−t : t ∈ N), by

Doob’s martingale backward convergence theorem as t→∞, the limitM (k)
−∞(f)

exists P -a.s. and in L1(P ) sense.
Since (X1, . . . , Xk) takes values in the Borel space (Sk,S⊗k), the conditional

probability

P ((X1, . . . , Xk) ∈ A|T−∞)(ω), A ∈ S⊗k

has a regular version, which is a T−∞-measurable probability kernel µ◦k∞(dx;ω)
on (Sk,S⊗k) such that P -a.s., for all bounded measurable functions f(x1, . . . , xk)

M
(k)
−∞(f ;ω) = EP (f(X1, . . . , Xk)|σ(T−∞))(ω)

=

∫
S1,...,Sk

f(x1, . . . , xk)µ◦k∞(dx1, . . . dxk;ω)

For k = 1 denote µ∞ = µ◦1∞, where

lim
t→∞

1

t

t∑
i=1

f(Xi(ω)) =

∫
S

f(x)µ∞(dx, ω) P -a.s.
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Exercise 13. Since (S,S) is a Borel space there is a measurable injection f :
(S,S) → ([0, 1],B([0, 1])) with measurable inverse f−1. It follows that A ⊆ S,
A ∈ S if and only if f(A) is Borel set. Since

σ
{

(a, b] : 0 ≤ a < b ≤ 1, a, b ∈ Q
}

= B([0, 1])

it follows that also S is countably generated, since

S = σ
{
f−1((a, b] ∩ f(S)) : 0 ≤ a < b ≤ 1, a, b ∈ Q

}
= σ

{
A(`) : ` ∈ N

}
This implies that conditional probabilities on (S,S) have regular versions.

We know a priori that ∀A ∈ S, ∃NA ⊆ Ω with P (NA) = 0 such that

µt(A;ω)→ µ∞(A;ω) ∀ω 6∈ NA

Since P (N ) = 0 where N =
⋃
`∈N
NA(`), it follows that

µt(A`;ω)→ µ∞(A`;ω) ∀` ∈ N ∀ω 6∈ N

and since σ{A` : ` ∈ N} = S it follows that ∀A ∈ S

µt(A;ω)→ µ∞(A;ω) ∀A ∈ S ∀ω 6∈ N (5.1)

Similarly we find a P -null set Ñ ⊆ Ω such that ∀k ∈ N, ∀{Ai} ⊆ S

µ◦kt (A1 × · · · ×Ak;ω)→ µ◦k∞(A1 × · · · ×Ak;ω) ∀ω 6∈ Ñ (5.2)

P -almost surely the collection of finite dimensional distributions{
µ◦k∞(dx1, . . . dxk;ω) : k ∈ N

}
is consistent, and by Kolmogorov’s extension theorem 3, for each ω outside a
P -null set there is a random probability measure ν∞( · ;ω) on the space of
sequences (xk : k ∈ N) ⊆ S such that ∀k, A1, . . . , Ak ∈ S

P
(
X1 ∈ A1, . . . Xk ∈ Ak|T−∞)(ω) =

µ◦k∞(A1 × · · · ×Ak;ω) = ν∞
({

(xl : l ∈ N) : x1 ∈ A1, . . . , xk ∈ Ak
}

;ω
)

We show that P -a.s. ν∞(·;ω) is an product measure of infinite copies, which
means

P
(
X1 ∈ A1, . . . Xk ∈ Ak|T−∞)(ω) =

k∏
i=1

P (X1 ∈ Ai|T−∞)(ω) ∀k ∈ N.

Let µ⊗kt be the k-fold product measure of the empirical measure µt. For
every bounded and Borel measurable f(x1, . . . , xk),

µ⊗kt (f) = t−k
∑

1≤i1,...,ik≤t

f(Xi1 , . . . , Xik)
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where the sum contains also terms with repeated indexes. Then

(µ◦kt − µ⊗kt )(f) = µ◦kt (f)− µ⊗kt (f) =

µ◦kt (f)

(
1− t!

tk(t− k)!

)
+ t−k

∑
1≤i1,...ik≤t: ∃l 6=m il=im

f(Xi1 , . . . , Xik)

where in the first part we have terms without repeated indexes and in the second
part all terms have at least on index repeated. Then ∀k ∈ N,ω ∈ Ω,

|µ◦kt (f ;ω)− µ⊗kt (f ;ω)| ≤‖ f ‖∞
(

1−
k−1∏
l=0

(t− l)
t

+ t−k
(
k

2

)
tk−1

)
−→ 0

as t→∞, where ‖ f ‖∞= supx∈S |f(x)| and the upper bound does not depend
on ω.

For all A1, A2 · · · ∈ S, ∀k P -a.s. as t→∞

µ◦kt (A1 ×A2 × · · · ×Ak) −→ µ◦k∞(A1 ×A2 × · · · ×Ak) .

For k = 1

µ◦1t (Ai) −→ µ∞(Ai),

and convergence follows also for the product measures

µ⊗kt (A1 ×A2 × · · · ×Ak) =

k∏
i=1

µ◦1t (Ai)→
k∏
i=1

µ∞(Ai) = µ⊗k∞ (A1 ×A2 × · · · ×Ak).

By triangle inequality

|µ◦k−∞(f)− µ⊗k−∞(f)|
≤ |µ◦k−∞(f)− µ◦kt (f)|+ |µ◦kt (f)− µ⊗kt (f)|+ |µ⊗kt (f)− µ⊗k∞ (f)| → 0

P -a.s. as t→∞, and

µ◦k∞(f ;ω) = µ⊗k∞ (f ;ω) P -a.s

for all bounded measurable f(x1, . . . , xk). It means that ν∞ is a product mea-
sure on the space of infinite sequences SN. For all bounded measurable functions
g1, . . . , gk : S → R

EP (g1(X1) . . . gk(Xk)|T−∞)(ω) =

k∏
`=1

{∫
S

g`(x)µ∞(dx, ω)

}
By taking expectations,

EP (g1(X1) . . . gk(Xk)) =

EP

( k∏
`=1

{∫
S

g`(x)µ∞(dx)

})
=

∫
M(S)

{ k∏
`=1

∫
S

g`(x)µ(dx)

}
Q(dµ)

where Q is the distribution of the random measure µ∞(dx;ω) in the space

M(S) =
{
probability measures ν : S → [0, 1]

}
In other words, a permutation symmetric (i.e. infinitely exchangeable) ran-

dom sequence with values in a Borel space is the mixture of i.i.d. sequences
�
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Exercise 14. De Finetti original proof was for the simplest case of random
binary sequences, where S = {0, 1} and the space of probability measures on S
isM(S) = [0, 1].

Let St(ω) = (X1(ω) + · · ·+Xt(ω)).
In coin-toss experiment, if the sequence of coin tosses is infinitely exchange-

able under P , it has a limit ϑ(ω) := lim
t→∞

t−1St(ω) ∈ [0, 1] P -a.s. and in L1(P )
sense.

Let Q(dθ) = P ({ω : ϑ(ω) ∈ dθ}). By conditioning on the σ-algebra σ(ϑ),
the coin-tosses are conditionally independent and Bernoulli distributed, with the
same random probability-parameter ϑ(ω) ∈ [0, 1]. The probability distribution
of the limit Q(dθ) is interpreted as a priori probability on the parameter ϑ. It
follows ∀k, (xi)i∈N ⊆ {0, 1},

P
(
X1 = x1, . . . , Xk = xk) =

∫ 1

0

{ k∏
i=1

P (X1 = xi|ϑ = θ)

}
Q(dθ)

=

∫ 1

0

θSk(1− θ)(k−Sk)Q(dθ)

Q(B) = P
({
ω : lim

t→∞
t−1St(ω) ∈ B

})
, B ∈ B([0, 1])

De Finetti’s theorem is at the mathematical foundation of Bayesian statistical
inference.

5.4.1 Doob decomposition

Proposition 16. Assume that (Xt : t ∈ N) is an F-adapted process. We always
have the Doob decomposition

Xt = X0 +Mt +At where A0 = 0

At =

t∑
s=1

∆As =

t∑
s=1

(
E(Xs|Fs−1)−Xs−1

)
is F-predictable,

Mt =

t∑
s=1

∆Ms =

t∑
s=1

(
Xs − E(Xs|Fs−1)

)
is a F-martingale

Proof write the telescopic sums with ∆Xt = ∆Mt + ∆At.
When Xt is an (F)-submartingale (respectively supermartingale ) At is non-

decreasing (respectively non-increasing).

5.4.2 Riesz decomposition

Definition 31. A potential (Zn : n ∈ N) is a non-negative (P,F)-supermartingale
with

lim
n→∞

EP (Zn) = 0 .

The potential terminology comes in analogy with physics, where potentials
do vanish at infinity. Note that a potential is necessarly uniformly integrable.
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Definition 32. We say that a (F, P )-supermartingale (Xn : n ∈ N) has Riesz
decomposition when

Xn = Yn + Zn (5.3)

where Yn is a martingale and Zn is a potential.

Theorem 18. A (P,F)-supermartingale (Xn : n ∈ N) satisfying

sup
n∈N

EP
(
X−n ) <∞

has Riesz decomposition (5.3) with

Yn = Mn − E(A∞|Fn), Zn = E(A∞|Fn)−An,

where Xn = Mn − An is the Doob decomposition of X into a martingale part
M and a predictable part with A non-decreasing and A0 = 0. The Riesz decom-
position is unique.

Proof: exercise

5.4.3 Krickeberg decomposition

Definition 33. We say that (P,F)-supermartingale (Xt : t ∈ N) has Krickeberg
decomposition if

Xt = Lt −Mt (5.4)

where Lt ≥ 0 is a supermartingale and Mt ≥ 0 is a martingale

Theorem 19. A (P,F)-supermartingale (Xt : t ∈ N) has Krickeberg decompo-
sition (5.4) with

Lt = (Xt − Yt) = X+
t + Zt ≥ 0, and Mt = −Yt = X−t + Zt ≥ 0,

where

−X−t = Yt + Zt

is the Riesz decomposition of the supermartingale (−X−t ),
if and only if

sup
t∈N

EP
(
X−t
)
<∞

Proof: exercise. Note that since the function x 7→ x+ = x ∨ 0 is convex,
by the Jensen inequality for conditional expectations it follows that (−X−t ) is
a supermartingale as well.

5.4.4 L2 martingales

Martingales bounded in L2



78 CHAPTER 5. MARTINGALE THEORY

Proposition 17. A (P,F)-martingale (Mn : n ∈ N) is bounded in L2(P ), if
and only if

∞∑
k=1

EP
(
(∆Mk)2

)
<∞, with ∆Mk = Mk −Mk−1

In this case Mn →M∞ P -almost surely and in L2(P ).

Proof

E(M2
n) = E

({ n∑
k=1

∆Mk

}2)
=

n∑
k=1

EP
(
(∆Mk)2

)
+ 2

∑
1≤h<k≤n

EP
(
∆Mh∆Mk

)
(5.5)

where for h < k, by tower property of the conditional expectation and the
martingale property whe have

EP
(
∆Mh∆Mk

)
= EP

(
∆MkEP (∆Mk|Fh)

)
= 0 .

Since (Mn : n ∈ N) is bounded in L2(P ), we know that it is an uniformly
integrable martingale of the form Mn = EP

(
M∞

∣∣Fn), where by Doob mar-
tingale convergence theorem and the characterization of convergence in L1(P )
M∞(ω) = lim

n→∞
Mn(ω) P -almost surely and in L1(P ).

But from (5.5) we see that (Mn)n∈N is a Cauchy sequence in the complete
space L2(P ), which means that M∞ is also the limit in L2(P ) sense, since by
completeness there exist an L2(P )-limit M̃∞, but this has to be P -almost surely
equal M∞, since the limit in probability is P -a.s. unique �

Predictable Covariation of martingales in L2(P ) . Consider the case
where (Mt : t ∈ N) and (Nt : t ∈ N) are F-martingales with Mt, Nt ∈ L2(Ω)
∀t ∈ N. For the product NtMt we have

MtNt −Mt−1Nt−1 = Nt−1∆Mt +Mt−1∆Nt + ∆Mt∆Nt

= Nt−1∆Mt +Mt−1∆Nt +

(
∆Mt∆Nt − E(∆Mt∆Nt|Ft−1)

)
+ E(∆Mt∆Nt|Ft−1)

Denote

[N,M ]t =

t∑
s=1

∆Ns∆Ms, 〈N,M〉t =

t∑
s=1

E
(
∆Ns∆Ms

∣∣Fs−1

)
which are respectively the (discrete) quadratic covariation andpredictable co-
variation of the pair (Nt,Mt).

By writing the telescopic sum,

NtMt −N0M0 =
(
N− ·M)t +

(
M− ·N)t + [N,M ]t =(

N− ·M)t +
(
M− ·N)t +

(
[N,M ]t − 〈N,M〉t

)
+ 〈N,M〉t = Xt + 〈N,M〉t

where the martingale transforms

(
N− ·M)t =

t∑
s=1

Ns−1∆Ms,
(
M− ·N)t =

t∑
s=1

Ms−1∆Ns
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are F-martingales (integrability follows by Cauchy-Schwartz inequality since
Mt, Nt ∈ L(P )). Also

(
[N,M ]t − 〈N,M〉t

)
is an F-martingale, and 〈N,M〉t

is F, predictable. Therefore the Doob decomposition is

NtMt = N0M0 +Xt + 〈N,M〉t, with martingale part

Xt =
(
N− ·M)t +

(
M− ·N)t +

(
[N,M ]t − 〈N,M〉t

)
Note that by taking expectation,

E(MtNt)− E(M0M0) = E
(
(Mt −M0)(Nt −N0)

)
= E

(
〈M,N〉t

)
When Nt = Mt, by Jensen’s inequality (M2

t ) is a F-submartingale and the
predictable variation

〈M〉t = 〈M,M〉t =

t∑
s=1

E
(
(∆Ms)

2
∣∣Fs−1

)
is non-decreasing.

Theorem 20. Let (Mt : t ∈ N) a (P,F)-martingale in L2(P ) (not necessarily
bounded in L2(P )). Then

lim
n→∞

Mt(ω)

exists P -almost surely on the set A :=
{
ω : 〈M〉∞(ω) <∞

}
.

Proof Let τn(ω) = inf
{
ω : 〈M〉t+1 ≥ n

}
. Note that ∀ω ∈ A, ∃N(ω) with

τn(ω) = +∞ for all n ≥ N(ω).
Note thatMt∧τn is a square integrable martingale with predictable variation

〈M〉t∧τn ≤ n, with EP
(
M2
t∧τn

)
= EP

(
〈M〉t∧τn

)
≤ n.

Therefore

lim
t→∞

Mt∧τn(ω) = Mτn(ω)

exists P -almost surely and in L2(P ). For ω ∈ A and n ≥ N(ω) we have
τn(ω) =∞ and the limit

lim
t→∞

Mt(ω) = M∞(ω)

exists �

5.5 Doob optional sampling and optional stop-
ping theorems

Lemma 17. Let (Xt : t ∈ N) a supermartingale and 0 ≤ τ(ω) ≤ k a bounded
stopping time.

Then E(Xk|Fτ )(ω) ≤ Xτ .

Proof For A ∈ Fτ by definition A ∩ {τ = t} ∈ Ft. By using the super-
martingale property

EP (Xk1A) =

k∑
t=0

EP
(
Xk1(A∩{τ = t})

)
≤

k∑
t=0

EP
(
Xt1(A∩{τ = t})

)
= EP (Xτ1A)



80 CHAPTER 5. MARTINGALE THEORY

Theorem 21. Let (Mt : t ∈ N) an UI martingale, and τ a stopping time. Then

EP (M∞|Fτ )(ω) = Mτ (ω)

Proof Since Fτ∧k ⊆ Fk, k ∈ N and (Mt) is an UI-martingale

EP (M∞|Fτ∧k) = EP (EP (M∞|Fk)|Fτ∧k) = EP (Mk|Fτ∧k)

Let’s assume thatM∞(ω) ≥ 0, otherwise we work withM+
∞,M

−
∞ separately,

since

Mt(ω) = M
(+)
t (ω)−M (−)

t (ω) , where M
(±)
t (ω) := EP

(
M±∞

∣∣Ft)(ω)

are uniformly integrable martingales. For A ∈ Fτ ,

EP
(
M∞1A∩{τ≤k}

)
= EP

(
Mk1A∩{τ≤k})

by the martingale property, since A∩{τ ≤ k} is Fk-measurable by the definition
of stopped σ-algebra Fτ ,

= EP (Mτ∧k1A∩{τ≤k}
)

= EP (Mτ1A∩{τ≤k}
)

=

where we used lemma 17 for the bounded stopping time (τ ∧ k) ≤ k together
with the fact that A ∩ {τ ≤ k} is also F(τ∧k)-measurable. To check this, for all
t ∈ N we have

A ∩ {τ ≤ k} ∩ {τ ∧ k ≤ t} = A ∩ {τ ≤ k ∧ t} ∈ F(t∧k) ⊆ Ft

Since 1(τ(ω) ≤ k) ↑ 1(τ(ω) < ∞) as k ↑ ∞, by the monotone convergence
theorem it follows

EP (M∞1A1(τ <∞)) = EP (Mτ1A1(τ <∞))

and since Mτ1(τ < ∞) is Fτ -measurable, in discrete time this follows since
Mτ (ω)1(τ(ω) = k) = Mk(ω)1(τ(ω) = k), we have

E(M∞|Fτ )(ω)1(τ(ω) <∞) = Mτ (ω)1(τ(ω) <∞)

The result follows since

M∞(ω)1(τ(ω) =∞) = Mτ (ω)1(τ(ω) =∞) �

Corollary 10. Let τ(ω) ≥ σ(ω) stopping times, and (Mt : t ∈ N) an UI
martingale.

Then Fσ ⊆ Fτ and

EP (Mτ |Fσ) = Mσ (5.6)

and by taking expectation EP (Mτ ) = EP (M0) for all stopping times τ .

When τ(ω) ≤ σ(ω) P -almost surely, if the filtration is P -complete, meaning
that F0 ⊃ NP = {A ⊂ Ω, P (A) = 0} we have the same implications.

Proof: When σ(ω) ≤ τ(ω) ∀ω ∈ Ω and A ∈ Fσ,

A ∩ {τ ≤ t} = A ∩ {σ ≤ t} ∩ {τ ≤ t} ∈ Ft
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since A∩{σ ≤ t} ∈ Ft because A ∈ Fσ, and {τ ≤ t} ∈ Ft since τ is a F-stopping
time.

More in general, suppose that σ(ω) ≤ τ(ω)∀ω ∈ N c with P (N) = 0. Assum-
ing that the filtration is P complete, when A ∈ Fσ

A ∩ {τ ≤ t} =
(
A ∩ {σ ≤ t} ∩ {τ ≤ t} ∩N c

)
∪
(
{τ ≤ t} ∩ (A ∩N)

)
∈ Ft

where {τ ≤ t} ∈ Ft, since τ is a stopping time, A∩ {σ ≤ t} ∈ Ft since A ∈ Fσ,
and both N c and (A ∩N) are in N ⊂ Ft since the filtration is P -complete.

Now, since Fσ ⊆ Fτ
Mσ = EP (M∞|Fσ) = EP (EP (M∞|Fτ )|Fσ) = EP (Mτ |Fσ) (5.7)

Corollary 11. If (Mt, t ∈ N) is a martingale and

0 ≤ σ(ω) ≤ τ(ω) ≤ K ∈ N (5.8)

are bounded stopping times, then

EP (Mτ |Fσ) = Mσ (5.9)

Proof apply corollary (10) to (Mt : t = 1 . . . ,K) which is uniformly inte-
grable since it is a finite subset of L1(P ).

Corollary 12. For a UI martingale Mt = EP (M∞|Ft), the stopped process Mτ
t

is also an UI martingale in both filtrations (Ft : t ∈ N) and (Ft∧τ : t ∈ N)

Proof By theorem 21 EP (M∞|Fτ ) = Mτ . Because τ(ω) ≥ (τ(ω) ∧ t) are
stopping times, by corollary 10

EP (M∞|Fτ∧t) = EP (Mτ |Fτ∧t) = Mt∧t,

which is uniformly integrable by lemma 15 �
Here another version of Doob optional stopping theorem

Theorem 22. Let τ be a F-stopping time with EP (τ) < ∞ and (Mt : t ∈ N)
an (F, P )-martingale such that for some constant C

EP
(
|∆Mτ

t |
∣∣Ft−1

)
= EP

(
|∆Mt|

∣∣Ft−1

)
1(τ > t− 1) ≤ C ,

P -almost surely ∀t ∈ N. Then EP (Mτ ) = EP (M0).

Proof Since EP (τ) <∞, it follows that P (τ <∞) = 1, which means that
(t ∧ τ) ↑ τ < ∞ and Mt∧τ → Mτ P -almost surely. Since the stopped process
Mτ
t = Mt∧τ is a martingale, E(Mt∧τ ) = E(M0). We show that (Mt∧τ : t ∈ N)

is a Cauchy sequence in L1(P ): by taking tellescopic sum

Mt∧τ −Ms∧τ =

t∑
k=s+1

1(τ > s− 1)∆Ms

By the triangle inequality and the tower property of the conditional expectation,
for 0 ≤ s ≤ t

EP
(
|Mt∧τ −Ms∧τ |

)
≤

t∑
k=s+1

EP
(
1(τ > s− 1)|∆Ms|

)
=

t∑
k=s+1

EP
(
1(τ > k − 1)EP (|∆Mk||Fk−1)

)
≤ C

∞∑
k=s

P (τ > k)



82 CHAPTER 5. MARTINGALE THEORY

which goes to zeros as s→∞, since by Fubini theorem

∞∑
k=0

P (τ > k) = EP (τ) <∞ �

Exercise 15. Since the stopped process can represented as a martingale trans-
form of a bounded predictable integrand one would hope that martingale trans-
forms with respect to a bounded predictable integrand preserves uniform integra-
bility, but this is not true.

In fact convergence in L1(P ) sense of martingales is tricky. Cherny has
constructed an uniformly integrable martingale (Xt : t ∈ N) and a bounded-
predictable integrand (Ht : t ∈ N), (that is |Ht(ω)| ≤ c for some constant), such
that the martingale transform (H ·X)t is a martingale which is not bounded in
L1(P ) and therefore it is not uniformly integrable

We construct a positive martingale (Xn(ω) : n ∈ N) as follows: the filtration
is the one generated by the sequence. Fn = σ(X1, . . . , Xn).

At time t, conditionally on the past, with small probability Xt is rescaled by
a very large factor, and continues, and with high probability it is rescaled by a
very small factor and stops.

Let

an = 2n, bn =
2n

2n2 − n+ 1
, pn =

n− 1

2n2
n ∈ N, X1(ω) = a1 = 1, A1 = Ω,

An+1 = {ω : Xn+1 = a1 · · · · · an+1} ∈ Fn+1

P (Xn+1 = a1a2 · . . . anan+1|An) = pn+1

P (Xn+1 = a1a2 · . . . anbn+1|An) = 1− pn+1

P (Xn+1 = Xn|Acn) = 1

Note that the process Xn stops the first time the event Acn appears, and Xn is
a martingale since

E(Xn+1|Fn) = Xn

(
1Acn + 1An

{
an+1pn+1 + bn+1(1− pn+1)

})
= Xn

For n < m

E(|Xm −Xn|) = E(|Xm −Xn|1An) = E(|Xm −Xn|1An+1
) + E(|Xm −Xn|1An1Acn+1

) =

One can check by induction that Ym,n := (Xm −Xn)1An+1
> 0 for m > n.

Yn+1,n = (Xn+1 −Xn)1An+1
= a1 . . . an(an+1 − 1)1An+1

≥ 0,

(Xm −Xn)1An+1
= (Xm −Xm−1 +Xm−1 −Xn)1An+1

=

Ym−1,n + (Xm −Xm−1)1Am−1
=

Ym−1,n + a2 . . . am−1

(
1Am(am − 1) + 1Am−11Acm(bm − 1)

)
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Now when ω ∈ Acm−1 the second term is zero and the first term is non-negative
by induction. When ω ∈ Am−1 this gives

= a2 . . . am−1

(
1 + 1(Am)(am − 1) + 1Acm(bm − 1)

)
≥ 0

Using the positivity property of Ym,n,

E(|Xm −Xn|1An+1
) = E((Xm −Xn)1An+1

) = E((Xn+1 −Xn)1An+1
) = E(|Xn+1 −Xn|1An+1

)

so that

E(|Xm −Xn|) = E(|Xm −Xn|1An+1) + E(|Xm −Xn|1An1Acn+1
) =

E((Xm −Xn)1An+1) + E(|Xn+1 −Xn|1An1Acn+1
)

= E((Xn+1 −Xn)1An+1) + E(|Xn+1 −Xn|1An1Acn+1
) by the martingale property,

= E(|Xn+1 −Xn|1An1An+1) + E(|Xn+1 −Xn|1An1Acn+1
) =

E(|Xn+1 −Xn|1An) = a2 . . . an × p2 . . . pn ×
(
(an+1 − 1)pn+1 + (1− bn+1)(1− pn+1)

)
=

a2 . . . anp2 . . . pn ×
(
1− bn+1 + (an+1 + bn+1 − 2)pn+1

)
≤ a2 . . . anp2 . . . pn(an+1pn+1 + 1) =

1

n

(
n

n+ 1
+ 1

)
≤ 2/n

therefore Xn is a Cauchy sequence and it converges in L1(P ), which means that
it is an UI martingale.

Consider now the martingale transform (H ·X)t of the bounded deterministic
integrand

Hn = 1(n is even )

We show that (H ·X)t is not bounded in L1 !
For m > n,

E

(∣∣∣∣1A2n
1Ac2n+1

(H ·X)2m

∣∣∣∣) = E

(
1A2n

1Ac2n+1

n∑
k=1

(X2k −X2k−1)

)
≥ E

(
1A2n

1Ac2n+1
(X2n −X2n−1)

)
,

since the remaining terms are non-negative on the event 1A2n
1Ac2n+1

,

= p2 . . . p2n(1− p2n+1)a2 . . . a2n−1(a2n − 1) ≥ 1

4
p2 . . . p2na2 . . . a2n =

1

8n

We have

Ω = Ac1 ∪ (A1 ∩Ac2) ∪ · · · ∪ (A2m ∩Ac2m+1) ∪A2m+1

where the union is taken over disjoint sets,

EP

(∣∣∣∣(H ·X)2m

∣∣∣∣) ≥ m∑
n=1

EP

(
1A2n

1Ac2n+1

∣∣∣∣(H ·X)2m

∣∣∣∣) ≥ m∑
n=1

1

8n
→∞

as m→∞, the martingale (H ·X)n is not bounded in L1(P ).
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Corollary 13. Let (Xt : t ∈ N) an UI submartingale with Doob decomposition

Xt = X0 +Mt +At

where Mt is a martingale and At is a predictable non-decreasing process with
M0 = A0 = 0.

Then

1. (Mt) is an UI-martingale and EP (A∞) <∞.

2. For every stopping time τ

E(X∞|Fτ )(ω) ≥ Xτ (ω)

Proof By Doob forward martingale convergence theorem

∃X∞ = lim
t→∞

Xt(ω)

P -almost surely and in L1(P ) sense. By monotonicity At(ω) ↑ A∞(ω) P -a.s.
and by the monotone convergence theorem E(At) ↑ EP (A∞). Since Xt is
uniformly integrable ∀t

EP (At) = EP (Xt −X0) ≤ sup
t∈N

EP (|Xt −X0|) <∞

and At → A∞ ∈ L1(P ).
Therefore

Mt →M∞ = X∞ −X0 −A∞
P -a.s. and in L1(P ).

For a stopping time τ , we have since Mt is an UI-martingale

EP (X∞|Fτ ) = X0+EP (M∞|Fτ )+EP (A∞|Fτ ) = X0+Mτ+Aτ+EP (A∞−Aτ |Fτ )

where the last term on the right hand side is non-negative �

Lemma 18. Let (Xt(ω) : t ∈ N) be a non-negative martingale. Since it is non-
negative, it is automatically bounded in L1(P ), by Doob convergence theorem
exists limt→∞Xt(ω) = X∞(ω) P -almost surely with X∞ ∈ L1(P ). Then Xt is
uniformly integrable if and only if E(X∞) = E(X0)

Proof
Necessity follows from the characterization of L1(P )-convergence. For suffi-

ciency, by Fatou lemma for A ∈ Ft

EP (X∞1A) ≤ lim inf
T→∞

E(XT1A) = E(Xt1A)

which gives the supermartingale property at T =∞:

EP (X∞|Ft) ≤ Xt

Now by assumption

0 = EP (Xt −X∞) = EP
(
Xt − EP (X∞|Ft)

)
which means Xt = EP (X∞|Ft) P -almost surely �
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5.6 Change of measure and Radon-Nikodym the-
orem

Definition 34. Let µ and ν positive measures on the probability space (Ω,F).
We say that ν is absolutely continuous with respect to µ, (also µ dominates

ν) if for all A ∈ F µ(A) = 0 =⇒ ν(A) = 0. In this case we use the notation
ν � µ.

Sometimes we need absolute continuity with respect to some sub-σ-algebra

G ⊆ F . We say that µ dominates ν on G and denote ν
G
� µ.

When both µ� ν and ν � µ we say that the measures are equivalent (that
is they have the same null sets) and denote µ ∼ ν.

Lemma 19. Let Q� P be probability measures on the space (Ω,F). Then for
all ε > 0 there is δ > 0 such that for A ∈ F P (A) < δ =⇒ Q(A) < ε

Proof Otherwise there is ε > 0 and a sequence (An : n ∈ N) ⊆ F with
P (An) ≤ 2−n and Q(An) ≥ ε > 0 By Borel Cantelli lemma P (lim supAn) = 0,
while by reverse Fatou lemma

Q(lim supAn) ≥ lim supQ(An) ≥ ε > 0

which is in contradiction with the assumption Q� P �

Theorem 23. (Radon-Nikodym) Let µ and ν σ-finite positive measures on
the measurable space (Ω,F). When ν � µ, there is a measurable function
Z : (Ω,F)→ (R+,B(R+)), such that the change of measure formula holds

ν(A) =

∫
Ω

Z(ω)1A(ω)µ(dω) ∀A ∈ F

Proof Since both µ and ν are σ-finite, there is a countable partition

Ω =
⋃
n∈N

Ωn

of disjoint measurable sets, such that both µ(Ω)n, ν(Ω)n < ∞. By considering
on each Ωn the probability measures

Pn(dω) = µ(dω)/µ(Ωn) and Qn(dω) = ν(dω)/ν(Ωn) ,

we see that it is enough to prove the theorem for probability measures Q� P .

We assume first that F is countably generated (we say also separable )
F = σ(Fn : n ∈ N) where {Fn}n∈N ⊆ N. This is the case when (Ω,F) is a Borel
space. We will drop this assumption later.

Consider the filtration {Fn} where Fn = σ(F1, . . . , Fn), with F =
∨
n∈N Fn.

For each n, by taking intesections of F1, . . . Fn, we find a Fn-measurable
partition of Ω {A(n)

1 , . . . , A
(n)
mn} with Fn = σ(A

(n)
k : k = 1, . . . ,mn).

We define the Fn measurable random variable

Zn(ω) =

mn∑
k=1

Q(A
(n)
k )

P (A
(n)
k )

1(ω ∈ A(n)
k )
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with the convention that 0/0 = 0 (or if you like 0/0 = 1, it does not matter).
Note that by absolute continuity, Q(A

(n)
k ) = 0 when P (A

(n)
k ) = 0 so that

Zn(ω) takes values in [0,+∞).
It follows that Q(A) = EP (Zn1A) ∀A ∈ Fn.
On fact it is enough to check this property for someA = A

(n)
k k ∈ {1, . . . ,mn},

since these sets generate the σ-algebra Fn. But this follows directly from the
definition.

Note that for every Fn-measurable random variable X(ω) (which is neces-
sarily a simple r.v.) it follows directly that

EQ(X) = EP (XZn)

Note also that EP (Zn) = Q(Ω) = 1.
The process (Zn(ω))n∈N is a (P, {Fn})-martingale. We have seen that (Zn)

is adapted and it is P -integrable since it takes finitely many finite values.
For all A ∈ Fn also A ∈ Fn+1, so that

EP (Zn1A) = Q(A) = EP (Zn+11A)

which by definition of conditional expectation means

EP (Zn+1|Fn)(ω) = Zn(ω).

Since (Zn(ω)) is a non-negative martingale, in particular it is a supermartin-
gale bounded from below, and by Doob forward martingale convergence theorem
it follows that P almost surely exists

Z∞(ω) = lim
n→∞

Zn(ω)

and Z∞ ∈ L1(Ω,F , P ). In order to define Z(ω) for all ω we take the lim sup.
In order to show that Q(A) = EP (Z∞1A) ∀A ∈ F , since the sets Fn generate

the σ-algebra, it is enough to show that Q(Fn) = EP (Z∞1Fn) ∀n.
Since Q(Fn) = EP (ZmFn) for all m ≥ n, in order to show that

EP (Z∞Fn) = lim
m→∞

EP (ZmFn) = Q(Fn) .

Let’s check uniform P -integrability for the martingale (Zn).
Since Q � P , by lemma 19 for given ε > 0 we can find δ > 0 such that for

A ∈ F and P (A) < δ follows Q(A) < ε.
By Chebychev inequality

P (Zn > K) < K−1EP (Zn) = K−1 ∀n

Choose K > δ−1. Since {ω : Zn(ω) > K} ∈ Fn, by the change of measure
formula

sup
n
EP (Zn1(Zn > K)) = sup

n
Q(Zn > K) < ε

which is the UI-condition:

lim
K→∞

sup
n
EP (Zn1(Zn > K)) = 0

So far we have proved the R-N theorem for countably generated σ-algebrae.
We extend the proof by using convergence of generalized sequences.

We recall this concept from topology:
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Definition 35. In a topological space (E, T ) a net is a generalized sequence
(xα : α ∈ I) indexed by a directed set, that is a partially ordered set (I,≤) such
that for every two elements α, β ∈ I there is an element α ∨ β

α ∨ β ≥ α, α ∨ β ≥ β.γ ≥ α and γ ≥ β =⇒ γ ≥ α ∨ β

We say that xα → x ∈ E when for every open set U 3 x there is an element ᾱ
such that xα ∈ U for all α ≥ ᾱ.

When F is not countably generated (we say also separable), we consider the
partially order set

G :=

{
G ⊆ F : G is a countably generated σ-algebra

}
.

Here the ordering relation is the inclusion ⊆. Note that when G,G′′ ∈ G,
G′ ∨ G′′ := σ(G′,G′′) is a separable sub σ-algebra as well.

For each G ∈ G we have shown that there is a random variable 0 ≤ ZG(ω) ∈
L1(Ω,G, P ) such that the change of variable formula holds in G:

Q(A) = EP (ZG1A) ∀A ∈ G

We show that (ZG : G ∈ G) is a Cauchy net in L1(Ω,F , P ), and by com-
pleteness it has a limit Z ∈ L1(Ω,F , P ).

By Cauchy net we mean the following: for all ε > 0 there is a G ∈ G such
that if G′ ⊇ G, G′′ ⊇ G, G′,G′′ ∈ G, then

EP
(
|ZG′ − ZG′′ |) < ε

By the triangle inequality this it is equivalent to

EP
(
|ZḠ − ZG′ |) < ε/2, ∀G′ ∈ G with G′ ⊇ Ḡ

If (ZG) was not a Cauchy net we would find some ε > 0 and a sequence
(Gn : n ∈ N) ⊆ G such that Gn ⊆ Gn+1 and

EP
(
|ZGn − ZGn+1

|) ≥ ε > 0

Let G∞ =
∨
n∈N Gn. G∞ ∈ G and by the previous argument (ZGn : n ∈ N ∪ {+

∞}) would be an uniformly integrable martingale in the filtration {Gn}, which
necessarly is convergent in L1(P ), giving a contradiction.

Remark 14. In a complete metric space (E, d) every Cauchy net (xα : α ∈ I)
is convergent, that is there is an element x∗ ∈ E such that ∀ε > 0 ∃α with
d(x∗, xα) ≤ ε ∀α ≥ α.

Proof: for every n let αn such that d(xαn , xα) ≤ n−1 ∀α ≥ αn, and we can
also choose αn ≥ αn−1 (we have to assume the axiom of choice, allowing to
choose elements from uncountable sets).

Therefore (xαn) is a Cauchy sequence and it has a limit x ∈ E, which does
not depend on the choice of the sequence ᾱn, since for another choice α̃n con-
verging to a limit x̃ one would have by the triangle inequality

d
(
x, x̃

)
≤ d
(
xᾱn∨α̃n , x

)
+ d
(
xᾱn∨α̃n , x̃

)
≤ 2

n
∀n ∈ N ,

and we say that x is limit of the net (xα).
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Since L1(Ω,F , P ) is complete, the generalized Cauchy sequence (ZG : G ∈ G)
has necessarily a limit Z∞(ω) ∈ L1(Ω,F , P ). Let’s check the change of measure
formula: consider A ∈ F and take G ∈ G such that

EP (|Z∞ − ZG′ |) < ε

for all G′ ⊇ G, G′ ∈ G. Define G̃ := σ(G ∨A) ∈ G. Since

Q(A) = EP (ZG̃1A)

we have ∣∣∣∣EP (Z∞1A)−Q(A)

∣∣∣∣ ≤ EP(∣∣Z∞ − ZG̃∣∣) < ε

with arbitrarily small ε, and the change of measure formula holds �

5.7 The Likelihood ratio process
Consider a probability space (Ω,F) equipped with a filtration F = (Ft : t ∈ T ),
(T = N,R) and two probability measures P,Q. such that Q dominates P locally

P
loc
� Q, which means Pt � Qt ∀t ∈ T, t <∞

where Pt, Qt are the restriction of P,Q on the σ-algebra Ft. In other words, if
A ∈ Ft for some t <∞ and Q(A) = 0, then P (A) = 0.

By the Radon-Nikodym theorem,there is a likelihood-ratio process

0 ≤ Zt(ω) =
dPt
dQt

(ω) ∈ L1(Ω,Ft, Q), 0 ≤ t <∞,

such that ∀A ∈ Ft, the change of measure formula holds

P (A) = EQ(Zt1A)

Proposition 18. The process (Zt(ω), 0 ≤ t <∞) is a (Q,F)-martingale.

Proof. For s ≤ t, ∀A ∈ Fs ⊆ Ft the martingale propery follows:

P (A) = EQ(Zs1A) = EP (Zt1A)

Uniformly integrable likelihood-process Consider the discrete time case

with T = N. When Q
loc
� P , (Zt : t ∈ N) is a non-negative (P,F)-martingale

and by Doob’s convergence theorem there is Z∞(ω) ∈ L1(P ) such that

Zt(ω)→ Z∞(ω) Q and P almost surely ,

and by Fatou lemma EP (Z∞) ≤ lim inf
n

EP (Zn) = EP (Z0) = 1.
By lemma (18) (Zt : t ∈ N) is uniformly integrable with

Zt(ω) = EP (Z∞|Ft)(ω) and Zt
L1(P )−→ Z∞,

if and only if EP (Z∞) = 1. In this case Q� P not just locally but also on the
σ-algebra

F∞ =
∨
t∈N
Ft
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Martingales in mathematical statistics We continue with a probability
space (Ω,F) equipped with the filtration F = (Ft : t ≥ 0), and consider a family
of probability measures (Pθ(dω) : θ ∈ Θ), with parameter space (Θ ⊆ Rd), such

that Pθ
loc
� Q ∀θ ∈ Θ.

Denote

Zθt (ω) =
dP θt
dQt

(ω), t ≥ 0.

Assume

1. i) For t > 0 and ∀ω, Zθt (ω) is continuously differentiable w.r.t. θ, with
random gradient vector

V θt (ω) = ∇θ logZθt (ω) =

(
∂ logZθt (ω)

∂θi
: i = 1, . . . , d

)
=

(
1

Zθt (ω)

∂Zθt (ω)

∂θi
: i = 1, . . . , d

)
such that

lim
ε→0

1

ε

{
Zθ+εht − Zθt

}
= (h, Vt(θ))Z

θ
t ∀h ∈ Rd, ω ∈ Ω

V θt (ω) is called score .

In order to interchange the order of differentiation and integration we also
assume

2. ∇θZθt is locally uniformly dominated at θ, i.e. there is an U neighbourhood
of θ and a random variable 0 ≤ Dt(θ, ω) ∈ L1(Ω,Ft, Q) and

|∇θZθt (η)| < Dt(θ), ∀η ∈ U.

For B ∈ Ft, by Fubini and dominated convergence

∂

∂θi

∫
Ω

1BZ
θ
t dQ = lim

ε→0

1

ε

∫
Ω

1B(Zθ+εeit − Zθt )dQ =

lim
ε→0

1

ε

∫
Ω

1B

( ε∫
0

∂

∂θi
Zθ+εeit dε

)
dQ = lim

ε→0

1

ε

ε∫
0

(∫
Ω

1B
∂

∂θi
Zθ+εeit dQ

)
dε

=

∫
Ω

1B
∂

∂θi
Zθt dQ.

Moreover B ∈ Fs,∫
Ω

1BEQ
( ∂
∂θi

Zθt
∣∣Fs)dQ =

∫
Ω

1B
∂

∂θi
Zθt dQ =

∂

∂θi

∫
Ω

1BZ
θ
t dQ =

∂

∂θi

∫
Ω

1BZ
θ
sdQ =

∫
Ω

1B
∂

∂θi
ZθsdQ =

∫
Ω

1B
∂

∂θi
EQ(Zθt |Fs)dQ
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and we can change the order of derivation and integration

∂

∂θi
EQ(Zθt |Fs) = EQ

( ∂
∂θi

Zθt
∣∣Fs)

Proposition 19. Under the previous assumption on the statistical model in a
neighbourhood of θ, {Vt(θ)}t≥0 is a (P θ,F)-martingale: For 0 ≤ s ≤ t,

EP θ (Vt(θ)|Fs) =
EQ(Zθt Vt(θ)|Fs)
EQ(Zθt |Fs)

=
1

Zθs
EQ
(∂Zθt
∂θ
|Fs
)

=

1

Zθs

∂

∂θ
EQ(Zθt |Fs) =

1

Zθs

∂Zθs
∂θ

=
∂ logZθs
∂θ

= Vs(θ)

Essentially we had to assume that the limit ∇θZθt ∈ L1(Q).
Since ε−1(Zθ+εht −Zθt ) ∈ L1(Q) ∀ε > 0, is natural to use a weaker definition

based on L1-convergence instead of pointwise convergence.

Definition 36. : A statistical experiment
(Ω,Ft, Qt, (P θt )θ∈Θ) is L1-differentiable at θ, if there is a random score-

vector Vt(θ) ∈ L1(P θ) such that ∀h ∈ Rd

lim
ε→0

EQ

(∣∣∣∣1ε{Zθ+εht − Zθt } − (h, Vt(θ))Z
θ
t

∣∣∣∣) = 0

We show that under this generalized definition Vt(θ) as a random process is
a (P θ,F)-martingale.

Proposition 20. : If a time t ≥ 0 the statistical experiment (Ω,Ft, Qt, (P θt )θ∈Θ)
is L1-differentiable at θ , then ∀0 ≤ s ≤ t the statistical experiment (Ω,Fs, Qs, (P θs )θ∈Θ)
is L1-differentiable at θ , with random score-vector

Vs(θ) = EPθ (Vt(θ)|Fs)

Proof: let B ∈ Fs,

EQ

({
1

ε
{Zθ+εht − Zθt } − (h, Vt(θ))Z

θ
t

}
1B

)
= EQ

({
1

ε
{Zθ+εhs − Zθs} − (h,EQ(Zθt Vt(θ)|Fs))

}
1B

)
= EQ

({
1

ε
{Zθ+εhs − Zθs} −

(
h,
EQ(Zθt Vt(θ)|Fs)
EQ(Zθt |Fs)

)
Zθs

}
1B

)
=

EQ

({
1

ε
{Zθ+εhs − Zθs} −

(
h, EP θ (Vt(θ)|Fs)

)
Zθs

}
1B

)
→ 0 when ε→ 0

and since this holds ∀B ∈ Fs,

EQ

(∣∣∣∣1ε{Zθ+εhs − Zθs} −
(
h, EP θ (Vt(θ)|Fs)

)
Zθs

∣∣∣∣)→ 0 when ε→ 0
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Exercise 16. (Laplace’s two sided exponential distribution):
For P θ(dx) = 1

2 exp(−|x− θ|)dx, the density fθ(x) is not differentiable with
respect to θ at the point θ0 = x.

Nevertheless it is L1-differentiable with score

V (θ, x) = −sign(θ − x)

Notes The story continues: since Zθt ∈ L1(Q), it follows that
√
Zθt ∈ L2(Q).

When
√
Zθt is L2-differentiable, Vt(θ) is a square integrable (P θ,F)-martingale,

we define Fisher’s information as

It(θ) = EP θ (Vt(θ)
>Vt(θ))

which is studied by using martingale theory.

5.8 Martingale maximal inequalities
For a process (Xt : t ∈ T ), T = R or N we define the running maximum

X∗t = max
0≤s≤t

Xs(ω)

Theorem 24. Let 0 ≤ Xs(ω), s ∈ N a (Ft)-submartingale.
Then for c > 0, T ∈ N,

cP
(
X∗T ≥ c

)
≤ EP

(
XT1(X∗T > c)

)
≤ EP

(
XT

)
Proof Let A := {ω : X∗T (ω) ≥ c} and

At :=
{
ω : X1(ω) < c, . . . ,Xt−1(ω) < c,Xt(ω) ≥ c

}
, A =

T⋃
t=1

At,

with At ∩As = ∅ for s 6= t. By the submartingale property

EP (XT1A) =

T∑
s=1

EP (XT1As) ≥
T∑
s=1

EP (Xs1As) ≥ c
T∑
s=1

P (As) = cP (A)

Lemma 20. Let X(ω) ≥ 0, Y (ω) ≥ 0 random variables with Y ∈ Lp(Ω,F , P ) ,
p > 1 for which

cP (X > c) ≤ EP (Y 1(X > c)), c > 0

then

‖ X ‖p≤ q ‖ Y ‖p with
(

1

p
+

1

q

)
= 1

Proof Assume first that X ∈ Lp. By Fubini’s theorem

EP (Xp) =

∫
Ω

(∫ X(ω)

0

ptp−1dt

)
P (dω) =

∫ ∞
0

P (X ≥ t)ptp−1dt ≤

p

p− 1

∫ ∞
0

tP (X ≥ t)(p− 1)tp−2dt ≤ q
∫ ∞

0

EP
(
Y 1(X ≥ t)

)
(p− 1)tp−2dt ≤

qEP

(
Y

∫ X(ω)

0

(p− 1)tp−2dt

)
= qEP (Y Xp−1)

( Hölder ) ≤ qEP (Y p)1/pEP (Xq(p−1))1/q = q ‖ Y ‖p‖ X ‖p−1
p .
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Without assuming that X ∈ Lp, take the truncated r.v.

X(n)(ω) := X(ω) ∧ n ↑ X(ω) as n ↑ ∞

and that {ω : X(ω) ∧ n ≥ c} = ∅ for n < c, while for n ≥ c, {ω : X(ω) ∧ n ≥
c} = {ω : X(ω) ≥ c}. The lemma applies to X(n) and the result for X follows
by the monotone convergence theorem �

Theorem 25. (Doob’s Lp maximal inequality) Let (Mt : t ∈ N) a martingale
with Mt ∈ Lp ∀t ∈ N. Then for 1 < p <∞, T ∈ N,

‖M∗T ‖p≤ q ‖MT ‖p

Proof |Mt| is a submartingale, by the maximal inequality

cP
(
|M∗T | > c

)
≤ EP

(
|MT |1(|M∗T | > c)

)
and we to apply the previous result with X = |M∗T | and Y = |MT |.

Corollary 14. When (Mt : t ∈ N) is a martingale in L2(P ), we obtain

EP
(
(M∗T )2

)
≤ 4EP

(
M2
T

)
= 4

{
EP (M2

0 ) + EP
(
〈M,M〉

)}
Corollary 15. If 1 < p <∞ and (Mt : t ∈ N) is a martingale with Mt ∈ Lp(P )
∀t,

‖M∗∞ ‖Lp≤
p

p− 1
sup
t∈N
‖Mt ‖Lp

cP (|M∗∞| > c) ≤ sup
t∈N

EP (|Mt|)

Proof By the monotone convergence of expectations. For the second in-
equality apply first Doob maximal inequality to the submartingale |Mt|.

Kakutani’s theorem and likelihood ratio process On a probability space
(Ω,F) consider a sequence of random variables (Xn(ω) : n ∈ N) which generate
the filtration (Fn), Fn = σ(X1, . . . , Xn).

We consider two probability measures P and Q such that the random vari-
ables (Xn(ω)) form an independent sequence under both measures P and Q.

Q
loc
� P ( P dominates Q locally ), which means that for all n and for all

An ∈ Fn, P (An) = 0 =⇒ Q(An) = 0.
By the Radon-Nikodym theorem, for each n ∈ N there is an Fn-measurable

Radon-Nikodym derivative

0 ≤ Zn(ω) =
dQn
dPn

(ω) such that Q(A) = EP
(
Zn1An

)
∀A ∈ Fn

where Qn and Pn are the restrictions of Q and P on the σ-algebra Fn.
Now Zn(ω) is a martigale, since if A ∈ Fm then A ∈ Fn ∀m ≥ n and by

using twice the change of measure formula

EP
(
Zm1A

)
= Q(A) = EP

(
Zn1A

)



5.8. MARTINGALE MAXIMAL INEQUALITIES 93

Let’s assume that Xn(ω) ∈ Rd with densities Q(Xn ∈ dx) = gn(x)dx and
P (Xn ∈ dx) = fn(x)dx.

By assumption outside a set of Lebesgue measure 0, gn(x) = 0 when fn(x) =
0. In particular the function

zn(x) =
gn(x)

fn(x)

is well defined outside a set of Lebesgue measure 0.
It follows that

Zn(ω) = z1(X1(ω))z2(X2(ω)) . . . zn(Xn(ω))

Kakutani’s theorem says that Zn is UI martingale if and only if

∞∏
n=1

EP
(√

zn(Xn)
)
> 0

⇐⇒
∞∑
n=1

(
1− EP

(√
zn(Xn)

))
<∞

Theorem 26. (Kakutani) On a probability space (Ω,F , P ) let (Xt : t ∈ N)
P -independent random variables with Xt(ω) ≥ 0 and EP (Xt) = 1.

Let Ft = σ(X1, . . . , Xt) and

Mt = X1X2 . . . Xt, at =
{
E(
√
Xt)
}
∈ (0, 1]

Mt is a non-negative (Ft)-martingale with E(Mt) = 1 and by Doob forward
convergence theorem it has P -a.s. limit M∞(ω) as t → ∞, with M∞ ∈ L1(P ),
E(M∞) ∈ [0, 1]. The following statements are equivalent:

1. Mt is uniformly integrable

2. EP (M∞) = 1

3.
∞∏
t=1

at > 0

4.
∑∞
t=1(1− at) <∞

Otherwise M∞(ω) = 0 P a.s, and P and Q are mutually singular on
T∞ =

⋂
n∈N

σ(Xk : k ≥ n).

Proof 1) =⇒ 2) by the characterization of L1(P ) convergence.
2) =⇒ 1): since Mt ≥ 0 we can use Fatou’s lemma: ∀A ∈ Fs

EP
(
M∞1A

)
= EP

(
lim inf
t→∞

Mt1A
)

≤ lim inf
t→∞

EP
(
Mt1A

)
= EP

(
Ms1A

)
where we used the martingale property. This is the supermartingale property
at t =∞:

Ms(ω) ≥ EP (M∞|Fs)(ω) P a.s.



94 CHAPTER 5. MARTINGALE THEORY

By assumption

EP

(
Ms − EP (M∞|Fs)

)
= EP (Ms)− EP (M∞) = 0

which implies that (Ms) is an UI martingale:

Ms(ω) = EP (M∞|Fs)(ω) P a.s.

3) =⇒ 2): Define

Nt(ω) =

√
Mt(ω)

a1a2 . . . at

(Nt) is a non-negative martingale in L2(P ).
By Doob Lp martingale inequality with p = 2,

EP

(
sup
s≤t

Ms

)
≤ ( by Jensen’s inequality) EP

(
sup
s≤t

N2
s

)
≤ 4E(N2

t ) =
4

a2
1 . . . a

2
t

and by the monotone convergence theorem

EP

(
sup
s∈N

Ms

)
= lim
t→∞

EP

(
sup
s≤t

Ms

)
≤ 4

∏
t∈N

a−2
t

Now if
∏
t∈N

at > 0, this gives a finite upper bound, and necessarly (Mt) is an

UI martingale since it is dominated by
(
sups∈NMs

)
∈ L1(P ).

(1) =⇒ (3): In case
∏
t∈N

at = 0, by Fatou lemma

EP
(√

M∞
)

= EP
(
lim inf

t

√
Mt

)
≤ lim inf

t
EP
(√

Mt

)
= lim

t
a1a2 . . . at = 0

which implies M∞ = 0 P a.s.
3) =⇒ 4): On another probability space, take a sequence (Yn : n ∈ N) of

independent Bernoulli random variables with

P (Yn = 1) = 1− P (Yn = 0) = an ∈ (0, 1]

Let Bn = {ω : Yn(ω) = 1} , and B =
⋂
n∈N

Bn.

Using σ-additivity,

P (B) =
∏
n∈N

P (Bn) =
∏
n∈N

an

Note that since P (Bn) = an > 0 ∀n,

P (B) = 0⇐⇒ P (lim inf
n

Bn) = 0⇐⇒ P (lim sup
n

Bcn) = 1

By the first and second Borel Cantelli lemma for independent events this is
equivalent to

∞ =

∞∑
n=1

P (Bcn) =

∞∑
n=1

(1− an) �
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Exercise 17. Let Xn i.i.d. standard Gaussian with EP (Xn) = 0 and EP (X2
n) =

1 under the measure P and let Xn ∼ N (µn, 1) and independent under the
measure Q.

In this case

zn(x) =

(2π)−1/2 exp

(
− 1

2 (x− µn)2

)
(2π)−1/2 exp

(
− 1

2x
2

) = exp

(
xµn −

1

2
µ2
n

)

Then P ∼ Q on the σ-algebra F∞ if and only if

0 <

∞∏
n=1

EP

(√
exp

(
xµn −

1

2
µ2
n

))
=

∞∏
n=1

EP

(
exp

(
1

2
xµn −

1

4
µ2
n

))

=

∞∏
n=1

exp
(
−1

8
µ2
n

)
= exp

(
−1

8

∞∑
n=1

µ2
n

)
which is equivalent to

∞∑
n=1

µ2
n <∞

In fact, if µn = µ 6= 0 ∀µ, then P and Q are singular on F∞.
For example by the law of large numbers the set

A =
{
ω : lim

n→∞
n−1(X1(ω) + · · ·+Xn(ω)) = µ

}
has Q(A) = 1 and P (A) = 0

Exercise 18. Suppose now that under P the random variables (Xn) are i.i.d.
Poisson(1) distributed, while under Q (Xn) are independent with respective dis-
tributions Poisson(λn) with λn > 0.

In this case

zn(x) =

(
exp(−λn)λxn/n!

)/(
exp(−1)/n!

)
= exp

(
x log(λn) + 1− λn

)
,

EP
(√

zn(Xn)
)

= exp

(
1

2
(1− λn)

)
EP

(√
λn

Xn
)

=

exp

(√
λn − 1 +

1

2
(1− λn)

)
= exp

(
−1

2
(
√
λn − 1)2

)
since for a Poisson(1) distributed random variable X, EP

(
θX
)

= exp(θ − 1).
Therefore Q ∼ P on F∞ if and only if

0 <

∞∏
n=1

exp

(
−1

2
(
√
λn − 1)2

)
= exp

(
−1

2

∞∑
n=1

(
√
λn − 1)2

)

⇐⇒
∞∑
n=1

(
√
λn − 1)2 <∞



96 CHAPTER 5. MARTINGALE THEORY



Chapter 6

Continuous martingales

6.1 Continuous time

Moving from discrete to continuous time, we need some technical assumptions.
We will work with the filtration (Ft : t ∈ R+) on the probability space

(Ω,F , P ).
We say that the filtration (Ft) satisfies the usual conditions if

1. The filtration is completed by the P -null sets

F0 ⊇ NP := {A ⊆ Ω : P (A) = 0}

2. The filtration is right-continuous

∀t ≥ 0 Ft = Ft+ :=
⋂
u>t

Fu

Next we discuss why these usual assumptions are needed.

Lemma 21. Let τ(ω) ≥ 0 be a random time and (Ft : t ≥ 0) a filtration which
in general is smaller than the filtration (Ft+ : t ≥ 0).

1. τ(ω) is a stopping time with respect to the filtration (Ft+) if and only if
{τ < t} ∈ Ft ∀t ≥ 0.

2. When the filtration is right continuous τ is also a (Ft)-stopping time.

Proof When τ is a (Ft+)-stopping time

{ω : τ(ω) < t} =
⋃
n∈N
{ω : τ(ω) ≤ t− n−1} ∈ Ft

where, by definition of stopping time, {τ(ω) ≤ t− n−1} ∈ Ft−1/n ⊆ Ft.
On the other hand, from the assumption

{ω : τ(ω) ≤ t} =
⋂
n∈N
{ω : τ(ω) < t+ n−1} ∈ Ft+ �

97
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Exercise 19. We show a filtration which is not right-continuous, generated by
a continuous process. Consider the probability space of continuous functions
started at zero

Ω =
{
ω ∈ C(R+,R) : ω0 = 0

}
equipped with the Borel σ-algebra, where the canonical process is Xt(ω) = ωt,
Let (F0

t ) be the “raw” filtraton generated by X, with F0
t = σ(ωs : s ≤ t).

Note that A ∈ F0
t if and only if for all ω, ω̂ ∈ Ω, with ωs = ω̂s ∀s ∈ [0, t],

ω ∈ A⇐⇒ ω̂ ∈ A

meaning that A depends only on the path ω restricted to the interval [0, t].
For a > 0, consider first the random time

τ(ω) = inf
{
t > 0 : ωt ≥ a

}
Now ∀t > 0,

{ω : τ(ω) ≤ t} = {ω : inf
q≤t,q∈Q+

(a− ωq)+ = 0}

now since (a−ωq)+ is F0
q measurable by taking the infimum over the countable

set [0, t] ∩Q, we see that this event is F0
t measurable.

Next we construct a random time which is a (F0
t+)-stopping time but not a

(F0
t )-stopping time. This shows that the raw filtration (F0

t ) is not right contin-
uous, even if it is generated by a continuous process. Let

τ̃(ω) = inf
{
t > 0 : ωt > a

}
For each t > 0,

{ω : τ̃(ω) < t} =
⋃

q∈Q+,q<t

{ω : ωq > a} ∈ Ft

meaning that τ̃ is a (F0
t+) stopping time.

However τ̃ is not a (F0
t )-stopping time. For fixed t, consider a set of paths

which are crossing the level a for the first time at time t:

At = {ω : τ̃(ω) = t}
=
{
ω : ωq < a;∀q < t, ωt = a, ∃N : ωt+1/n > a ∀n > N

}
For ω ∈ At, consider the reflected path ω̂

ω̂s =

{
ωs s ∈ [0, t]
2a− ωs s > t

Now by construction when ω ∈ At, τ(ω̂) > τ(ω) = t, since by construction ω̂
attains the local maxima a at time t, and may cross the level a only later.

Which means, the event {τ̃ ≤ t} is F0
t+ measurable but not F0

t measurable:
the path ω and ω̂ coincide up to time t̃au, but ω ∈ At and ω̂ 6∈ At, which means
that At 6∈ F0

t .
By observing the paths on the interval [0, t] we cannot distinguish between

ω ∈ At and the corresponding ω̂. For that we need to observe a little bit of the
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future, that is the extra information contained in F0
t+

Things may change when we complete the filtration with respect to a prob-
ability measure: Let PW the Brownian measure on Ω, such that the canonical
process Xt(ω) = ωt is a Brownian motion, and let (Ft) the filtration completed
by the PW -null events.

In the previous example it is not difficult to show that for each fixed t > 0
PW (At) = 0, meaning that the probability that the Brownian motion will cross
the level a for the first time at the pre-specified time t is zero, and by reflection
this is equal to the probability that the Brownian motion attains a local maximum
a at time t. Therefore

{τ̃ ≤ t} = {τ̃ < t} ∪ {τ̃ = t} ∈ σ(F0
t ,NP ) = Ft

τ̃ is a stopping time with respect to the PW -completed filtration (Ft).

We have seen that continuous process can generate filtrations which are not
right continuous. On the other hand, the raw filtration generated by a process
with jumps may become right-continuous after completing with the P -null sets.

Proposition 21. The completed filtration generated by a time-homogeneous
process with independent increments is continuous.

Proof We give for the case of Brownian motion, but you can check that
it goes through also for the Poisson process, (the same proof works for Lévy
processes which we have not introduced yet).

Let F0 = (F0
t ) the raw Brownian filtration, with

F0
t = σ(Bs : 0 ≤ s ≤ t)

For 0 ≤ s0 < s1 < · · · < sn and θ1, . . . , θn ∈ R, we consider the Gaussian
random vector

G(ω) =
(
Bsi(ω)−Bsi−1

(ω) : i = 1, . . . , n
)

For each θ ∈ Rn, the characteristic function the conditional distribution of G
given F0

t is a martingale

Zt(θ) = EP

(
exp

{√
−1

n∑
i=1

θi(Bsi −Bsi−1
)

}∣∣∣∣F0
t

)
P a.s.

= exp

{√
−1

n∑
i=1

θi(Bsi∧t −Bsi−1∧t)

}
EP

(
exp

{√
−1

n∑
i=1

θi(Bsi∧t −Bsi−1∧t)

})

= exp

{√
−1

n∑
i=1

θi(Bsi∧t −Bsi−1∧t)−
1

2

n∑
i=1

θ2
i (si ∧ t− si−1 ∧ t)

}
We see directly (without using Doob’s martingale convergence theorem which up
to now we know only in discrete time), that t 7→ Zt(ω) is continuous when t 7→
Bt(ω) is continuous. Since the conditional characteristic function characterized
the conditional distribution, for every bounded measurable test function f :
Rn → R

EP (f(G)|F0
t±)(ω)

P a.s.
= lim

n→∞
EP (f(G)|F0

t±n−1)(ω) = EP (f(G)|F0
t )(ω)
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where the identity holds P -almost surely. Beacuse F0
∞ = σ(Gs : s ≥ 0) it

follows that ∀A ∈ F0
∞

P (A|F0
t±)(ω) = P (A|F0

t )(ω) P almost surely

But this implies F0
t+ ∨NP = F0

t ∨NP = F0
t− ∨NP . since for A ∈ F0

+ \ F0
−,

X(ω) := 1A(ω)− P (A|F0
t−)(ω) = 0 P almost surely

is NP measurable, therefore A is F0
t− ∨NP measurable �

We need to extend the results for discrete time martingales to continuous
time.

Lemma 22. Let τ(ω) ∈ R+∪{+∞} a stopping time with respect to the filtration
F = (F t : t ∈ R+).

There is a sequence of stopping times (τn(ω) : n ∈ N) where each τn takes
finitely many values and τn(ω) ≥ τ(ω) , approximating τ from above:

τn(ω) ↓ τ(ω) ∀ω as n ↑ ∞ .

Proof: Define

τn(ω) =

{
+∞ if τ(ω) ≥ n

(k + 1)/n otherwise, for τ(ω) ∈
[
k/n, (k + 1)/n

)
, k ∈ N

You see that τn is a F-stopping time:

{ω : τn(ω) ≤ t} = {ω : τ(ω) ≤ btnc/n} ∈ Fbtnc/n ⊆ Ft ∀t ≥ 0

where bxc is the largest integer smaller than x.

Remark 15. Note that corresponding random time approximating the F-stopping
time τ from below

τ̂n(ω) =

{
n if τ(ω) ≥ n
k/n otherwise, for τ(ω) ∈

[
k/n, (k + 1)/n

)
, k ∈ N

is not always a stopping time.

Definition 37. A random time σ(ω) ∈ (R+∪{+∞}) is F-predictable is there is
an announcing sequence of F-stopping times (τn) approximating σ from below

τn(ω) ↑ σ(ω), ∀ω

and

τn(ω) < τ(ω) on the set {ω : τ(ω) > 0}

Lemma 23. A F-predictable time is a F-stopping time.

Proof: ∀t,
{
ω : σ(ω) ≤ t

}
=
⋂
n∈N

{
ω : τn(ω) ≤ t

}
∈ Ft.

Lemma 24. ( Regularization) Let (Xt : t ∈ Q+) is a F-submartingale, with
F = (Ft : t ∈ Q+). We can replace Q+ by any countable set dense in R+.

Then P almost surely the left and right limits

Xt−(ω) := lim
q↑t,q∈Q+

Xq(ω), Xt+(ω) := lim
q↓t,q∈Q+

Xq(ω)

exist simultaneously for all t ∈ R+.
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Proof: It is enough to prove the lemma in a finite interval [0, T ]∩Q+, with
T ∈ Q.

Let Fn a non-decreasing sequence of finite sets with Fn ⊆ Fn+1 and⋃
n∈N

Fn = ([0, T ] ∩Q+)

For each finite set Fn, (Xq : q ∈ Fn) is a submartingale in the filtration
(Fq : q ∈ Fn).

Define for a < b ∈ R the number of downcrossings of [a, b] by X(ω)

D[a,b]

(
Xq(ω) : q ∈ Q ∩ [0, T ]

)
:= sup

F
D[a,b]

(
Xq(ω) : q ∈ F

)
where the supremum is over finite subsets F ⊆ [0, T ] ∩Q+.

Note that for each finite F , F ⊆ Fn for n large enough, therefore

D[a,b]

(
Xq(ω) : q ∈ Fn

)
↑ D[a,b]

(
Xq(ω) : q ∈ Q ∩ [0, T ]

)
as n ↑ ∞, ∀ω

By Doob submartingale inequality in discrete time , ∀n

E(D[a,b]

(
Xq(ω) : q ∈ Fn

)
≤
E(X+

T ) + b−

b− a
≤ E(|XT |) + b−

b− a
<∞

Therefore by monotone convergence,

E

(
D[a,b]

(
Xq(ω) : q ∈ Q ∩ [0, T ]

))
<∞ =⇒

D[a,b]

(
Xq(ω) : q ∈ Q ∩ [0, T ]

)
<∞ ∀a < b ∈ Q, P a.s.

which means that P a.s. left and right limits exist simultaneously for all t ∈
[0, T ], and since R+ is covered by countably many finite intervals it holds also
P a.s. simultaneously for all t ∈ R+. By following the proof of Doob martingale
convergence theorem we see also that ∀t ∈ [0, T ], as q → Q from the left or from
the right we have by Fatou lemma

EP (| lim
q↑t

Xq|) ≤ lim inf
q↑t

EP (|Xq|) ≤ E(|X0|) + 2E(|XT |) <∞,

EP (| lim
q↑t

Xq|) ≤ lim inf
q↑t

EP (|Xq|) ≤ E(|X0|) + 2E(|XT |) <∞,

by using the submartingale property for 0 ≤ q ≤ T < ∞, since x+ ≤ y+ when
x ≤ y,

|Xq| = −Xq + 2X+
q , =⇒ EP (|Xq|) ≤ −EP (X0) + 2EP

(
EP (XT |Fq)+

)
≤ −EP (X0) + 2EP

(
EP (X+

T |Fq)
)
≤ EP (|X0|) + 2EP (|XT |) <∞

which implies that these left and right limits are finite P a.s �

Remark 16. By changing the sign a supermartingale becomes a submartingale,
and lemma 24 holds as well for supermartingales. Although the submartingale
(Xq) was defined only on Q+, we can use the existence of the limit to redefine
outside a P -null set a modification of the process which is right continuous at
all t ∈ R+. In order to have adaptedness for the redefined process we need to
work with the right continuous filtration completed by the P -null sets.
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Lemma 25. Let D+ = {k2−n : k, n ∈ N} be the dyadic set (or another count-
able set dense in R+), and let (Mu)u∈D+ be a right-continuous martingale in
the filtration (Fu)u∈D+ satisfying the usual conditions. For t ∈ R+ define

Mt(ω) := lim
u↓t,u∈D+

Mu(ω), Ft =
⋂

u>t,u∈D+

Fu

Then (Mt)t∈R+ is a right-continuous martingale in the filtration (Ft)t∈R+

which satisfies the usual conditions.

Proof By definition, (Ft)t∈R+ is right continuous.
Let un ∈ D+ with un ↓ t, and consider the time-discrete filtration with

negative times F̂−n = Fun . By definition

Ft = F̂−∞ =
⋂
n

Fun

The process (Mun : n ∈ N) is a (F̂−n)-martingale, and by Doob’s backward
convergence theorem (15) and since (Mun) is right-continuous on the dyadics,
define

Mt(ω) := lim sup
n→∞

Mun(ω) ∀ω,

= lim
n→∞

Mun(ω) P -almost surely,

where by definition Mt is Ft-measurable and in the second equality the limit is
P -almost surely and in L1(P ), which implies Mt ∈ L1(P ).

Let’s check the martingale property: for s, t ∈ R with s ≤ t, and let rn ∈ D+

with rn ↓ s and un ∈ D+ with un ↓ t. Since s ≤ t we can choose sequences such
that rn ≤ un. Let A ∈ Fs ⊆ Frn , ∀n.

SinceMun(ω)→Mt(ω) andMrn(ω)→Ms(ω) P -almost surely and in L1(P )

EP
(
Mt1A) = lim

n→∞
EP (Mun1A) = lim

n→∞
EP (Mrn1A) = EP

(
Ms1A)

where we used the martingale property of (Mu)u∈D+ �
Note that in the backward martingale convergence theorem we get uniform

integrability and L1(P )-convergence for free.

Proposition 22. Doob’ optional stopping theorem in continuous time.
Let (Mt : t ∈ [0, +∞]) a right-continuous uniformly integrable F-martingale

where F is right continuous, and 0 ≤ σ(ω) ≤ τ(ω) F-stopping times.
Then

E(Mτ |Fσ) = Mσ(ω)

Proof: There are two non-increasing sequences of stopping times σn, τn with

σ(ω) ≤ σn(ω) ≤ τn(ω), τ(ω) ≤ τn(ω)

which for each fixed n take values in the dyadics Dn = (k2−n : k ∈ N) and

σn(ω) ↓ σ(ω), σn(ω) ↓ τn(ω) as n ↑ ∞
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To do this simply take

τn(ω) := (k + 1)2−n otherwise, for τ(ω) ∈
[
k2−n, (k + 1)2−n

)
, k ∈ N

σn(ω) = (k + 1)2−n otherwise, for σ(ω) ∈
[
k2−n, (k + 1)2−n

)
, k ∈ N

and τn(ω) = +∞ and σn(ω) = +∞ when τ(ω) = +∞ and σ(ω) = +∞,
respectively, and check that they are stopping times.

The fitrations (Fτn : n ∈ N), (Fσn : n ∈ N), are non-increasing as n→∞.
Therefore we apply Doob’s backward convergence theorem,

Mτn(ω)→Mτ (ω) and Mσn(ω)→Mσ(ω)

not just P -almost surely (which is implied by the right continuity) but also in
L1(P )

For every fixed n, by the discrete time version of the optional sampling theo-
rem with the filtration (Fd : d ∈ Dn) under the uniform integrability assumption

EP (Mτn |Fσn)(ω) = Mσn(ω)

Let A ∈ Fσ ⊆ Fσn ⊆ Fτ ⊆ Fτn .

E
(
Mτ1A

)
= lim
n→∞

E
(
Mτn1A

)
= lim
n→∞

E
(
Mσn1A

)
= E

(
Mσ1A

)
where we used the convergence in L1(P ) to take the limit in and out of the
expectation.

Lemma 26. If τ and σ are F-stopping times, (τ ∧σ) is an F-stopping time and

Fτ∧σ = Fτ ∩ Fσ

Proof: {τ ∧ σ ≤ t} = {τ ≤ t} ∪ {σ ≤ t} ∈ Ft.
Clearly Fσ ∩ Fτ ⊇ Fτ∧σ, since σ ≥ τ ∧ σ and τ ≥ ∧σ, and recall that

intersection of σ-algebrae is a σ-algebra. For the opposite inclusion, if A ∈
Fσ ∩ Fτ , then A ∩ {σ ≤ t} ∈ Ft and A ∩ {τ ≤ t} ∈ Ft, which implies

(A ∩ {σ ≤ t}) ∪ (A ∩ {τ ≤ t}) = A ∩ {τ ∧ σ} ∈ Ft

which means A ∈ Fσ∧τ �

Lemma 27. Let τ be an F -stopping time and Xt an F-adapted right continuous
process. When the filtration F is right continuous, Xτ (ω) is Fτ measurable.

Proof: approximate the stopping time τ from above by a sequence of F-
stopping times τn(ω) ↓ τ(ω) with τn(ω) taking values in the dyadics Dn =
(2−nk : k ∈ N).

Now for each n ∈ N consider the discrete time filtration with F̃nk = Fk2−n ,
k ∈ N, It follows that Xτn(ω) is Fτn by the result in discrete time.

Since Fτ =
⋃
n∈N
Fτn , since F is right continuous, and Xτ = lim sup

n→∞
Xτn(ω)

since X is right continuous, it follows that Xτ is Fτ -measurable.
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Proposition 23. Let (Mt) a right continuous martingale in the right continuous
filtration F, and τ(ω) a F-stopping time. Then the stopped process

Mτ
t (ω) = Mt∧τ (ω) := Mt(ω)1(τ(ω) > t) +Mτ (ω)1(τ(ω) ≤ t)

is a F-martingale.

Proof Note that Ft∧τ = Ft ∩ Fτ .
We show that Mt∧τ is Ft∧τ -measurable:
Since τ is a stopping time it follows that (Mt∧τ ) is F-adapted. Let’s fix

0 ≤ s ≤ t < ∞. Now in a finite interval (Ms : s ≤ t) is uniformly integrable,
and by Doob’s optional stopping theorem applied to the bounded stopping times
(s ∧ τ) ≤ (t ∧ τ) ≤ t,

E(Mt∧τ |Fs∧τ )(ω) = Ms∧τ

Next we show that

E(Mτ∧t|Fs) = Mτ1(τ ≤ s) + E(Mτ∧t|Fτ∧s)1(τ > s)

For A ∈ Fs,

E(Mτ∧t1A) = E(Mτ1A1(τ ≤ s)) + E(Mτ∧t1A1(τ > s))

Note that A ∩ {τ > s} is not only Fs measurable but also Fτ∧s measurable
since by definition for all r ≥ 0

A ∩ {τ > s} ∩ {τ ∧ s ≤ r} =

{
∅ ∈ Fs if s > r

A ∩ {τ > s} ∈ Fs if s ≤ r

Therefore by taking conditional expectation w.r.t. Fτ∧s inside the expectation
we get

E(Mτ∧t1A) = E

((
Mτ1(τ ≤ s) + E(Mτ∧t|Ft∧s)1(τ > s)

)
1A

)
= E

((
Mτ1(τ ≤ s) +Mτ∧s1(τ > s)

)
1A

)
= E

(
Mτ∧s1A

)
which means

E(Mt∧τ |Fs)(ω) = Ms∧τ (ω)

6.2 Localization
Definition 38. We say that a property holds locally with respect to the filtration
(Ft) for the process (Xt(ω)), if there is a localizing sequence of (Ft)-stopping
times τn(ω) ↑ ∞ such that for each n the stopped process Xτn

t (ω) := Xt∧τn(ω)
satisfyies that property.

For example every (Ft)-adapted process (Xt : t ∈ R+) with continuous paths
and X0(ω) = 0, is locally bounded, the sequence of F-stopping times

τn(ω) := inf
{
t : |Xt(ω)| > n

}
,

is localizing: τn(ω) ↑ ∞ since |Xt(ω)| <∞, and |Xt∧τn(ω)| ≤ n.
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6.3 Doob decomposition in continuous time

We recall that the (total) variation of a function s 7→ x(s) in the interval [0, t]
is given by

V[0,t](x) := sup
Π

∑
ti∈Π

|x(ti)− x(ti−1)|

where the supremum is taken over partitions Π = (0 = t0 ≤ t1 ≤ . . . ,≤ tn = t)
of the interval [0, t]. It follows that x(s) has finite first variation if and only if
x(s) = x(0) + x⊕(s)− x	(s) with x⊕, x	 non-decreasing functions.

Lemma 28. A continuous local martingale (Mt : t ∈ [0, T ]) with almost surely
finite (total) variation is necessarly constant.

Proof Without loss of generality we assume thatM0(ω) = 0. Let τn(ω) ↑ ∞
a localizing sequence of stopping times such that for each n the stopped process
Mt∧τn is a martingale. We define stopping times

σn = τn ∧ inf{t : V[0,t](X(ω)) > n} ≤ τn

By Doob optional sampling theorem, the stopped process Mσn
t (ω) is a martin-

gale with
|Mσn

t | ≤ V[0,t](M
σn) ≤ n ∀t ≥ 0

Since σn(ω)→∞, it is a localizing sequence. In order to simplify the notation,
let’s fix n and assume that Mt(ω) := Mσn

t (ω) is a true martingale, which has
bounded first variation. By the discrete integration by parts formula, for a
sequence (0 = t0 ≤ t1 ≤ t2 ≤ . . . ), with tn →∞. We have

M2
t = 2

∞∑
i=1

Mti−1(Mti∧t −Mti−1∧t) +

∞∑
i=1

(Mti∧t −Mti−1∧t)
2

Since s 7→Ms(ω) is uniformly continuous on [0, t], there is a random δ(ω) such
that∑
i

(Mti∧t−Mti−1∧t)
2 ≤ sup

i
|Mti∧t−Mti−1∧t|

∑
i

|Mti∧t−Mti−1∧t| ≤ εV[0,t](M) ≤ εn

when ∆(Π) = supi
{

(ti ∧ t)− (ti−1 ∧ t)
}
< δ(ω). This means∑

i

(Mti∧t −Mti−1∧t)
2 → 0 P -almost surely

as ∆(Π)→ 0, and we have

M2
t = lim

∆(Π)→0
2

∞∑
i=1

Mti−1∧t(Mti∧t−Mti−1∧t) := 2

∫ t

0

MsdMs P -almost surely

where for almost every ω the limit of Riemann-sums with continuous integrand
and integrator of finite variation is a Riemann-Stieltjes integral. By taking
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expectation,

EP (M2
t ) = 2EP

(
lim

∆(Π)→0

∞∑
i=1

Mti−1
(Mti∧t −Mti−1∧t)

)

= 2 lim
∆(Π)→0

EP

( ∞∑
i=1

Mti−1
(Mti∧t −Mti−1∧t)

)
=

lim
∆(Π)→0

2

∞∑
i=1

EP

(
Mti−1EP (Mti∧t −Mti−1∧t|Fti−1∧t

))
= 0

where we used the martingale property, which gives Mt(ω) = M0(ω) = 0 ∀t.
The interchange of limit and expectation is justified by the bounded convergence
theorem, since Mt(ω) has bounded variation.∣∣∣∣ ∞∑

i=1

Mti−1
(Mti∧t −Mti−1∧t)

∣∣∣∣ ≤ V[0,t](M(ω))2 ≤ n2 P -almost surely .

Coming back to the local martingale, E
(
M2
t∧σn

)
= 0 implies Mt∧σn = 0 P a.s,

Mt(ω) = lim
n→∞

Mt∧σn(ω) = 0 P -almost surely �

The next two technical lemma are not very intuitive but useful:

Lemma 29. Suppose (An : n ∈ N) is a (Fn)-predictable and non-decreasing
process with A0 = 0, such that

Zn := EP (A∞ −An|Fn)(ω) ≤ C ∀n

Then EP (A2
∞) ≤ 2C2.

Proof Note that Zn is a potential (see 31).

(An)2 =

n∑
k=1

n∑
h=1

∆Ak∆Ak = 2

n∑
k=1

n∑
h=k

∆Ah∆Ak −
n∑
k=1

(∆Ak)2

= 2

n∑
k=1

(An −Ak−1)∆Ak −
n∑
k=1

(∆Ak)2

where ∆Ak = (Ak − Ak−1), and since the terms (An)2 and
n∑
k=1

(∆Ak)2 are

non-negative and non-decreasing, the monotone convergence theorem applies

EP (A2
∞) = 2E

( ∞∑
k=0

(A∞ −Ak−1)∆Ak

)
− EP

( ∞∑
k=1

(∆Ak)2

)
where we can exchange the order of summation and integration. By taking
conditional expectation inside and using predictability,

EP (A2
∞) ≤ 2

∞∑
k=0

EP

(
EP
(
(A∞ −Ak−1)∆Ak

∣∣Fk−1

))

= 2

∞∑
k=0

EP

(
E(A∞ −Ak−1|Fk−1)∆Ak

)
≤ 2CEP

( ∞∑
k=1

∆Ak

)
= 2CEP (A∞) ≤ 2C2
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Lemma 30. Suppose A(1)
n and A(2)

n are two predictable processes satisfying the
hypothesis of lemma 29 and Bn = (A

(1)
n − A(2)

n ). Suppose that there is a r.v.
Y (ω) ≥ 0 with EP (Y 2) <∞ and∣∣EP (B∞ −Bn|Fn)(ω)

∣∣ ≤ Nn(ω) := EP (Y |Fn)(ω) ∀n .

Then there exists a constant c > 0 such that

EP

(
sup
n∈N

B2
n

)
≤ c
(
EP (Y 2) + CE(Y 2)1/2

)
Proof We shall need the following estimate: since

|∆Bk| = |∆A(1)
k −∆A

(2)
k | ≤ ∆A

(1)
k + ∆A

(2)
k ,

it follows

EP (B2
∞) = 2E

( ∞∑
k=0

E(B∞ −Bk−1|Fk)∆Bk

)
− EP

( ∞∑
k=1

(∆Bk)2

)
≤ 2EP

(
(A(1)
∞ +A(2)

∞ )Y
)

≤ 2EP
(
Y 2
)1/2(

EP
(
{A(1)
∞ }2

)1/2
+ EP

(
{A(2)
∞ }2

)1/2) ≤ 25/2CEP (Y 2)1/2

where we used Cauchy-Schwartz inequality together with lemma 29.
Let Mn := EP (B∞|Fn), Xn := (Mn −Bn), satisfying

|Xn| =
∣∣EP (B∞ −Bn|Fn)

∣∣ ≤ E(Y |Fn) = Nn := EP (Y |Fn)

By Doob’s Lp martingale maximal inequality

E

(
sup
n∈N

X2
n

)
≤ EP

(
sup
n∈N

N2
n

)
≤ 4EP (N2

∞) ≤ 4EP (Y 2)

and

E

(
sup
n∈N

M2
n

)
≤ 4E

(
M2
∞

)
= 4E(B2

∞)

Since supn |Bn| ≤ supn |Xn|+ supn |Mn|, by the inequality (a+ b)2 ≤ 2(a2 + b2)

E(sup
n
B2
n) ≤ 2

{
E(sup

n
X2
n) + E(sup

n
M2
n)

}
≤ 8

(
E(Y 2) + E(B2

∞)

)
≤ 8

(
E(Y 2) + 25/2CEP (Y 2)1/2

)
�

Theorem 27. Suppose (Xt : t ∈ R+) is a (P,F)-submartingale with continuous
paths. Then we have the Doob-Meyer decomposition

Xt(ω) = X0(ω) +Mt(ω) +At(ω)

where M0(ω) = A0(ω) = 0, Mt is a continuous (Ft)-local martingale and At is
F-adapted continuous and non-decreasing. Moreover (Mt) and (At) are uniquely
determined up to indistinguishable processes.
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Remark : The result holds also for continuous local submartingales (the
localizing sequence is obtained by taking minimum of localizing sequences). It
also extends to processes with jumps.

Proof, Uniqueness: From the Bass, Probabilistic techniques in analysis .
Suppose that we have two Doob-Meyer decompositions

Xt −X0 = Mt +At = M̃t + Ãt

It follows that
(Mt − M̃t) = (Ãt −At)

is a continuous local martingale starting from 0 with paths of finite variation,
and by lemma 28 it is constant P -almost surely.

Existence : by considering the stopped process XτC
t = Xt∧τC , where

τC(ω) = inf
{
s : |Xs(ω)| > C or s > C

}
we reduce first the problem to the case where X is a bounded and uniformly
continuous process, which is constant on the interval [C,∞). Without loss of
generality we assume that X0(ω) = 0.

Fix k and m ∈ N, and consider Fmk = Fk2−m , k ∈ N.
Construct for each m ∈ N the discrete time Doob’s submartingale decompo-

sition
Xk2−m(ω) = M

(m)
k +A

(m)
k

In continuous time we define for each m piecewise constant filtrations

F (m)

t (ω) = Fk2−m(ω) when (k − 1)2−m < t ≤ k2−m

and the time process

A
(m)

t (ω) = A
(m)
k (ω) when (k − 1)2−m < t ≤ k2−m .

Both the filtration and the process are left-continuous. Note that for each m,
A

(m)

t is (Ft)-adapted, since in the time-discrete Doob decomposition A(m)
k (ω) is

F(k−1)2−m -measurable.

Consider the modulus of continuity

W (δ, ω) := sup
s≤K,|s−t|≤δ

|Xt(ω)−Xs(ω)|

W (δ) is a bounded random variable since Xt(ω) is bounded, and because
Xt(ω) has uniformly continuous paths on the compact interval [0, C], W (δ)→ 0
P -almost surely as δ → 0. By the bounded convergence theorem W (δ)→ 0 also
in L2(P ) sense.

We show that A
(m)

t converges in L2(P ) uniformly in t as m→∞.
For m > n, A

(m)

t and A
(n)

t are constant on the intervals
(
(k−1)2−m, k2−m

]
,

we have
sup
t

∣∣A(m)

t −A(n)

t

∣∣ = sup
k∈N

∣∣A(m)

k2−m −A
(n)

k2−m

∣∣
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Fix t = k2−m for some k. and let (l − 1)2−n < t ≤ l2−n. Denote u = l2−n. By
the discrete time Doob decomposition

EP (A
(m)

∞ −A(m)

t |F (m)

t )(ω) = EP (A(m)
∞ −A(m)

k |Fk2−m)(ω) = EP (X∞ −Xt|Fk2−m)(ω) =

EP (X∞ −Xt|Ft)(ω)

On the other hand

EP (A
(n)

∞ −A
(n)

t |F
(m)

t )(ω) = EP (A(n)
∞ −A

(n)
l |Ft)(ω) = EP

(
EP (A(n)

∞ −A
(n)
l |Fu)

∣∣∣∣Ft)(ω) =

EP

(
EP (X∞ −Xu|Fu)

∣∣∣∣Ft)(ω) = EP
(
X∞ −Xu

∣∣Ft)(ω)

Then the difference of conditional expectations is bounded:∣∣∣∣EP (A
(m)

∞ −A(m)

t |Ft)− EP (A
(n)

∞ −A
(n)

t |Ft)
∣∣∣∣

≤ EP
(
|Xt −Xu|

∣∣Ft) ≤ EP (W (2−n)
∣∣Ft)

The assumptions of lemma 30 are satisfied, giving

EP

(
sup
t

(
A

(m)

t −A(n)

t

)2) ≤ c{EP (W (2−n)2
)
+2CEP

(
W (2−n)2

)1/2}→ 0 as n→∞, m > n

We show the space of processes

S2 :=

{
Z(t, ω) (Ft)-adapted with ‖ Z ‖2S2 := EP

(
sup
t
Z2
t

)
<∞

}
(6.1)

is complete under the ‖ · ‖S2 norm.
Suppose (Z

(n)
t : t ≥ 0, n ∈ N) is a Cauchy sequence in S2. In particular there

exists a sequence (Nk) with

E

(
sup
t

(
Z

(n)
t − Z(m)

t

)2) ≤ 2−k, ∀n,m ≥ Nk

For each t define

Z
(∞)
t = Z

(N0)
t +

∞∑
k=0

(
Z

(Nk+1)
t (ω)− Z(Nk)

t (ω)
)

where ∀t the series converges in L2(Ω,Ft, P ). Then by triangle inequality

‖ Z(∞) − Z(m) ‖S2= E

(
sup
t

(
Z

(∞)
t − Z(m)

t

)2)1/2

≤ E
(

sup
t

(
Z

(m)
t − Z(Nk)

t

)2)1/2

+ E

(
sup
t

(
Z

(∞)
t − Z(Nk)

t

)2)1/2

≤ 2−k/2 +

√√√√ ∞∑
h=k

2−h

which is arbitrarily small for m ≥ Nk and k large enough.
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By completeness, there is a (Ft)-adapted process At(ω) ∈ S2 with

EP

(
sup
t

{
A

(n)

t −At
}2
)
→ 0

From convergence in quadratic mean it follows that there is a subsequence (ni)
such that

sup
t
|A(ni)

t (ω)−At(ω)| → 0 P -almost surely .

Next we show that At(ω) is continuous. For t = k2−n,

∆A
n

t = EP

(
X(k)2n −X(k−1)2n

∣∣∣∣F(k−1)2−n

)
≤ EP

(
W (2−n)

∣∣F(k−1)2−n
)

where on the right hand side we have an uniformly integrable martingale. We
have

EP

(
sup
t

(∆A
n

t )2

)
≤ EP

(
sup
k
EP
(
W (2−n)

∣∣F(k−1)2−n
)2) ≤ 4EP

(
W (2−n)2

)
→ 0 as n→∞

by Doob Lp-martingale inequality. In particular there is a further subsequence
(nj) such that

sup
t

∆A
nj
t (ω)→ 0 P - almost surely as j →∞

Almost sure continuity follows:

sup
t
|∆At(ω)| ≤ sup

t
|∆At(ω)−∆A

(nj)
t (ω)|+ sup

t
|∆A(nj)

t (ω)|

≤ 2 sup
t
|At(ω)−A(nj)

t (ω)|+ sup
t
|∆A(nj)

t (ω)|

which for almost all ω is arbitrary small for j large enough.

We show that Mt := (Xt−At) is a (Ft)-martingale. Since Mt is continuous
and square integrable since Xt(ω) and At(ω) are.

By using lemma 25 it is enough to show the martingale property for s < t
with s, t ∈ DN = {k2−N : k ∈ Z}, and B ∈ Fs:

EP
(
(Mt −Ms)1B

)
= E

(
(Xt −Xs)1B

)
− E

(
(At −As)1B

)
= E

(
(Xt −Xs)1B

)
− E

(
(A

(n)
t −A(n)

s )1B
)

+ E((At −A(n)
t )1B)− E

(
(As −A(n)

s )1B
)

= 0 + E((At −A(n)
t )1B)− E

(
(As −A(n)

s )1B
)
→ 0 as n→∞

where the last identity holds ∀n ≥ N by the discrete time martingale property,
and by the Cauchy-Schwartz inequality,∣∣∣∣EP ((A(n)

t −At)1B
)∣∣∣∣ ≤ EP(sup

t
(A

(n)

t −At)2

)1/2√
P (B) −→ 0.

For the general case, by using the localization

Xt = lim
C→∞

XτC
t (ω) = X0 + lim

C→∞
M

(C)
t (ω) + lim

C→∞
A

(C)
t (ω) = X0 +Mt +At
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whereM (C)
t are continuous true martingales and A(C)

t are continuous increasing
processes with M (C)

0 (ω) = A
(C)
0 (ω) = 0 and

M
(C)
t (ω) = M

(C+1)
t (ω) and A(C)

t (ω) = A
(C+1)
t (ω) on [0, τC ]

This implies that the limits Mt(ω) and At(ω) exist with M
(C)
t = Mt∧τC and

A
(C)
t = At∧τC . Therefore At is continuous and non-decreasing and Mt is a local

martingale with localizing sequence (τC : C ∈ N) �

Remark 17. Note that without additional assumptions, it is not possible to
show that Mt is a true martingale: for t > s and B ∈ Fs

EP
(
(Mt −Ms)1B

)
= EP

(
lim
C→∞

(Mt∧τC −Ms∧τC )1B
)

(6.2)

?
= lim
C→∞

EP
(
(Mt∧τC −Ms∧τC )1B

)
= 0 (6.3)

the interchange of limit and expectation is not always justified.

Definition 39. 1. the right continuous adapted process (Xt(ω)) is in the
class D (D is for Doob) is the family of random variables{

Xτ (ω) : τ is a stopping time
}

is uniformly integrable.

2. We say that a right continuous (Ft)-adapted process (Xt(ω)) is in the class
DL (local Doob) if for each t > 0 the family of random variables{

Xτ (ω) : τ is a stopping time with τ(ω) ≤ t a.s.
}

is uniformly integrable,

Exercise 20. 1. A local martingale Mt of class DL is a true martingale

2. A local martingale Mt of class D is an uniformly integrable martingale. .

Proof

1. Let (τn) be a localizing sequence. For 0 ≤ s ≤ t, B ∈ Fs we have

EP
(
(Mt −Ms)1B

)
= EP

(
lim
n→∞

(Mt∧τn −Ms∧τn)1B
)

= lim
n→∞

EP
(
(Mt∧τn −Ms∧τn)1B

)
= 0

where the last step is justified since the family {|Mt∧τn −Ms∧τn | : n ∈ N}
is uniformly integrable by assumption.

2. Mt is a martingale by the previous step, and it is clear thatMt is uniformly
integrable since determistic times are stopping times.
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Corollary 16. A continuous (Ft)-submartingale of class DL has unique Doob-
Meyer decomposition

Xt(ω) = X0(ω) +Mt(ω) +At(ω)

where M0(ω) = A0(ω) = 0, Mt is a continuous true (Ft)-martingale and At is
continuous and non-decreasing with E(At) <∞

Moreover if Xt is of class D, the martingale Mt is uniformly integrable and
E(A∞) <∞.

Proof When Xt is of class DL, for t and B ∈ Ft, by the characterization of
convergence in L1(P ) we have

EP
(
|Xt −Xt∧τC |)→ 0 as C →∞

Since A is non-decreasing by the monotone convergence theorem

EP
(
At −At∧τC )→ 0 as C →∞

Therefore

‖Mt −Mt∧τC ‖L1(P )≤‖ Xt −Xt∧τC ‖L1(P ) + ‖ At −At∧τC ‖L1(P )→ 0

which justifies the interchange of limit and expectation in equation 6.2.
When Xt is of class D it is uniformly integrable, therefore Xt → X∞ almost

surely and in L1(P ) by the Doob martingale convergence theorem, and by the
martingale property

EP (A∞) = lim
t↑∞

EP (At) = lim
t↑∞

EP (Xt −X0) = EP (X∞ −X0) <∞,

which means that

Mt = (Xt −X0 +At)→M∞ = (X∞ −X0 +A∞)

P -almost surely and in L1(P ) sense. In particular Mt is uniformly integrable.
�

6.4 Quadratic and predictable variation of a con-
tinuous local martingale

Let Mt be a continuous local martingale in the (Ft)-filtration, and (τn) a local-
izing sequence. Note that we can choose (τn) such that |Mτn

t (ω)| ≤ n.
By Jensen inequality, the stopped process (Mτn

t )2 is a (Ft)-submartingale,
with Doob decomposition

(Mτn
t )2 = M2

0 +N
(n)
t + 〈Mτn〉t

where 〈Mτn〉t is a continuous non-decreasing process and N (n)
t is a local mar-

tingale.
Since τn ≤ τn+1 and the Doob-Meyer decomposition is unique it follows that

N
(n)
t 1(τn > t) = N

(n+1)
t 1(τn > t) = Nt1(τn > t) and

〈Mτn〉t1(τn > t) = 〈Mτn+1〉t1(τn > t) = 〈M〉t1(τn > t)
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where Nt := lim
n↑∞

N
(n)
t is a local martingale and 〈M〉t = lim

n↑∞
〈Mτn〉t is a contin-

uous increasing process, which give the Doob-Meyer decomposition

M2
t = M2

0 +Nt + 〈M〉t

The process 〈M〉t is the predictable variation of the local martingale Mt. Note
that

Mt −Ms = 0 P -almost surely =⇒ 〈M〉t = 〈M〉s P -almost surely

Definition 40. Let Mt, M̃t (Ft)-local martingales. We define by polarization
the predictable covariation as

〈M, M̃〉t :=
1

4

(
〈M + M̃〉t − 〈M − M̃〉t

)
=

1

2

(
〈M + M̃〉t − 〈M〉t − 〈M̃〉t

)
Note that 〈M,M〉t = 〈M〉t.

Proposition 24. 〈M,M̃〉t is the unique continuous process of finite (total)
variation such that 〈M,M̃〉0 = 0 and

MtM̃t = M0M̃0 + N̂t + 〈M,M̃〉t (6.4)

where N̂t is a local martingale with N̂t = 0.

Proof Since (Mt ± M̃t) are local martingales with Doob-Meyer decomposi-
tions

(Mt ± M̃t)
2 = (M0 ± M̃0)2 +N

(±)
t + 〈M ± M̃〉t

we use the polarization identity

MtM̃t =
1

4

{
(Mt + M̃t)

2 − (Mt − M̃t)
2

}
to obtain the semimartingale decomposition (6.4) with N̂t =

(
N

(+)
t −N (−)

t

)
/4 �

Exercise 21. Let (Bt, B̃t)t≥0 a pair of independent Brownian motion, and con-
sider the filtration Ft = σ(Bs, B̃s : s ≤ t)∨NP completed by the sets of measure
zero.

Bt and B̃t are square integrable martingales.

EP
(
BtB̃t −BsB̃s

∣∣Fs)
= BsEP

(
B̃t − B̃s|

∣∣Fs)+ B̃sEP
(
Bt −Bs|

∣∣Fs)+ EP
(
(Bt −Bs)(B̃t − B̃s)

∣∣Fs) =

BsEP
(
B̃t − B̃s

)
+ B̃sEP

(
Bt −Bs

)
+ EP

(
(Bt −Bs

)
EP
(
B̃t − B̃s

)
= 0

therefore the product (BtB̃t) is a martingale and from the uniqueness of the
Doob-Meyer decomposition it follows that 〈B, B̃〉t = 0.

For α ∈ [0, 1], consider the process

Wt =
√
αBt +

√
(1− α)B̃t
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It follows that (Wt) is a Brownian motion adapted to the filtration Ft. We have

EP
(
BtWt −BsWs

∣∣Fs)
= BsEP

(
Wt −Ws|

∣∣Fs)+ W̃sEP
(
Wt −Ws|

∣∣Fs)+ EP
(
(Bt −Bs)(Wt −Ws)

∣∣Fs)
= 0 +

√
αEP

(
(Bt −Bs)2

∣∣Fs)+
√

(1− α)EP
(
(Bt −Bs)(B̃t − B̃s)

∣∣Fs)
=
√
α(〈B〉t − 〈B〉s) =

√
α(t− s)

It follows that 〈B,W 〉t =
√
α〈B〉t =

√
αt

Theorem 28. LetM be a continuous martingale with |Mt(ω)| ≤ C <∞ ∀t > 0.
Then

[M ]t = lim
|∆|→0

∞∑
k=1

(Mt∧tk −Mt∧tk−1
)2

where the limit exists in L2(P ) sense uniformly on compacts, with

∆ = (0 ≤ t0 < t1 < . . . , tn . . . ), |∆| := sup
i

(ti − ti−1), sup{tn ∈ ∆} =∞

[M ]t is continuous and non-decreasing and satisfies:

M2
t = M2

0 + [M ]t +Nt

where Nt is a true martingale. In other words [M ]t = 〈M〉t.

Proof From Revuz-Yor Continuous martingales and Brownian motion.
Without loss of generality we assume M0 = 0, otherwise consider Mt =

(Mt −M0). Lets denote

T∆
t (M) :=

∞∑
k=1

(Mt∧tk −Mt∧tk−1
)2 (6.5)

It follows that (M2
t − T∆

t (M)) is a martingale since for 0 ≤ s ≤ t

(Mt −Ms)
2 = M2

t −M2
s + 2Ms(Mt −Ms)

and by the martingale property

E
(
(Mt −Ms)

2|Fs
)

= E
(
M2
t −M2

s

∣∣Fs) (6.6)

=
∑
tk∈∆

E
(
M2
tk∧t −M

2
tk−1∨s

∣∣Fs) =
∑
tk∈∆

E
({
Mtk∧t −Mtk−1∨s

}2∣∣Fs) = E(T∆
t (M)− T∆

s (M)
∣∣Fs)

In particular for fixed partitions ∆,∆′

X∆,∆′

t := T∆
t (M)− T∆′

t (M)

is a martingale. We will show that Xt = X∆,∆′

t → 0 in L2(P ) uniformly on
compact intervals as |∆|, |∆′| → 0.
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Denote ∆∆′ = ∆ ∪∆′, the coarsest partition of R+ containing both ∆ and
∆′. Note that for fixed ∆,∆′, Xt is bounded on compact intervals, since is the
sum of finitely many squared differences of the bounded process M .

Consider the process T∆∆′

t (X), which is defined as in 6.5 replacing the mar-
tingale Mt with the martingale Xt. (We don’t want and we don’t need to write
the explicit expression).

From 6.6 we see that

(X2
t − T∆∆′

t (X))

is also a martingale. Since (a− b)2 ≤ 2(a2 + b2), we have

E(X2
t ) = E(T∆∆′

t (X)) ≤ 2EP

(
T∆∆′

t (T∆(M)) + T∆∆′

t (T∆′(M))

)

We show that EP
(
T∆∆′

t (T∆(M))

)
−→ 0. For sk ∈ ∆∆′, tl ∈ ∆ such that

tl ≤ sk < sk+1 ≤ tl+1,

T∆
sk+1

(M)− T∆
sk

(M) = (Msk+1
−Mtl)

2 − (Msk −Mtl)
2

= (Msk+1
−Msk)2 + 2(Msk+1

−Msk)(Msk −Mtl) = (Msk+1
+Msk − 2Mtk)(Msk+1

−Msk)

and for t = sn ∈ ∆∆′

T∆∆′

t (T∆(M)) =

n−1∑
k=0

(
T∆
sk+1

(M)− T∆
sk

(M)
)2

≤ sup
k≤n

(Msk+1
+Msk − 2Mtl)

2
n−1∑
k=0

(Msk+1
−Msk)2

= sup
k≤n

(Msk+1
+Msk − 2Mtl)

2T∆∆′

t (M)

By taking expectation and using the Cauchy-Schwartz inequality

EP

(
T∆∆′

t (T∆(M))

)
≤ EP

(
sup
k≤n

(Msk+1
+Msk − 2Mtk)4

)1/2

EP
({
T∆∆′

t (M)
}2)1/2

Since for P -almost all ω Ms(ω) is a continuous martingale, it is uniformly con-
tinuous on the compact [0, t],

sup
k≤n
|Msk+1

+Msk − 2Mtk | → 0

P -a.s. as |∆|, |∆′| → 0. Since |Mt(ω)| ≤ C, convergence in Lp(Ω) follows as
well.

In order to complete the proof we show that

EP
({
T∆
t (M)

}2)
remains bounded as |∆| → 0.
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Assuming that t = tn ∈ ∆, denoting ∆Mk = (Mtk −Mtk−1
)

{
T∆
t (M)

}2
=

n∑
k=1

(∆Mk)4 + 2

n∑
k=1

( n∑
j>k

(∆Mj)
2

)
(∆Mk)2,

EP

({
T∆
t (M)

}2
)
≤ EP

(
T∆
t (M) sup

k≤n
(∆Mk)2

)
+ 2

n∑
k=1

EP

(
(Mt −Mtk)2(∆Mk)2

)
where in the last term we have taken conditional expectation with respect to
Ftk and used the martingale property

EP
(
M2
tn −M

2
tk

∣∣Ftk) = EP
(
(Mt −Mtk)2

∣∣Ftk)
We get

EP

({
T∆
t (M)

}2
)
≤ EP

(
T∆
t (M) sup

k≤n

{
(∆Mk)2 + 2(Mt −Mtk)2

})
≤ EP (T∆

t (M))12C2 = EP (M2
t )12C2 ≤ 12C4

This shows that for each t and every sequence of partitions ∆n with |∆n| →
0,

T∆n
t (M) is a Cauchy sequence in L2(Ω).

Since for fixed k, n (T∆n
t (M) − T∆k

t (M)) is a martingale, by the Doob Lp-
martingale inequality

EP

(
sup
s≤t

(
T∆n
s (M)− T∆k

s (M)
)2) ≤ 4EP

((
T∆n
t (M)− T∆k

t (M))2

)
which means that T∆

s (M) is a Cauchy sequence in the complete normed space
S2 (6.1), and there is a limiting process [M ]t such that

EP

(
sup
s≤t

(
[M ]s − T∆n

s (M)
)2)→ 0

as |∆n| → 0, which does not depend on the choice of the sequence (∆n). In
particular there is a subsequence n(j) such that

sup
s≤t

∣∣[M ]s − T
∆n(j)
s (M)

∣∣→ 0 P -almost surely .

It follows that [M ]s is non-decreasing since T∆
s (M) with ∆ = ∆n(j) is non-

decreasing. Since the approximating processes T∆
s (M) with ∆ = ∆n(j) are con-

tinuous and converging P -almost surely uniformly on compacts, by the Ascoli-
Arzela equicontinuity criterium it follows that the limiting process [M ]t is almost
surely continuous.

We check the martingale property: for s ≤ t, A ∈ Fs

EP

(
(M2

t −M2
s )1A

)
= EP

(
(T∆
t (M)− T∆

s (M))1A

)
→ EP

(
([M ]t − [M ]s))1A

)
as ∆ → 0, since T∆

t (M)
L2

→ [M ]t. Therefore (M2
t − [M ]t) is a true martingale

and by the uniqueness of the Doob-Meyer decomposition [M ]t = 〈M〉t. (This
does not hold for processes with jumps! ) �
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Remark 18.

[M ]t = lim
|∆|→0

∑
ti∈∆

(
Mti∧t −Mti−1∧t

)2
〈M〉t = lim

|∆|→0

∑
ti∈∆

E

((
Mti∧t −Mti−1∧t

)2∣∣∣∣Fti−1

)
where the limits are taken in probability. These coincide whenM is a continuous
square integrable martingale but are different when Mt has jumps.

Corollary 17. Let Mt be a continuous local martingale. Then the process

[M ]t = lim
|∆|→0

∞∑
k=1

(
Mt∧tk −Mt∧tk−1

)2
exists as a limit in probability, it is non-decreasing and we have [M ]t = 〈M〉t in
the Doob-Meyer decomposition

M2
t = M2

0 + [M ]t +Nt

where Nt is a local martingale with N0 = 0.

By polarization we obtain also the quadratic covariation of two continuous
local martingales Mt and M̃t,

[M,M̃ ]t = lim
|∆|→0

∞∑
k=1

(
Mt∧tk −Mt∧tk−1

)(
M̃t∧tk − M̃t∧tk−1

)
which coincides with the predictable covariation 〈M, M̃〉t.

Proof Without loss of generality, let M0 = 0. There is a localizing sequence
τn ↑ ∞ of stopping times such that andMτn

t is a true martingale with |Mτn
t | ≤ n.

N
(n)
t =

(
M2
t∧τn − [Mτn ]t

)
is a true martingale which is constant on the

interval [τn,∞).
Since N

(n+1)
t =

(
M2
t∧τn+1

− [Mτn+1 ]t
)
is also a true martingale, by the

uniqueness of the Doob-Meyer decomposition it follows that

[Mτn+1 ]t1(τn > t) = [Mτn ]t1(τn > t)

Define

[M ]t(ω) =

∞∑
n=1

1(τn−1 < t ≤ τn)[Mτn ]t

with τn−1 ≡ 0. Note that this sum for each ω contains finitely many nonzero
terms. We see that (M2

t − [M ]t) is a local martingale with localizing sequence
τn.

For fixed t, T∆
t (M)

P−→ [M ]t (in probability):

P

(
sup
t∈[0,T ]

∣∣[M ]t − T∆
t (M)

∣∣ > ε

)
=

P

(
{τn ≤ t}

⋂{
sup
t∈[0,T ]

∣∣[M ]t − T∆
t (M)

∣∣ > ε

})
+ P

(
{τn > t}

⋂{
sup
t∈[0,T ]

∣∣[M ]t∧τn − T∆
t∧τn(M)

∣∣ > ε

})
≤ P

(
τn ≤ t

)
+ P

(
sup
t∈[0,T ]

∣∣[Mτn ]t − T∆
t (Mτn)

∣∣ > ε

)
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where for n large enough the first term is is arbitrarily small since 1(τn ≤ t)→ 0
P -a.s, and for such fixed n we let |∆| → 0 to make the second term small �.

Lemma 31. Let (Mt(ω) : t ∈ N) ⊆ L2(P ) a square integrable F-martingale.
The following conditions are equivalent:

1. (Mt : t ∈ N) is bounded in L2(P ), that is

sup
t∈N

EP (M2
t ) <∞

2.
∞∑
t=1

E
(
(Mt −Mt−1)2) <∞

3. there is a r.v. M∞ ∈ L2(P ) such that Mt = E(M∞|Ft) and Mt → M∞
in L2(P ).

Proof. Note that for s ≤ t ∈ N, using telescoping sums, by the martingale
property

E
(
(Mt −Ms)

2
)

= E

({ t∑
n=s+1

∆Mn

}2)
=

t∑
n=s+1

E
(
(∆Mn)2

)
For s = 0, we see that (1)⇐⇒ (2).

When (1) holds, (Mt : t ∈ N) is an uniformly integrable martingale and
∃M∞(ω) such that Mt = E(M∞|Ft) and Mt → M∞ P -almost surely and in
L1(P ). We show that Mt →M∞ also in L2(P ).

For t,N ∈ N,

E
(
(Mt+N −Mt)

2
)

= E

({t+N∑
s=t

∆Ms

}2)
=

t+N∑
s=t

E
(
(∆Ms)

2
)

where when we develop the square by the martingale property the cross terms
have zero expectation. For fixed t as N →∞ by Fatou lemma

E
(
(M∞ −Mt)

2
)
≤
∞∑
s=t

E
(
(∆Ms)

2
)
→ 0

as t→∞ by the hypothesis (2). We see also that

0 ≤ E
(
(M∞ −Mt)

2
)

= E
(
(Mt+N −Mt)

2
)

+ E
(
(Mt+N −M∞)2

)
=

t+N∑
s=t+1

E
(
(∆Ms)

2) + E
(
(Mt+N −M∞)2

)
−→

∞∑
s=t+1

E
(
(∆Ms)

2) + 0 �

Proposition 25. Let (Mt : t ∈ R+) a continuous martingale with E(M2
t ) <∞

∀t ≥ 0.
Then (M2

t − 〈M〉t : t ∈ R+) is a true F-martingale, in particular

E(M2
t ) = E(M2

0 ) + E(〈M〉t)
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By polarization, if (M̃t : t ∈ R+) ⊆ L2(P ) is another continuous martingale,
(MtM̃t − 〈M,M̃〉t : t ∈ R+) is a true F-martingale, in particular

E(MtM̃t) = E(M0M̃0) + E(〈M,M̃〉t)

Proof Let τ0 = 0 and τn(ω) = inf{t : |Mt(ω)| > n}, with τn(ω) ↑ ∞ as
n ↑ ∞.

For fixed n, (Mt∧τn : t ≥ 0) is a bounded martingale, and
(M2

t∧τn − 〈M〉t∧τn : t ∈ N) is a true martingale by theorem (28 ).
For fixed t consider the telescopic series

Mt(ω) = M0 +

∞∑
n=1

(Mt∧τn −Mt∧τn−1
)

By Doob’s optional stopping theorem Mt∧τn = E(Mt|Ft∧τn) ∈ L2(P ).

E

({n+k∑
r=n

(Mt∧τr −Mt∧τr−1
)

}2)
=

n+k∑
r=n

EP

(
(Mt∧τr −Mt∧τr−1

)2

)
+ 2

n+k∑
r=n

∑
n≤s<r

EP

(
EP
(
Mt∧τr −Mt∧τr−1

∣∣Ft∧τs)(Mt∧τs −Mt∧τs−1

))

=

n+k∑
r=n

EP

(
〈M〉t∧τr − 〈M〉t∧τr−1

)
= EP

(
〈M〉t∧τn+k

− 〈M〉t∧τn
)

and by lemma (31) applied with respect to the discrete time filtration (Ft∧τn :
n ∈ N)

Mt∧τn →Mt in L2(P )

which implies

E(M2
t ) = lim

n→∞
E(M2

t∧τn) = lim
n→∞

E
(
〈M〉t∧τn

)
= E(〈M〉t)

where the last equality follows by monotone convergence. This gives integrabil-
ity we show the martingale property: for s ≤ t, A ∈ Fs, Since M2

t∧τn → M2
t in

L1(P ),

E((M2
t −M2

s )1A) = lim
n→∞

E
(
(M2

t∧τn −M
2
s∧τn)1A

)
= E

(
(〈M〉t∧τn − 〈M〉s∧τn)1A

)
→ E

(
(〈M〉t − 〈M〉s)1A

)
where we use monotone convergence again �

Remark The L2(P )-isometry E((Mt −M0)2) = E(〈M〉t) is the key step
in the construction of the Ito integral.
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Chapter 7

Ito calculus

7.1 Ito-isometry and stochastic integral
Proposition 26. LetM2 be the space of continuous F-martingales (Mt(ω))t≥0

which are bounded in L2(Ω), with norm

‖M ‖2M2 := EP
(
M2
∞
)

= EP
(
〈M〉∞

)
M2 is complete and it is an Hilbert space with scalar product

(M,N)M2 := EP
(
M∞N∞

)
= EP

(
〈M,N〉∞

)
By Doob’s Lp martingale inequality

EP

(
sup
t≥0

M2
t

)1/2

≤ 2 ‖M ‖M2

Proof When

sup
t≥0

EP (M2
t ) <∞

by lemma (31) Mt→M∞ P -almost surely and in L2(P ).
We show thatM2 is complete.
If (M (n))n∈N is a Cauchy sequence in M2 , then (M

(n)
∞ )n∈N is a Cauchy

sequence in the complete space L2(Ω), and there is M∞ ∈ L2(Ω) such that
EP
(
(M

(n)
∞ −M∞)2

)
→ 0.

Define Mt(ω) := EP (M∞|Ft)(ω), it follows that M (n) → M ∈ M2, equiva-
lently

EP

(
sup
t≥0

(Mt −M (n)
t )2

)
→ 0

In particular there is a subsequence (nj) such that for P -almost all ω

sup
t≥0

∣∣M (nj)
t (ω)−Mt(ω)

∣∣→ 0

which implies that P -almost surely the path t 7→Mt(ω) is continuous �
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Definition 41. We say that the process Y (s, ω) is a simple predictable with
respect to the filtration F = (Ft)t≥0, if it is adapted and left-continuous taking
finitely many random values, that is

Ys(ω) :=

n∑
i=1

1(ai,bi](s)ηi(ω), n ∈ N (7.1)

with 0 ≤ a1 < b1 ≤ a2 < b2 ≤ · · · < bn−1 ≤ an < bn < ∞ and ηi(ω) is
Fai-measurable.

Definition 42. Given the filtration F = (Ft)t∈R , consider the measurable space
Ω×R+ equipped with the predictable σ-algebra P generated by the left continuous
F-adapted processes.

Exercise: the simple left-continuous F-adapted processes generate also P.
When (ω, t) 7→ Yt(ω) is P-measurable, we say that the process Y is F-

predictable.

Lemma 32. Let (Mt) ∈ M2 a continuous martingale, and Yt ∈ S a bounded
simple predictable process with representation 7.1. We define the Ito integral as

(Y ·M)t :=

∫ t

0

YsdMs :=

n∑
i=1

ηi(Mbi∧t −Mai∧t)

For Y ∈ S, the map Y 7→
∫∞

0
YsdMs is an isometry between

L2
a

(
Ω× R+, P (dω)⊗ 〈M〉(ω, dt)

)
andM2, with

EP

({∫ ∞
0

YsdMs

}2)
= EP

(∫ ∞
0

Y 2
s d〈M〉s

)
(7.2)

We have the property: for all (Nt) ∈M2,

〈(Y ·M), N〉t :=

∫ t

0

Ysd〈M,N〉s :=

n∑
i=1

ηi
(
〈M,N〉bi∧t − 〈M,N〉ai∧t

)

Proof Let Y (ω, u) = 1(a,b](u)η(ω) with a < b and η(ω) bounded and Fa
measurable. We have

EP

(∫ t

0

YsdMs

∣∣∣∣Fs) = EP
(
η(Mb −Ma)

∣∣Ft)
=

 η(Mb −Ma) t ≥ b
η(Mt −Ma) a ≤ t ≤ b
EP (ηEP (Mt −Ma|Fa)|Ft) = 0 t ≤ a

= η(Mt∧b −Mt∧a)
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By taking conditional expectation and using the martingale property

EP

({∫ ∞
0

YudMu

}2)
=

n∑
i=1

EP

(
η2
i (Mbi −Mai)

2

)
+ 2

n∑
i=1

∑
1≤j<i

EP

(
ηiηj(Mbi −Mai)(Mbj −Maj )

)
=

n∑
i=1

EP

(
η2
iEP

(
(Mbi −Mai)

2|Fai
))

+ 2

n∑
i=1

∑
1≤j<i

EP

(
ηiηj(Mbj −Maj )EP

(
Mbi −Mai |Fai

))
=

n∑
i=1

EP

(
η2
i

(
〈M〉bi − 〈M〉ai

))
= EP

(∫ ∞
0

Y 2
s d〈M〉s

)
where the cross terms have zero expectation. To show (7.2), note that for s ≤ t,∫ t

s

YudMu =

∫ t

0

YudMu −
∫ s

0

YudMu = η
(
Mb∧t −Ma∨s

)
,

and for A ∈ Fs

EP

(
1A

(∫ t

s

YudMu

)
(Nt −Ns)

)
= EP

(
1Aη(Mb∧t −Ma∨s)(Nt −Ns)

)
=

EP

(
1Aη(Mb∧t −Ma∨s)(Nt −Nb∧t)

)
+ EP

(
1Aη(Mb∧t −Ma∨s)(Nb∧t −Na∨s)

)
+ EP

(
1Aη(Mb∧t −Ma∨s)(Na∨s −Ns)

)
=

EP

(
1Aη(Mb∧t −Ma∨s)EP

(
(Nt −Nb∧t)

∣∣∣∣Fb∧t))+ EP

(
1AηEP

(
Mb∧t −Ma∨s)(Nb∧t −Na∨s)

∣∣∣∣Fa∨s))
+ EP

(
1AηEP

(
Mb∧t −Ma∨s

∣∣∣∣Fa∨s)(Na∨s −Ns)
)

= EP

(
1Aη

(
〈M,N〉b∧t − 〈M,N〉a∨s

))
= EP

(
1A

∫ t

s

Yud〈M,N〉u
)
,

where we use the martingale properties of N ,M and (M2−〈M〉) between times
s ≤ (a ∨ s) ≤ (b ∧ t) ≤ t. This shows that

Nt

∫ t

0

YudMu −
∫ t

0

Yud〈M,N〉u

is a F-martingale which proves (7.2).

Theorem 29. (Kunita-Watanabe inequality) Let (Nt), (Mt) ∈M2 and (Ys), (Us)
jointly measurable processes (not necessarily F-adapted !).

Then, P -almost surely for t ∈ [0,+∞],∫ t

0

|YsUs| d|〈M,N〉|s ≤
(∫ t

0

Y 2
s d〈M〉s

)1/2(∫ t

0

U2
s d〈N〉s

)1/2

By Hölder inequality, we have also for p, q > 1, p−1 + q−1 = 1

EP

(∫ t

0

|YsUs| d|〈M,N〉|s
)
≤ EP

({∫ t

0

Y 2
s d〈M〉s

}p/2)1/p

EP

({∫ t

0

U2
s d〈N〉s

}q/2)1/q
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Note that we need joint measurability since we want that the maps t 7→
Y (t, ω) t 7→ U(t, ω) are B(R+)-measurable for all ω ∈ Ω, in order to use the
Lebesgue-Stieltjes integral. The integral on the left hand side is a Lebesgue-
Stieljes integral taken ω-wise with respect to the total variation of the process
〈M,N〉t(ω)

Proof Note that P -almost surely ∀r ∈ R (Mt + rNt) ∈M2 and

0 ≤ [M + rN ]t = [M ]t + r2[N ]t + 2r[N,M ]t ⇐⇒
0 ≤ 〈M + rN〉t = 〈M〉t + r2〈N〉t + 2r〈N,M〉t

By continuity, this holds simultaneously for all r ∈ R outside a P -null set.
The corresponding quadratic equation in the unknown r has at most one

real solution, and the inequality for the discriminant follows:

〈N,M〉2t − 〈M〉t〈N〉t ≤ 0⇐⇒
∣∣〈N,M〉t∣∣ ≤√〈M〉t√〈N〉t

The same inequality holds for increments:∣∣〈N,M〉t − 〈N,M〉s∣∣ ≤√〈M〉t − 〈M〉s√〈N〉t − 〈M〉s
By changing the sign of the integrands opportunely, we obtain

Y ′s = |Ys|, U ′s = |Us|
d|〈M,N〉|
d〈M,N〉

(s)

where the last term on the right hand side is the Radon-Nikodym derivative of
〈M,N〉 with respect to its total variation, and it is enough to show that∣∣∣∣ ∫ t

0

YsUsd〈M,N〉s
∣∣∣∣ ≤ (∫ t

0

Y 2
s d〈M〉s

)1/2(∫ t

0

U2
s d〈N〉s

)1/2

Assume that Ut and Yt are simple measurable procesess, such that there is a

finite partition of [0, t] =
n⋃
j=1

Bj into disjoint Borel sets, and random variables

Ỹj(ω), Ũj(ω) such that

Ys(ω) =

n∑
j=1

Ỹj(ω)1(s ∈ Bj), Us(ω) =

n∑
j=1

Ũj(ω)1(s ∈ Bj)

Denote

∆Vj =

∫
Bj

dVs

where Vs = 〈M,N〉s, 〈M〉s, 〈N〉s, have paths of finite total variation.
Note that if B ⊆ R+ is a Borel set and µ is a positive measure on (R+,B(R+))

µ(B) = sup
closed C⊆B

µ(C) = inf
open O⊇B

µ(O)
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and the same equality holds when we take supremum over C union of finitely
many closed intervals and infimum over O union of finitely many open intervals.
Therefore

∆|〈M,N〉|j = |〈M,N〉|(Bj) = sup
C⊆Bj

{
|〈M,N〉|(C)

}
≤ sup
C⊆Bj

{√
〈M〉(C)

√
〈N〉(C)

}
≤
√

sup
C⊆Bj

〈M〉(C)
√

sup
C′⊆Bj

〈N〉(C ′) =
√
〈M〉(Bj)

√
〈N〉(Bj)

where we used the same notation for the non-decreasing functions and the cor-
responding measures. We have∣∣∣∣ ∫ t

0

YsUsd〈M,N〉s
∣∣∣∣ =

∣∣∣∣ n∑
j=0

ỸjŨj∆〈M,N〉j
∣∣∣∣ ≤ n∑

i=0

|ỸjŨj |
√

∆〈M〉j
√

∆〈N〉j

≤
( n∑
j=0

Ỹ 2
j ∆〈M〉j

)1/2( n∑
j=0

Ũ2
j ∆〈N〉j

)1/2

=

(∫ t

0

Y 2
s d〈M〉s

)1/2(∫ t

0

U2
s d〈N〉s

)1/2

where we used the Cauchy Schwartz inequality for sums.
The result follows for jointly measurable integrands by the monotone con-

vergence theorem for the Lebesgue-Stieltjes integrals splitting first the inte-
grands into positive and negative parts, and approximating from below by sim-
ple F ⊗ B(R+)-measurable processes �

Remark 19. The integrands Ys(ω), Us(ω) were not assumed to be F-adapted,
just jointly measurable.

Lemma 33. (martingale characterization) An (Ft)-adapted process (Mt) is a
martingale if and only for all bounded (Ft)-stopping times τ , the random
variable Mτ (ω) ∈ L1(P ) and

EP
(
Mτ

)
= EP (M0)

Proof The necessity follows from Doob’s optional stopping theorem.
Sufficiency: let s ≤ t and A ∈ Fs. Define the random time

τ(ω) := s 1A(ω) + t 1Ac(ω)

Note that ∀u ≥ 0

{τ(ω) ≤ u} =

 Ω t ≤ u
A s < u ≤ t
∅ 0 ≤ s ≤ u

which is Fu measurable in all cases, therefore τ is a bounded stopping time.

EP (M0) = EP
(
Mτ ) = EP (1AMs + 1AcMt) =

EP
(
Mt

)
+ EP

(
1A(Ms −Mt)

)
= EP (

(
M0

)
− EP

(
1A(Mt −Ms)

)
=⇒ EP

(
1A(Mt −Ms)

)
= 0

which gives the martingale property.
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Definition 43. On a probability space (Ω,F), a stochastic process (Y (s, ω) :
s ∈ R+) is jointly measurable when

• ∀s the map ω 7→ Y (s, ω) is F-measurable

• ∀ω the map s 7→ Y (s, ω) is Borel measurable

We say that Y (s, ω) is progressively measurable w.r.t. the filtration F = (Fs),
when ∀t ≥ 0 the restricion

Y : [0, t]× Ω 7→ Rd

is B([0, t])⊗Ft-jointly measurable.

Theorem 30. (Ito integral, from the Revuz and Yor’s book) Let (Mt) ∈ M2

and Y (s, ω) a progressively measurable process with

EP

(∫ ∞
0

Y 2
s d〈M〉s

)
<∞ (7.3)

1. There exists an unique martingale inM2 which will be denoted by

(Y ·M)t =

∫ t

0

YsdMs

such that ∀ (Nt) ∈M2,

EP

(
(Y ·M)∞N∞

)
= EP

(∫ ∞
0

Ysd〈M,N〉s
)

= EP

(
〈Y ·M,N〉∞

)
(7.4)

2. (Y ·M)0 = 0 and for all (Nt) ∈M2

(Y ·M)tNt −
∫ t

0

Ysd〈M,N〉s,

is a true martingale, in particular〈
(Y ·M), N

〉
t

=

∫ t

0

Ysd〈M,N〉s

and for N = (Y ·M)

〈Y ·M〉t =

∫ t

0

Y 2
s d〈M,M〉s ∀t ∈ [0,+∞]. (7.5)

3. By uniqueness it follows that for simple predictable integrands this defini-
tion of Ito integral coincides with the Riemann sums definition given in
(32).
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Proof: The map

N∞ 7→ ϕ(N) := EP

(∫ ∞
0

Ysd〈M,N〉s
)

is linear since the predictable covaration is P -almost surely bilinear. It is also
continuous in M2 norm: by Kunita-Watanabe and Cauchy-Schwartz inequali-
ties

|ϕ(N)| =
∣∣∣∣EP(∫ ∞

0

Ysd〈M,N〉s
)∣∣∣∣ ≤ EP(∫ ∞

0

Y 2
s d〈M〉s

)1/2

EP

(
〈N〉∞

)1/2

=

EP

(∫ ∞
0

Y 2
s d〈M〉s

)1/2

‖ N ‖M2

When

EP

(∫ ∞
0

Y 2
s d〈M〉s

)
<∞

by the Riesz representation theorem in the Hilbert space M2 there exists an
unique continuous martingale inM2, which we denote as {(Y ·M)t}, such that

EP

(∫ ∞
0

Ysd〈M,N〉s
)

= ϕ(N) =
(
(Y ·M), N

)
M2 =

EP

(
(Y ·M)∞N∞

)
= EP

(
〈Y ·M,N〉∞

)
Note: up to now we did not need predictability or progressive measurability

of (Ys), in Kunita Watanabe inequality joint measurability was enough.

The progressive measurability of Ys will be needed in to show that

Xt := Nt

∫ t

0

YsdMs −
∫ t

0

Ysd〈M,N〉s

is a martingale for all N ∈ M2 which means, by definition of predictable co-
variation,

〈
(Y ·M), N

〉
t

=

∫ t

0

Ysd〈M,N〉s.

By taking Nt = (Y ·M)t we obtain also (7.5)

〈Y ·M〉t =

∫ t

0

Ysd〈M, (Y ·M)〉s =

∫ t

0

Ysd(Y · 〈M〉)s =

∫ t

0

Y 2
s d〈M,M〉s ,

and by taking Nt = Mt, we also obtain

〈
M, (Y ·M)

〉
t

=

∫ t

0

Ysd〈M,M〉s

Let τ be a (Ft)-stopping time (since we work in the spaceM2 of martingales
bounded in L2(P ) we don’t need to assume that τ is bounded).
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Since N, (Y ·M) ∈M2, by Fatou lemma and monotone convergence

E(N2
τ ) ≤ lim inf

n
E(N2

τ∧n) = lim
n
E(〈Nτ∧n〉) =

E(〈N〉τ ) ≤ E(〈N〉∞) = E(N2
∞) =‖ N ‖2M2

<∞ ,

and similarly E
(
(Y ·M)τ

)
≤‖ (Y ·M) ‖2M2

< ∞. By Cauchy Schwartz and
Kunita Watanabe inequalities it follows that Xτ ∈ L1(P ).

The martingales (Y · M)t and (Nt) are uniformly integrable martingales
(since they are bounded in L2(Ω,F , P )), we write

EP
(
(Y ·M)τNτ

)
= EP

(
EP
(
(Y ·M)∞|Fτ

)
Nτ

)
= EP

(
(Y ·M)∞Nτ

)
=

EP

(
(Y ·M)∞N

τ
∞

)
= EP

(
〈(Y ·M), Nτ 〉∞

)
= by the defining property (7.6)

= EP

(∫ ∞
0

Ysd〈M,Nτ 〉s
)

= EP

(∫ τ

0

Ysd〈M,Nτ 〉s
)

and by the martingale characterization lemma 33

Xt = (Y ·M)tNt −
∫ t

0

Ysd〈M,N〉s

is a true martingale when it is F-adapted, which is the case when Ys(ω) is pro-
gressively measurable. To show that (Y ·M)0 = 0, take a constant martingale
Nt ≡ N0 ∈ L2(Ω,F0, P ). By Kunita-Watanabe inequality

|〈M,N〉t| ≤
√
〈M〉t

√
〈N〉t = 0

since [N,N ]t = 〈N,N〉t = 0. Then

0 = EP

(∫ t

0

Ysd〈M,N〉s
)

= EP

(
(Y ·M)tNt

)
=

EP

(
(Y ·M)tN0

)
= EP

(
(Y ·M)0N0

)
which implies (Y ·M)0 = 0 since N0 ∈ L2(Ω,F0, P ) is arbitrary.

Remark 20. P -almost sure path continuity t 7→ (Y ·M)t follows directly from
the definition ofM2 without additional work.

This proof is a bit abstract since we used Riesz representation theorem. A
more standard proof for predictable integrands consists in approximating the
integrand Ys by a sequence (Y

(n)
s ) of simple predictable (left-continuous and

adapted) integrands in the space L2
(
Ω× R+,P, P (dω)〈M〉(dt, ω)

)
obtaining by

Ito isometry a Cauchy sequence of Ito integrals inM2.
A constructive extension of this line of proof to progressively measurable

integrands for which the Lebesgue-Stieltjes integral
∫ t

0
Ysd〈M〉s is not necessarily

well defined as a Riemann-Stieltjes integral, is a bit technical, since one needs
an intermediate approximation step in order to work with Riemann sums (see
for example the details in Karatzas and Schreve book Brownian motion and
stochastic calculus).
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Remark 21. The Ito map (Y,M) 7→ (Y ·M) ∈M2 is bilinear.

Remark 22. When H(s, ω) is just jointly measurable but not F-adapted, under

the integrability assumption 7.3, there is a square integrable martingale
t∫

0

HsdMs

such that ∀N ∈Ms

E

(〈∫ ·
0

HsdMs, N

〉
t

)
= E

(∫ t

0

Hsd〈M,N〉s
)

There is a progressively measurable process oH(s, ω), such that oH(s) = E(Hs|Fs),∀s
which is called F-optional projection or F-optional trace such that

E

(∫ t

0

Hsd〈M,N〉s
)

= E

(∫ t

0

oHsd〈M,N〉s
)
,

t∫
0

HsdMs =

t∫
0

oHsdMs =

t∫
0

E(Hs|Fs)dMs,

〈∫ ·
0

HsdMs, N

〉
t

=

〈∫ ·
0

oHsdMs, N

〉
t

=

=

∫ t

0

oHsd〈M,N〉s =

∫ t

0

E(Hs|Fs)d〈M,N〉s.

Lemma 34. Under the assumption of Theorem (30), If τ is a stopping time, the
stochastic integral with respect to the stopped martingale Mτ

t = Mt∧τ satisfies

(Y ·Mτ )t =

∫ t

0

YsdM
τ
s =

∫ t

0

Ys1(τ > s)dMs =

(Y ·M)τt = (Y ·M)t∧τ =

∫ t∧τ

0

YsdMs

Proof. For N ∈M2, since 〈M,Nτ 〉t = 〈M,N〉t∧τ

E

(∫ ∞
0

Ysd〈M,Nτ 〉s
)

= E(

(∫ ∞
0

Ys1(τ > s)d〈M,N〉s
)

implies by the uniqueness of the Riesz representation that∫ ∞
0

YsdM
τ
s =

∫ ∞
0

Ys1(τ > s)dMs =

∫ τ

0

YsdMs

Proposition 27. (Extension by localization)
Let (Mt) a continuous local martingale and (Yt(ω)) a progressively measur-

able process such that ∀t ≥ 0

P

(∫ t

0

Y 2
s d〈M〉s <∞

)
= 1

Then there is a local martingale which we denote by (Y ·M)t =
∫ t

0
YsdMs

such that (Y ·M)0 = 0 and

〈(Y ·M), N〉t =

∫ ∞
0

Ysd〈M,N〉s (7.6)

for every continuous local martingale N .
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Proof Let (τ ′n) a localizing sequence forMt. Define the sequence of stopping
times

τ ′′n := inf

{
t ≥ 0 :

∫ t

0

Y 2
s d〈M〉s ≥ n

}
, n ∈ N

and τn = (τ ′n ∧ τ ′′n ). We see that τn(ω) ↑ ∞ P a.s.
With this localization, for each n Yt and the stopped process MτN

t satisfy
the assumptions of Theorem (30) and the Ito integral (Y ·Mτn) ∈M2 exists.

Note that ∀0 ≤ k ≤ n by lemma (34)∫ t

0

Ys1(τk > s)dMτk
s =

∫ t

0

Ys1(τk > s)dMτn
s

as elements ofM2.
The sets Ωk = {ω : τk−1(ω) ≤ t < τk(ω)} form a measurable partition of Ω.
Define∫ t

0

YsdMs =
∞∑
n=0

(∫ t

0

YsdM
τn
t −

∫ t

0

YsdM
τ(n−1)

t

)
= lim
n→∞

∫ t

0

YsdM
τn
s

where for fixed t, P almost surely τn(ω) ↑ ∞, and the telescopic sum contains
only finitely many non-zero terms,

We see that P a.s. the trajectory t 7→
∫ t

0
YsdMs is continuous, and

∫ t
0
YsdMs

is a local martingale with localizing sequence (τn) �

Remark 23. It is not true that a local martingale bounded in L2 is a true
martingale, here a counterexample:

Let Bt = (B
(1)
t , B

(2)
t , B

(3)
t ) a 3-dimensional brownian motion starting from

0 at time 0 , with independent components, so that 〈B(i), B(j)〉t = δij.
The process

Rt = |Bt| =

√√√√ 3∑
i=1

(
B

(i)
s

)2
is called the 3-dimensional Bessel process.

Let Mt = R−1
t for t ≥ 1. We start the process at time 1 since R0 = 0.

(Mt)t≥1 is a local martingale which is bounded in L2(P ) but it is not a true
martingale (exercise).

Lemma 35. (Dominated stochastic convergence) Let (Ms) a continuous local
martingale (Y

(n)
s )n∈N a sequence of locally bounded progressively measurable in-

tegrands such that for all s,

|Y (n)
s (ω)| → 0 P -almost surely

and there is a locally bounded process Xs(ω) such that

|Y (n)
s (ω)| ≤ Xs(ω), ∀s, n. P -almost surely

Then for all t ≥ 0

sup
s≤t

∣∣∣∣ ∫ t

0

Y (n)
s dMs

∣∣∣∣→ 0 in probability as n→∞



7.2. ITO FORMULA FOR SEMIMARTINGALES 131

Let τ(ω) be a stopping time such that both stopped processes Mτ
s and Xτ

s

are bounded. Then by the bounded convergence theorem

EP

(∫ τ

0

(Y (n)
s )2d〈Ms〉

)
→ 0 as n→∞

which implies∫ τ

0

Y (n)
s dMs → 0 in L2(Ω,F , P ) and in probability as n→∞

To complete the argument we for any fixed t choose the localizing stopping time
τ such that P (τ ≤ t) < ε and conclude as

Then by using the Chebychev inequality, Doob’s maximal inequality and Ito
isometry

P

(
sup
s≤t

∣∣∣∣ ∫ t

0

Y (n)
s dMs

∣∣∣∣ > η

)
≤ P (τ ≤ t) + P

(
sup
s≤t

∣∣∣∣ ∫ t∧τ

0

Y (n)
s dMs

∣∣∣∣ > η

)
≤ P (τ ≤ t) +

1

η2
EP

(
sup
s≤t

(∫ t∧τ

0

Y (n)
s dMs

)2)
≤ P (τ ≤ t) +

4

η2
EP

((∫ t∧τ

0

Y (n)
s dMs

)2)
= P (τ ≤ t) +

4

η2
EP

(∫ t∧τ

0

(
Y (n)
s

)2
d〈M〉s

)
≤ 2ε

for n large enough.

Definition 44. We say that Xt = X0 +Mt+At is a continuous semimartingale
when M0 = A0 = 0, Mt is a continuous local martingale and At is continuous,
(Ft)-adapted with locally finite variation.

When Yt is a F-progressive process such that ∀0 ≤ t <∞∫ t

0

Y 2
s d〈M〉s <∞ and

∫ t

0

|Ys||dA|s <∞ P -almost surely

where the integral on the right side is with respect to the total variation of A,
we define ∫ t

0

YsdXs =

∫ t

0

YsdMs +

∫ t

0

YsdAs

We also have [X,X] = [M,M ] = 〈M〉 = 〈X〉

7.2 Ito formula for semimartingales
Proposition 28. Let Xt, Yt continuous semimartingales. Then we have the
integration by parts formula

XtYt = X0Y0 +

∫ t

0

XsdYs +

∫ t

0

YsdXs + [X,Y ]t

Proof: By polarization it is enough to show

X2
t −X2

0 − [X,X]t = 2

∫ t

0

XsdXs
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Since the formula is true when X has finite variation, it is enough to show

M2
t −M2

0 − [M,M ]t = 2

∫ t

0

MsdMs

when M is a local martingale.
By taking telescopic sum for a grid 0 = t0 < t1 < · · · <, by the discrete

integration by parts formula∑
i

(
Mti∧t −Mti−1∧t

)2
= M2

t −M2
0 − 2

∑
i

Mti

(
Mti∧t −Mti−1∧t

)
As ∆ = sup(ti − ti−1) → 0 the left side and right hand sides converges in
probability uniformly on finite intervals respectively to [M,M ]t and

M2
t −M2

0 − 2

∫ t

0

MsdMs �

Theorem 31. (Ito formula) When Xt(ω) ∈ Rd is a continuous semimartingale
and f ∈ C2(Rd,R)

f(Xt) = f(X0) +

d∑
i=1

∫ t

0

∂f

∂xi
(Xs)dX

(i)
s +

1

2

∑
i,j

∫ t

0

∂2f

∂xi∂xj
(Xs)d〈X(i), X(j)〉s

Proof When the result holds for the function f(x1, . . . , xd), by the integra-
tion by parts formula is holds also for the function g(x1, . . . , xd) = xif(x1, . . . , xd).
It follows that Ito formula holds when f(x) is a polynomial. By stopping it is
enough to consider the case when |Xt(ω)| ≤ C < ∞ P a.s. Since continuous
functions are approximated uniformly on compacts by polynomials, we find a
polynomial fn(x) such that

sup
|x|≤C

∣∣(fn − f)(x)
∣∣ ≤ 1

n
, sup
|x|≤C

∣∣∣∣∂(fn − f)

∂xi
(x)

∣∣∣∣
≤ 1

n
, sup
|x|≤C

∣∣∣∣∂2(fn − f)

∂xi∂xj
(x)

∣∣∣∣ ≤ 1

n

This implies P -almost sure convergence

fn(Xt) −→ f(Xt),

∫ t

0

∂2fn
∂xi∂xj

(Xs)d〈X(i), X(j)〉s −→
∫ t

0

∂2f

∂xi∂xj
(Xs)d〈X(i), X(j)〉s

uniformly on finite intervals, and by the dominated stochastic convergence
lemma 35 ∫ t

0

∂f

∂xi
(Xs)dX

(i)
s

P−→
∫ t

0

∂f

∂xi
(Xs)dX

(i)
s

in probability, uniformly on finite intervals.

Theorem 32. (Lévy characterization of Brownian motion) Let Mt(ω) ∈ Rd
a continuous F-adapted process, with M0 = 0. The following conditions are
equivalent



7.2. ITO FORMULA FOR SEMIMARTINGALES 133

1. Mt is a d-dimensional F-Brownian motion: it has P a.s. continuous paths,
∀s ≤ t the increment (Mt−Ms) is P -independent from Fs, and Gaussian
with E(M

(k)
t −M (k)

s ) = 0, E((M
(k)
t −M (k)

s )(M
(h)
t −M (h)

s )) = (t− s)δkh .

2. M (k)
t and (M

(k)
t M

(h)
t − tδhk) are continuous F-local martingales, h, k =

1, . . . , d.

Proof we know already that 1) =⇒ 2), and these local martingales are
square integrable martingales (all moments of the Gaussian distribution are
finite).

Assuming (2), we show that the increments are Gaussian independent from
the past. The idea is to study the conditional distribution by usign the charac-
teristic function.

Apply Ito formula to

f(Mt(ω), t) = exp

(
iθ ·Mt(ω) +

1

2
|θ|2t

)
∈ C

(which means to apply separately Ito formula to real and imaginary parts),
obtaining

f(Mt, t)− f(Ms, s) =

i

d∑
k=1

θk

∫ t

s

f(Mr, r)dM
(k)
r +

i2

2

∑
k,h

θkθhf(Mr, r)d〈M (k),M (h)〉r +
|θ|2

2

∫ t

s

f(Mr, r)dr =

= i

d∑
k=1

θi

∫ t

s

f(Mr, r)dM
(k)
r

where the finite variation parts cancels since 〈M (k),M (h)〉r = rδkh.
Therefore f(Mt, t) is a local martingale. It is a true square integrable mar-

tingale since for all t

|f(Mt, t)| ≤ exp
(1

2
|θ|2t

)
Let s ≤ t and A ∈ Fs. By the martingale property ∀θ ∈ Rd,

E

((
f(Mt, t)− f(Ms, s)

)
1A

)
= 0

=⇒ E

(
exp
(
iθ · (Mt −Ms)

)
1A

)
= E

(
E

(
exp
(
iθ · (Mt −Ms)

)∣∣∣∣Fs)1A) =

exp

(
−1

2
|θ|2(t− s)

)
P (A)

which implies

E

(
exp
(
iθ · (Mt −Ms)

)∣∣∣∣Fs) = exp

(
−1

2
|θ|2s

)
( deterministic )

Since the characteristic function characterizes the distribution, (Mt − Ms) is
independent from Fs and Gaussian, with zero mean and covariance (t− s)Id �
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Proposition 29. (Dambis, Dubins-Schwartz : random time change represen-
tation ) Let (Mt) a continuous martingale in the filtration F = (Ft : t ≥ 0) with
M0 = 0 and 〈M〉∞ =∞. Consider the of F-stopping times

σ(u) = inf
{
t : 〈M〉t ≥ u

}
, u ≥ 0

with σ(u) ≤ σ(v) for u ≤ v, a and the filtration G = (Gu : u ≥ 0) with
Gu = Fσ(u).

Then Bu = Mσ(u) is a Brownian motion in the filtration G.

Proof
Note that the map u → σ(u, ω) is left continuous but not necessarily right

continuous: Mt and 〈M〉t could be constant in some random intervals.
However u 7→ 〈M〉σ(u) is continuous (P a.s.) since

〈M〉σ(u) = u

This implies that u 7→ Mσ(u) is continuous, since t 7→ Mt is continuous (P
a.s.) and

Bu is a G-martingale: Let τn be a localizing sequence for Mt such that
|Mt∧τn | ≤ n.

Then by Doob’s optional sampling theorem, for u ≤ v

EP
(
Mτn∧σ(v)

∣∣Fσ(u)

)
= Mτn∧σ(u)

Note that 〈M〉τn ↑ ∞ since 〈M〉∞ = ∞ and τn ↑ ∞. Also τn is a G stopping
time since τn ≤ σ(u) is Fσ(u) measurable :

{τn ≤ σ(u)} ∩ {σ(u) ≤ t} = {τn ≤ σ(u)} ∩ {τn ≤ t} ∩ {σ(u) ≤ t} ∈ Ft ∀t ≥ 0
(7.7)

where both τn1(τ ≤ t) and σ(u)1(σ(u) ≤ t) are Ft-measurable.
Then by Doob’s optional sampling theorem, for u ≤ v

EP
(
Mτn∧σ(v)

∣∣Fσ(u)

)
= Mτn∧σ(u)

which means that Bu = Mσ(u) is a local martingale with localizing sequence τn
in the filtration G.

Note also that since the predictable and quadratic variation of a continuous
local martingale coincide, by construction

〈B〉u = [B]u = [M ]σ(u) = 〈M〉σ(u) = u

By Lévy’s characterization theorem Bt is a Brownian motion in the filtration G.

Remark Let Mt = exp(Wt − 1
2 t) − 1, where Wt is an F-Brownian motion.

It follows that Mt ≥ −1 ∀t, so we cannot obtain a Brownian motion by random
time change. In fact

〈M〉∞ =

∫ ∞
0

exp(2Bt − t)dt <∞ (7.8)

since by the law of large numbers 2Bt
t −→ 0 as t −→ ∞ P -a.s. By the random

time change we can obtain only a stopped Brownian motion.
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7.3 Ito’s representation theorem

Let Bt = (B
(1)
t , . . . , B

(d)
t ) a d-dimensional Brownian motion.

Theorem 33. Let Y ∈ L2(Ω,FBT , P ), T ∈ (0,+∞] a real valued random vari-
able. Then there is a progressive process Hs(ω) ∈ Rd with

EP

(∫ T

0

H2
sds

)
<∞

Y (ω) = EP (Y ) +

∫ T

0

HsdBs = EP (Y ) +

d∑
i=1

∫ T

0

H(i)
s dB(i)

s

Hs(ω) is unique P (dω)× ds almost surely.

Proof Uniqueness: if H̃s has the same property, then by Ito isometry∫
Ω

(∫ T

0

(
Hs(ω)− H̃s(ω)

)2
ds

)
P (dω) = 0

Existence:

H =

{∫ T

0

HsdBs : H is progressive and in L2(Ω× [0, T ], dP × dt)
}

is a closed subspace of L2(Ω,FBT , P ), which follows since the space of progressive
integrands in L2(Ω× [0, T ], dP × dt) is complete.

We show that it is total, in the sense that if Y ∈ L2(Ω,FBT , P ) such that

EP

(
Y
∫ T

0
HsdBs

)
= 0 for all progressive H ∈ L2(Ω × [0, T ], dP × dt), then

Y (ω) = EP (Y ).

The random variable
(
Y (ω)−EP (Y )

)
coincides with its orthogonal projec-

tion on the closed subspace H, and the results follows.

Without loss of generality assume that EP (Y ) = 0, otherwise take Ỹ (ω) =
(Y (ω) − EP (Y )). For f(x) ∈ L2([0, T ], dt) with values in Rd, consider the
complex valued square integrable martingale

M
(f)
t = exp

(
i

∫ t

0

f(s)dBs +
1

2

∫ t

0

|f(s)|2ds
)
, i =

√
−1

By Ito formula

M
(f)
T − 1 = i

∫ T

0

M (f)
s f(s)dBs

Since the real and imaginary parts of the right hand side are stochastic integrals
in H,

0 = EP

(
Y (M

(f)
T − 1)

)
= EP

(
YM

(f)
T

)
− EP (Y ) = EP

(
YM

(f)
T

)
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When f(s) =
∑n
i=1 θk1[0,tk](s) for θk ∈ Rd, tk ∈ [0, T ], k = 1, . . . n, n ∈ N it

follows that

0 = EP

(
Y exp

(
i

n∑
k=1

θk ·Btk +
1

2

n∑
h,k=1

θhθk (th ∧ tk)

))

= EP

(
Y exp

(
i

n∑
k=1

θk ·Btk
))

exp

(
1

2

n∑
h,k=1

θhθk (th ∧ tk)

)

=⇒ EP

(
Y exp

(
i

n∑
k=1

θk ·Btk
))

= 0

By the Lévy inversion theorem, which holds not on only for probability measures
but also for finite signed measures, the characteristic function characterizes the
measure.

Since the characteristic function is identically zero, ∀Ak ∈ B(Rd), k = 1, . . . , n,

µ(C) := µt1,...tn(A1 × · · · ×An) := EP

(
Y 1
(
Bt1 ∈ A1, . . . , Btn ∈ An

))
= 0 .

where C is the cylinder{
ω : Bt1(ω) ∈ A1, . . . , Btn(ω) ∈ An

}
Since the cylinders generate the σ-algebra FBT , by Dynkin extension theorem

µ(F ) := EP (Y 1F ) = 0 ∀F ∈ FBT

By assumption Y ∈ FBT measurable, by taking F± = {ω : ±Y (ω) > 0}, we see
that Y (ω) = 0 P -a.s. �

Corollary 18. Let (Mt) a martingale in the Brownian filtration bounded in L2,
i.e. EP (M2

∞) <∞. Then

Mt = EP (M∞|FBt )(ω) = M0 +

∫ t

0

HsdBs

where the integrand H ∈ L2(Ω×R+, dP×dt) is progressive and unique P (dω)×dt
almost surely. Note that since FB0 is P -trivial, M0 = EP (M0) = EP (Mt) =
EP (M∞).

7.3.1 Computation of martingale representation
Let F (ω) = f(BT (ω)) for some f(x) ∈ L2(R, γ(x)dx).

E
(
f(BT )

∣∣Ft) = E
(
f(Bt + (BT −Bt))

∣∣Ft)
= E

(
f(x+G

√
T − t)

)∣∣∣∣
x=Bt(ω)

=

∫
R
f(Bt(ω) + y

√
T − t)γ(y)dy =∫

R
f(u)

1√
T − t

γ

(
Bt − u√
T − t

)
dy =
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where G(ω) ∼ N (0, 1) is a standard Gaussian random variable with

P (G ∈ dy) = γ(y)dy = (2π)−1/2 exp
(
−y2/2

)
dy

Next we apply Ito formula and integration by parts to

g(Bt, u; t, T ) =
1√
T − t

γ

(
Bt − u√
T − t

)
=
P (BT ∈ du|Bt)

du

We do the calculation in steps:

γ′(y) = −yγ(y), γ′′(y) = γ(y)(y2 − 1),
d

dt
(T − t)−1/2 =

1

2
(T − t)−3/2

and for a continuous semimartingale Yt

dγ(Yt) = γ(Yt)

(
−YtdYt +

1

2
(Y 2
t − 1)d〈Y 〉t

)
Now for Yt = (Bt−u)√

T−t we have using integration by parts

dYt =
1√
T − t

dBt +
1

2

(Bt − u)

(T − t)3/2
dt, d〈Y 〉t =

1

(T − t)
dt

Therefore

dγ(Yt) = γ(Yt)

(
− (Bt − u)

T − t
dBt −

1

2

(Bt − u)2

(T − t)2
dt+

1

2

(
(Bt − u)2

T − t
− 1

)
1

T − t
dt

)
=

− γ(Yt)

(
Bt − u
T − t

dBt +
1

2(T − t)
dt

)
Integrating by parts:

d

(
1√
T − t

γ(Yt)

)
=

1√
T − t

γ(Yt)

(
−Bt − u
T − t

dBt −
1

2(T − t)
dt+

1

2(T − t)
dt

)
=

1√
T − t

γ

(
Bt − u√
T − t

)(
u−Bt
T − t

)
dBt

Therefore we have simply

g(Bt, u, t, T ) = g(0, u, 0, T ) +

∫ t

0

g(Bs, u, s, T )

(
u−Bs
T − s

)
dBs

for fixed u and T , this is a solution of the linear stochastic differential equation

Xt(u, T ) = X0(u, T ) +

∫ t

0

Xs(u, T )

(
u−Bs
T − s

)
dBs

with X0(u, T ) = 1√
T
γ
(
u√
T

)
.

By Ito formula the stochastic exponential

g(Bt, u, t, T ) = g(0, u, 0, T )E
(∫ ·

0

(
u−Bs
T − s

)
dBs

)
t

= g(0, u, 0, T ) exp

(∫ t

0

(
u−Bs
T − s

)
dBs −

1

2

∫ t

0

(
u−Bs
T − s

)2

ds

)
=

g(0, u, 0, T ) exp
(
Mt(u, T )− 1

2
〈M(u, T )〉t

)
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solves the SDE in the interval [0, T ), where the Ito integral

Mt(u, T ) :=

∫ t

0

u−Bs
T − s

dBs

exists ∀0 ≤ t < T since∫ t

0

E
(
(u−Bs)2

)
(T − s)2

ds =

∫ t

0

u2 + s2

(T − s)2
ds = (T 2 + u2)

(
(T − t)−1 − T−1

)
+ 2T (log(T )− log(T − t)) + t <∞

However ∫ T

0

u2 + s2

(T − s)2
ds = +∞

When for u 6= BT (ω) , 〈Mt(u, T )〉 =∞ and g(BT , u, T, T ) = 0.
For u = BT (ω), there is a problem in defining the Ito integral∫ t

0

(
BT −Bs
T − s

)
dBs

which appears inside the exponential form of g(Bt, BT , t, T ), since the integrand
(BT −Bs)(T − s)−1 is non-adapted.

One way to define such stochastic integrals is to consider the initially enlarged
filtration G = {Gt} with Gt = Ft ∨ σ(BT ).

Bt is not a (P,G)-martingale anymore, it becomes a Brownian bridge pinned
to the final value BT , which has a semimartingale decomposition

Bt = B̃t +

∫ t

0

BT −Bs
T − s

ds

where B̃t is a (P,G) Brownian motion. We remark that the drift process∫ t

0

BT −Bs
T − s

ds

has integrable total variation on the close interval [0, T ], since

E

(∫ T

0

∣∣∣∣BT −BsT − s

∣∣∣∣ds) =

∫ T

0

E

(
|BT −Bs|√

T − s

)
1√
T − s

ds =∫ T

0

E(|G|) 1√
T − s

|ds = 2
√
TE(|G|) <∞

where G ∼ N (0, 1). Therefore Bt is a (P,G)-semimartingale. By taking the
stochastic integral in the G filtration∫ t

0

BT −Bs
T − s

dBs −
1

2

∫ t

0

(
BT −Bs
T − s

)2

ds

=

∫ t

0

BT −Bs
T − s

dB̃s +

∫ t

0

(
BT −Bs
T − s

)2

ds− 1

2

∫ t

0

(
BT −Bs
T − s

)2

ds =∫ t

0

BT −Bs
T − s

dB̃s +
1

2

∫ t

0

(
BT −Bs
T − s

)2

ds



7.3. ITO’S REPRESENTATION THEOREM 139

Now〈∫ ·
0

BT −Bs
T − s

dB̃s

〉
t

=

∫ t

0

(
BT −Bs
T − s

)2

ds =

∫ t

0

(BT −Bs)2

T − s
1

T − s
ds→∞

as t→ T , which implies g(Bt, BT , t, T )→∞ as t→ T .
Heuristically, g(BT , u, T, T ) = δ0(u − BT ) is a Dirac’s delta function in the

sense of distributions with mass at the random point BT (ω). Without using the
language of distributions it is clear that since BT is FT measurable and at time
T the conditional distribution of BT given FT becomes degenerate.

When we integrate a test function f(x)

EP (f(BT )|Ft) =∫
R

f(u)g(Bt, u, t, T )du =

∫
R

f(u)g(0, u, 0, T )du+

∫
R

(∫ t

0

f(u)

(
u−Bs
T − s

)
g(Bs, u, s, T )dBs

)
du

= EP (f(BT )) +

∫ t

0

(∫
R

f(u)

(
u−Bs
T − s

)
g(Bs, u, s, T )du

)
dBs

= EP (f(BT )) +

∫ t

0

EP
(
f(BT )(BT −Bs)

∣∣Fs)
(T − s)

dBs

where we used a stochastic Fubini theorem 34, to be explained in the next
paragraph, in order to invert the order of integration w.r.t. between du and
dBs. Note that

EP (f(BT )(BT −Bs)|Fs)
T − s

=
EP
(
(f(BT )− f(Bs))(BT −Bs)|Fs

)
T − s

=

EP

({
f(BT )− E(f(BT )|Fs)

}
{BT −Bs}

∣∣∣∣Fs)
T − s

=
Cov(f(BT ), BT |Fs)

Var(BT |Fs)

is a conditional covariance/variance ratio.
The interpretation is that

Ê(f(BT )|Fs, BT −Bs) := E(f(BT )|Fs) +
Cov(f(BT ), BT |Fs)

Var(BT |Fs)
(BT −Bs)

is the best estimator of f(BT ) in L2(P ) sense, among the estimators which
depend linearly on (BT −Bs) and have Fs-measurable coefficients.

We check the sufficient condition (7.9) in the stochastic Fubini Theorem 34:∫ t

0

EP
(
f(BT )(BT −Bs)

∣∣Fs)
(T − s)

dBs

We show that the Ito integral∫ T

0

EP
(
f(BT )(BT −Bs)

∣∣Fs)
(T − s)

dBs = f(BT )− E(f(BT ))

exists in L2(P ) when f(BT ) ∈ L2(P ), by showing directly that∫ T

0

E

({
EP
(
f(BT )(BT −Bs)

∣∣Fs)
T − s

}2)
ds <∞
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Let’s consider first the case when f(x) is polynomial. When f(x) = xn,

E

({
EP
(
BnT (BT −Bs)

∣∣Fs)
T − s

}2)
= E

(
EP

({
x+G

√
T − s

}n
G

√
T − s

)∣∣∣∣2
x=Bs

)
=

1

T − s
E

({
G
√
s+G′

√
T − sG′

}n{
G
√
s+G′′

√
T − s

}n
G′G′′

)
where G,G′, G′′ are independent standard gaussian,

=
1

T − s
E

({ n∑
k=1

(
n

k

)
sk/2(T − s)(n−k)/2Gk(G′)n−k

}{ n∑
h=1

(
n

h

)
sh/2(T − s)(n−h)/2Gh(G′′)n−h

}
G′G′′

)
=

1

T − s

n∑
k=1

n∑
h=1

(
n

k

)(
n

h

)
s(k+h)/2(T − s)n−(k+h)/2E(Gk+h)E((G′)n−k+1)E((G′′)n−h+1)

where we Newton binomial formula and the independence. Now the moments
of a standard gaussian are given by

E(G2n+1) = 0, E(G2n) = (2n− 1)!! :=

n∏
k=1

(2k − 1) = 1 · 3 · 5 · . . . (2n− 3) · (2n− 1) n ∈ N

we obtain

=

1

T − s
∑

h,k∈In

s(k+h)/2(T − s)n−(k+h)/2(k + h)!!(n− k + 1)!!(n− h+ 1)!!

where the sum is over pairs 1 ≤ h, k ≤ k such that (k + h) is even and n − k
n− h are both odd.

When we integrate we obtain

∑
h,k∈In

(
n

k

)(
n

h

)
(k + h)!!(n− k + 1)!!(n− h+ 1)!!

∫ T

0

s(k+h)/2(T − s)n−(k+h)/2ds =

∑
h,k∈In

(
n

k

)(
n

h

)
(k + h)!!(n− k + 1)!!(n− h+ 1)!!Tn+1

∫ 1

0

u(k+h)/2(1− u)n−(k+h)/2du =

∑
h,k∈In

(
n

k

)(
n

h

)
(k + h)!!(n− k + 1)!!(n− h+ 1)!!Tn+1 Γ((k + h)/2)Γ(n− (k + h)/2)

Γ(n)

= TnE(G2n)− E(Gn)2

Note also that we proved in between that g(x, u, s, T ) satisfies the heat equa-
tion

∂

∂s
g(x, u, s, T ) +

1

2

∂2

∂x2
g(x, u, s, T ) = 0

with boundary condition g(x, u, T, T ) = δ0(x − u) the Dirac delta function in
the sense of Schwartz distributions.
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Up to now we just assumed that f ∈ L2(R, dγ). When f(x) = f(0) +∫ x
0
f ′(u)du is absolutely continuous with respect to Lebesgue measure we can

use the Gaussian integration by parts formula

E(f(Bt)Bt) = tEP (f ′(Bt))

which holds when Bt ∼ N (0, t) Gaussian.
In this case we write Ito’s representation also as

EP
(
f(BT )

∣∣Ft) = EP
(
f(BT )

)
+

∫ t

0

EP
(
f ′(BT )

∣∣Fs)dBs
Example Let F (ω) = f

(∫ T
0
h(s)dBs

)
, where h(s) ∈ L2([0, T ], ds) is de-

terministic and EP
(
f(‖ h ‖2 G)2

)
<∞, for G(ω) standard Gaussian r.v.

Then we have the representation

F (ω) = EP
(
f(‖ h ‖2 G)

)
+

∫ T

0

EP

(
f

(∫ T
0
h(s)dBs

)∫ T
t
h(s)dBs

∣∣∣∣Fs)∫ T
t
h(s)2ds

h(t)dBt

Hint: define the deterministic time change

τ(u) = inf

{
t :

∫ t

0

h(s)2ds ≥ u
}

Then by Lévy characterization theorem B̃u :=
∫ τ(u)

0
h(s)dBs is a Brownian

motion and F B̃u = FBτ(u).

Letting T̃ =
∫ T

0
h(s)2ds.

In Malliavin calculus these ideas are extended to more general setting where
there is not need to use the Markov property.

Theorem 34. Stochastic Fubini theorem, version 1.
Let (Θ,A, α(dθ)) be a measurable space, where α(dθ) is a σ-finite measure,

and H(s, ω, θ) a jointly measurable process, such that the map θ 7→ H(s, ω, θ) is
A-measurable for each (s, ω) and the map (s, ω) 7→ H(s, ω, θ) is (Ft)-progressive
for each θ ∈ Θ.

Assuming that for all t, P -almost surely∫
[0,t]×Θ

H(s, ω, θ)2(α⊗ 〈M〉)(dθ × ds) <∞ (7.9)

which by the classical Fubini theorem does not depend on the order of integration.
Then∫ t

0

(∫
Θ

H(s, ω, θ)α(dθ)

)
dMs =

∫
Θ

(∫ t

0

H(s, ω, θ)dMs

)
α(dθ), P a.s

(7.10)

is a local martingale which does not depend on the order of integration.
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Proof Assume first that α(dθ) is a probability measure, and consider the
product space Ω̃ = Ω×Θ equipped with the product σ-algebra and the product
probability P̃ (dω̃) = P (dω)× α(dθ), with ω̃ = (ω, θ). In this probability space
we use the filtration F̃ = (F̃t) with F̃t := Ft ⊗A.

We define on this probability space the local martingale M̃t(ω̃) = Mt(ω),
and the integrand H̃(s, ω̃) := H(s, ω, θ).

Note that

P̃

(∫ t

0

H̃(s)2d〈M̃〉s <∞
)
≥ P

(∫
Θ

∫ t

0

H(s, θ)2d〈M̃〉s <∞
)

= 1

Therefore we are in the settings of Proposition 27 and the Ito integral∫ t

0

H̃(s)dM̃s

exists on (Ω̃, F̃ , P̃ ) and it is a P̃ -local martingale. This means that there is a
localizing sequence of F̃-stopping times τ̃n(ω̃) ↑ ∞ P̃ almost surely such that
the stopped process (H̃ · M̃)t∧τ̃n is a (P̃ , F̃)-square integrable martingale.

Then we define on (Ω,F , P ) the random processes∫ t

0

H(s, θ)dMs :=

∫ t

0

H̃(s)dM̃s for (ω, θ) = ω̃

Note that τn(ω, θ) := τ̃n(ω̃), defines a sequence of F-stopping times on Ω which
are measurable with respect to the parameter θ. Unless Θ was a finite set, this
does not guarantee that there exists a localizing sequence σn(ω) of F stopping
times which is localizing simultaneously the stochastic processes

∫ t
0
H(s, θ)dMs

for all θ ∈ Θ, and it is not clear whether∫
Θ

(∫ t

0

H(s, θ)dMs

)
α(dθ)

is a (P,F)-local martingale.

Let’s take a step back and work under the stronger assumption

EP

(∫
[0,t]×Θ

H(s, ω, θ)2(α⊗ 〈M〉)(dθ × dt)
)

= EP̃

(∫ t

0

H̃(s)2d〈M̃〉s
)
<∞

(7.11)

Then by Theorem 30 ∫ t

0

H̃(s)dM̃s, t ≥ 0

exists and it is a F̃-martingale in L2(Ω̃, F̃ , P̃ ).
By the definition of joint measurability and assumption (7.11), there is a

sequence of simple integrands

H̃(n)(s, ω̃) = H(n)(s, ω, θ) =

kn∑
i=1

h
(n)
i (s, ω)1(θ ∈ A(n)

i )
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where for A(n)
k ∈ A, and h(n)

i (s, ω) are F-progressive processes, such that

EP̃

(∫ t

0

{
H̃(n)(s)− H̃(s)

}2
d〈M〉s

)
= EP

(∫
Θ

∫ t

0

{
H(n)(s, ω, θ)−Hs(s, ω, θ)

}2
d〈M〉sα(dθ)

)
−→ 0

For example, when A is countably generated, one can find an increasing
sequence of finite measurable partitions of Θ generating a filtrations An ⊆
An+1 ↑ A, and take

H(n)(s, ω, θ) =

kn∑
i=1

1(θ ∈ A(n)
i ) α(A

(n)
i )−1

∫
Θ

1(θ ∈ A(n)
i )H(s, ω, θ)α(dθ)

which is the conditional expectation ofH(s, ω, θ) under the measure 〈M〉(ds, ω)P (dω)α(dθ)
with respect to the σ-algebra FT ⊗ B(0, T )⊗An.

Note that by the linearity of Ito integral, the stochastic Fubini’s formula
(7.14) holds for the simple integrands H(n)(s, θ). By Jensen inequality∫ T

0

(∫
Θ

(
H(n)(s, ω, θ)−H(s, ω, θ)

)
α(dθ)

)2

d〈M〉s

≤
∫

[0,T ]×Θ

(
H(n)(s, ω, θ)−H(s, ω, θ)

)2
α(dθ)⊗ d〈M〉s

L2(P )−→ 0

This implies∫
Θ

(∫ T

0

H(n)(s, θ)dBs

)
α(dθ) =∫ T

0

(∫
Θ

H(n)(s, θ)α(dθ)

)
dBs

L2(P )−→
∫ T

0

(∫
Θ

H(s, θ)α(dθ)

)
dBs

Since∫ t

0

H̃(n)(s)dM̃s =

∫ t

0

H(n)(s, θ)dMs −→
∫ t

0

H̃(s)dM̃s =

∫ t

0

H(s, θ)dMs

with convergence in L2(Ω×Θ,F ⊗A, dP ⊗ dα), by Jensen inequalilty

EP

({∫
Θ

(∫ t

0

H(n)(s, θ)dMs

)
α(dθ)−

∫
Θ

(∫ t

0

H(s, θ)dMs

)
α(dθ)

}2)
≤

EP

(∫
Θ

{∫ t

0

H(n)(s, θ)dMs −
∫ t

0

H(s, θ)dMs

}2

α(dθ)

}2)
−→ 0

which means∫
Θ

(∫ t

0

H(n)(s, θ)dM̃s

)
α(dθ) −→

∫
Θ

(∫ t

0

H(s, θ)dMs

)
α(dθ)

in L2(Ω,F , P ). On the other hand∫
Θ

(∫ t

0

H(n)(s, θ)dM̃s

)
α(dθ) =

∫ t

0

(∫
Θ

H(n)(s, θ)α(dθ)

)
dM̃s →

∫ t

0

(∫
Θ

H(s, θ)α(dθ)

)
dM̃s
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in L2(Ω,F , P ), which proofs the stochastic Fubini formula (7.14) under assump-
tion (7.11).

Let’s now work under the weaker assumption (7.9). Consider the stopping
times

τn(ω) := inf

{
t :

∫
Θ

∫ t

0

H(s, θ)2d〈M〉sα(dθ) < n

}
with τn(ω) ↑ ∞ P a.s.

For every n the stopped process (Ms∧τn : t ≥ 0) and the integrand H(s, θ)
satisfy (7.11). and the stochastic Fubini formula∫ t∧τn

0

(∫
Θ

H(s, ω, θ)α(dθ)

)
dMs =

∫
Θ

(∫ t∧τn

0

H(s, ω, θ)dMs

)
α(dθ)

holds P almost surely, and by using the telescopic sums representation starting
from τ0 = 0,

1 =

∞∑
n=1

1
(
τn−1(ω) ≤ t < τn(ω)

)
, (7.12)

it follows that∫ t

0

(∫
Θ

H(s, ω, θ)α(dθ)

)
dMs :=

∞∑
n=0

∫ t∧τn

t∧τn−1

(∫
Θ

H(s, ω, θ)α(dθ)

)
dMs (7.13)

and∫
Θ

(∫ t∧τn

0

H(s, ω, θ)dMs

)
α(dθ) :=

∞∑
n=0

∫
Θ

(∫ t∧τn

t∧τn−1

H(s, ω, θ)dMs

)
α(dθ)

coincide P almost surely, and (7.13) gives a continuous (P,F)-local martingale
with localizing sequence τn �

When α(dθ) is a σ-finite measure on (Θ,A), by using a countable measurable
partition Θ =

⋃
k∈N Θk with α(Θk) < ∞ together with convergence in L2(P )

see that the stochastic Fubini theorem holds under (7.11), and for the general
version the localization argument applies without changes �.

Remark 24. This theorem not much discussed in the literature, usually under
the assumptions (7.11). See Protter’s book Stochastic integration and Differen-
tial equations , p 121-122. The following version which is given under weaker
assumption is from Jacod’s book (Calcul stochastique et problemes the martin-
gales).

Theorem 35. Stochastic Fubini theorem, version 2.
Let (Θ,A, α(dθ)) be a measurable space, where α(dθ) is a σ-finite measure,

and H(s, ω, θ) a jointly measurable process, such that the map θ 7→ H(s, ω, θ) is
A-measurable for each (s, ω) and the map (s, ω) 7→ H(s, ω, θ) is (Ft)-progressive
for each θ ∈ Θ.
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Assuming that for all t, P -almost surely∫
[0,t]×Θ

(∫
Θ

H(s, ω, θ)α(θ)

)2

d〈M〉s ⊗ α(dθ) <∞

Then∫ t

0

(∫
Θ

H(s, ω, θ)α(dθ)

)
dMs =

∫
Θ

(∫ t

0

H(s, ω, θ)dMs

)
α(dθ), P a.s

is a local martingale which does not depend on the order of integration.

Proof As before, it is enough to consider the case when α(dθ) is a probability
measure.

By linearity we can assume that H(θ, s, ω) ≥ 0, and do the stochastic inte-
gration separately for H(ϑ, s, ω)±.

Let τn a localizing sequence for M and let

H(n)(θ, s, ω) = n ∧H(n)(θ, s, ω)1(τn > s)

The sequence 0 ≤ H(n)(θ, s, ω) ↑ H(θ, s, ω), and for each n, H(n)(θ, s, ω) satisfies
the assumptions of the 1st version of Fubini theorem, ??, so that∫

Θ

(∫ t

0

H(n)(θ, s)dMs

)
α(dθ) =

∫ t

0

(∫
Θ

H(n)(θ, s)α(dθ)

)
dMs

Now
Let’s assume first that

E

(∫ t

0

(∫
Θ

H(s, ω, θ)α(dθ)

)2

d〈M〉s
)
<∞ (7.14)

and ∀θ ∈ Θ

E

(∫ t

0

H(s, ω, θ)2d〈M〉s
)
<∞

For (Nt) ∈ M2, which is the space of continuous martingales bounded in
L2(P ), define the linear functional

φα(N) := E

(∫ t

0

{∫
Θ

H(s, θ)α(dθ)

}
d〈M,N〉s

)
= EP

(∫
Θ

(∫ t

0

H(s, θ)d〈M,N〉s
)
α(dθ)

)
where the equality follows by polarization and the classical Fubini theorem. By
the assumption (?? ), it follows that ϕα(N) is a linear continuous functional
on the Hilbert space M2, and by Riesz representation theorem the stochastic
integral

(
Hα ·M

)
t

=

∫ t

0

{∫
Θ

H(s, θ)α(dθ)

}
dMs

exists, satisfying

φα(N) = EP

((
Hα ·M

)
∞N∞

)
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On the other hand, ∫
0t
H(θ, s)dMs

as a martingale with on the product space Ω̃ = Ω×Θ under the product measure
P̃ (dω × dθ) = P (dω)⊗ α(dθ) with the filtration F̃t = (F̃t) with F̃t = Ft ⊗A.

We can identify Ñt(ω̃) = Nt(ω), and identify the spaceM2 with M̃2, which
is the space of continous martingales bounded in L2(P̃ ) defined on the product
space Ω̃.

We have

ϕα(N) =

∫
Ω̃

∫ t

0

H̃(s)d〈M̃, Ñ〉s

where we mean H̃(s) = H̃(ω̃, s) = H(θ, ω, s) and we identify the martingales
M̃t(ω̃) = Mt(ω).

Therefore there exist a martingale
(
H̃ · M̃

)
t
inM2 such that

EP⊗α

((
H̃ · M̃

)
∞Ñ∞

)
= ϕα(N)

We interpret
(
H̃ · M̃

)
t
inM2 as a martingale which is A⊗Ft measurable with

respect to (θ, ω).
Define

ϕθ(N) := E

(∫ ∞
0

H(s, θ)d〈M, 〉s
)

by the classical Fubini theorem

φα(N) := E

(∫ t

0

{∫
Θ

H(s, θ)α(dθ)

}
d〈M,N〉s

)
=

∫
Θ

E

(∫ t

0

H(s, θ)d〈M,N〉s
)
α(dθ) =

∫
Θ

φθ(N)α(dθ)

where the classical Fubini theorem applies since

E

(∫ t

0

∣∣∣∣ ∫
Θ

H(s, θ)α(dθ)

∣∣∣∣ |d〈M,N〉s|
))
≤ E

(∫ t

0

{∫
Θ

|H(s, θ)|α(dθ)

}2

d〈M〉s
)1/2

E
(
〈N〉t

)1/2
<∞

By the defining property of the Ito integral.

Proposition 30. Gaussian integration by parts formula. If G(ω) ∼ N (0, 1) is
centered Gaussian and f(x) = f(0) +

∫ t
0
f ′(y)dy is absolutely continuous such

that both (f ′(G)− f(G)G) and f(G) are in L1(P ). Then

EP
(
f(G)G

)
= EP

(
f ′(G)

)
Proof We recall that the standard Gaussian density γ(x), satisfies γ′(x) =

−xγ(x) Integrating by parts, for all a ≤ b ∈ R

f(b)γ(b)− f(a)γ(a) =

∫ b

a

(f ′(y)− f(y)y)γ(y)dy
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If f(x) is compactly supported, the left-hand side equals zero for |a| and |b| large.
As a→ −∞ and b→ +∞ the left hand side converges to EP

(
f ′(G)− f(G)G

)
.

More in general we approximate f(x) with a sequence of compactly sup-
ported functions. Let kn(x) = (1−|x|/n)+. We have 0 ≤ kn(x) ≤ 1, d

dxkn(x) =
−n−1sign(x)bf1(|x| ≤ n), and lim

n→∞
kn(x) = x, ∀x ∈ R.

Let fn(x) = f(x)kn(x).

0 = E(f ′n(G)− fn(G)G) = E((f ′(G)− F (G)G)kn(G)) + E(f(G)k′n(G))

where we used the chain rule of differentiation. Since |(f ′(G)−F (G)G)kn(G)| ≤
(f ′(G)− F (G)G) ∈ L1(P ), by Lebesgue’ dominated convergence theorem

E((f ′(G)− F (G)G)kn(G))→ E(f ′(G)− F (G)G)

and E(|f(G)k′n(G)|) ≤ n−1E(|f(G)|)→ 0
Example the maximum process
Let Bt be a standard Brownian motion starting from zero, FBt = σ(Bs : 0 ≤

s ≤ t). Define

B∗t = sup
0≤s≤t

{Bs},

Ha = inf
{
t > 0 : Bt ≥ a

}
respectively the running maximum and the first hitting time of level a > 0

Proposition 31. For a > 0, by the reflection principle

P (Ha ≤ `) = P (B∗` ≥ a) = 2P (B` > a) = 2
(
1− Φ(a/

√
`)
)

where Φ(x) = P (B1 ≤ x).
By differentiating with respect to ` we obtain the probability density of the

hitting time Ha

P (Ha ∈ d`)
d`

= pHa(`) =

(2π)−1/2 exp

(
−a

2

2`

)
a `−3/2 1(` > 0), a > 0

Moreover

P (B≥` a,B` ∈ dx) =
1√
`
γ

(
a+ |x− a|√

`

)
dx (7.15)

Proof We define a Brownian motion reflected after Ha

B̃t =

{
Bt , t ≤ Ha

2a−Bt t > Ha

with representation

B̃t =

∫ t

0

(
1(s ≤ Ha)− 1(s > Ha)

)
dBs
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where the integrand is bounded anb adapted since Ha is a (FBt )-stopping time
Since

〈B̃〉t =

∫ t

0

(
1(s ≤ Ha)− 1(s > Ha)

)2

ds = t

by Lévy characterization it follows that B̃t is a Brownian motion.
By drawing a figure we see that

{B∗` ≥ a} = {B` ≥ a} ∪ {B̃` ≥ a}

where {B` ≥ a} ∩ {B̃` ≥ a} = ∅

P
(
B∗` ≥ a

)
= P

(
{B` ≥ a} ∪ {B̃` ≥ a}

)
= P

(
B` ≥ a

)
+ P

(
B̃` ≥ a

)
=

2P (B` ≥ a
)

= 2
(
1− Φ(a/

√
`)
)

= 2Φ(−a/
√
`)

where Φ(x) is the cumulative distribution function of a standard Gaussian r.v.

By the same argument

P (B∗` ≥ a,B` ∈ dx) = P (B∗` ≥ a, B̃` ∈ dx) = P (B∗` ≥ a, 2a−B` ∈ dx)

now there are two case either x ≥ a or x < a. When x ≥ a

P (B∗` ≥ a,B` ∈ dx)

dx
(x) =

P (B` ∈ dx)

dx
(x)

otherwise 2a− x > a. and

P (B∗` ≥ a,B` ∈ dx)

dx
(x) =

P (B` ∈ dx)

dx
(2a− x)

In both cases this gives formula (7.15).

7.4 Barrier option in Black and Scholes model
Consider the Black and Scholes model for a risky asset and a riskless bond.

St = S0 exp

(∫ t

0

σsdBs +

∫ t

0

(
µt −

σ2
t

2

)
dt

)
,

Ut = U0 exp

(∫ t

0

ρsds

)
S0 > 0, U0 > 0

dSt = St(µtdt+ σtdBt), dUt = Utρtdt

here µt, σt, Ut are adapted to the Brownian filtration FBt .
Denote the discounted process

S̃t =
St
Ut

= S̃0 exp

(∫ t

0

σsdBs +

∫ t

0

(
µt − ρt −

σ2
t

2

)
dt

)
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satisfying

dS̃t = S̃t
(
σtdBt + (µt − ρt)dt

)
Denote

B̃t := Bt +

∫ t

0

(µs − ρs)
σs

ds =

∫ t

0

(S̃sσs)
−1dS̃u

We want to represent the discounted value of the option F̃ (ω) := F (ω)(ST (ω))−1

as a stochastic integral with respect to the discounted stock S̃t, which is also a
stochastic integral with respect B̃t. However B̃t is not Brownian motion under
the measure P since it has a drift.

In order to use the Ito representation theorem we must first change the
measure in order to kill the drift of B̃t, which becomes a Brownian motion
under the new measure Q.

EP (f(BT )1(B∗T > a)) =

∫
R
f(x)

1√
T
γ

(
a+ |x− a|√

T

)
dx

EP (f(BT )1(B∗T > a)|Ft) = EP (f(BT )1(B∗T > a)|Bt, B∗t )

= 1(B∗t > a)EP (f(x+
√
T − tG))

∣∣∣∣
x=Bt

+ 1(B∗t ≤ a)EP
(
f(x+WT−t)1(W ∗T−t > (a− x))

)∣∣∣∣
x=Bt

1(B∗t > a)

∫
R
f(x)

1√
T − t

γ

(
x−Bt√
T − t

)
dx+ 1(B∗t ≤ a)

∫
R
f(x)

1√
T − t

γ

(
a−Bt + |x− a|√

T − t

)
dx

By using Ito formula and stochastic Fubini theorem

EP (f(BT )1(B∗T > a)|Ft) =

EP (f(BT )1(B∗T > a))

+

∫ t

0

1(B∗s > a)

(∫
R
f(x)

1√
T − s

γ

(
x−Bs√
T − s

)
x−Bs
T − s

dx

)
dBs

+

∫ t

0

1(B∗s ≤ a)

(∫
R
f(x)

1√
T − s

γ

(
a−Bs + |x− a|√

T − s
)
a−Bs + |x− a|

T − s
dx

)
dBs

= EP (f(BT )1(B∗T > a)) +

∫ t

0

1(B∗s > a)
EP
(
f(BT )(BT −Bs)

∣∣Fs)
(T − s)

dBs

+

∫ t

0

1(B∗s ≤ a)
EP
(
f(BT )(a−Bs + |BT − a|)|Fs

)
T − s

dBs

We also write the joint law of B∗t , Bt:

P

(
B∗t > y,Bt ≤ x

)
= P

(
Hy ≤ t, (Bt −BHy ) ≤ (x− y)

)
=

∫ t

0

Φ

(
x− y√
t− `

)
P (Hy ∈ d`)

= (2π)−1/2

∫ t

0

Φ

(
x− y√
t− `

)
exp

(
−y

2

2`

)
y `−3/2 d` =∫ t

0

Φ

(
x− y√
t− `

)
1√
`
γ

(
y√
`

)
y

`
d`
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and the joint density is given by

P (B∗t ∈ dy,Bt ∈ dx)

dxdy
= − ∂2

∂x∂y
P

(
B∗t > y,Bt ≤ x

)
=

∫ t

0

1√
t− `

γ

(
x− y√
t− `

)
1√
`
γ

(
y√
`

)
1

`

(
y2

`
− 1− y(x− y)

(t− `)

)
d`

By differentiating w.r.t. a we obtain the density of B∗` :

P (B∗` ∈ da)

da
= pB∗` (a) =

2√
2π`

exp

(
−a

2

2`

)
1(a ≥ 0) =

2√
`
γ

(
a√
`

)
1(a ≥ 0)

We now compute the regular conditional density given the σ-algebra FBt ,
t ≥ 0.

For any bounded measurable function g

EP (g(Ha)|FBt ) = g(Ha)1(Ha ≤ t) + EP (g(Ha)|Bt, Ha > t)1(Ha > t) =

g(Ha)1(Ha ≤ t) + EP (g(t+Ha−x))

∣∣∣∣
x=Bt

1(Ha > t)

where have derived the Markov property of Brownian motion, and there is a
regular version of the conditional probability which up to the stopping time Ha

has density

M(`, t) :=
P (Ha ∈ d`|Bt, Ha > t)

d`
= (2π)−1/2 exp

(
− (Bt − a)2

2(`− t)

)
(a−Bt)
(`− t)3/2

1(` > t)

Note that since the process

EP (g(Ha)|Ft∧Ha) =

∫ ∞
0

M(`, t ∧Ha)g(`)d`

is a martingale for every bounded measurable g, M(`, t ∧ Ha) is a martingale
for all values ` > 0. We use Ito formula to find the martingale representation
with respect to the Brownian motion:

dM(`, t) = (2π)−1/2M(`, t)

{
(Bt − a)−1dBt +

3

2
(`− t)−1dt− (Bt − a)

(`− t)
dBt −

1

2(`− t)
dt

− (Bt − a)2

2(`− t)2
dt+

1

2

(Bt − a)2

(`− t)2
dt− (Bt − a)

(`− t)(Bt − a)
dt

}
=

M(`, t)

{
1

(Bt − a)
+

(a−Bt)
`− t

}
dBt = M(`, t)F (`− t, a−Bt)dBt

We have the stochastic exponential representation

M(`, t ∧Ha) = M(`, 0)E
(∫ ·

0

{
1

(Bs − a)
+

(a−Bs)
`− s

}
dBs

)
t∧Ha

=

M(`, 0) exp

(∫ t∧Ha

0

{
1

(Bs − a)
+

(a−Bs)
`− s

dBs −
1

2

∫ t∧Ha

0

{
1

(Bs − a)
+

(a−Bs)
`− s

}2)
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Note that the process (B∗t , Bt) is Markovian:

EP (f(B∗` )|Fs) = 1(` ≤ s)f(B∗` ) + 1(` > s)EP
(
f(max{x, y +W ∗`−s

√
`− s})

)∣∣∣∣
x=B∗s ,y=Bs

= 1(` ≤ s)f(B∗` ) + 1(` > s)

∫ ∞
0

f(max{B∗s (ω), Bs(ω) + v)
2√
`− s

γ

(
v√
`− s

)
dv

= 1(` ≤ s)f(B∗` ) + 1(` > s)

{
f(B∗s )

(
2Φ

(
B∗s −Bs√
`− s

)
− 1
)

+

∫ ∞
B∗s

f(v)
2√
`− s

γ

(
v −Bs√
`− s

)
dv

}
Assume absolute continuity f(x) = f(0) +

∫ x
0
f ′(y)dy.

For s < ` we use integration by parts obtaining

EP
(
f ′(B∗T )1(B∗T > B∗s )

∣∣Fs) =

∫
B∗s

f ′(v)
2√
`− s

γ

(
v −Bs√
`− s

)
dv =

− f(B∗s )
2√
`− s

γ

(
B∗s −Bs√
`− s

)
+

∫ ∞
B∗s

f(x)
2√
`− s

γ

(
v −Bs√
`− s

)(
v −Bs
`− s

)
dv =

− f(B∗s )
2√
`− s

γ

(
B∗s −Bs√
`− s

)
+ EP

(
f(B∗T )

(B∗T −Bs)
`− s

1(B∗T > B∗s )

∣∣∣∣Fs)
Therefore Ito representation gives

EP
(
f(B∗` )

∣∣Fs) =

EP (f(B∗T )) +

∫ `

0

{
EP

(
f(B∗` )

(B∗` −Bs)
`− s

1(B∗` > B∗s )

∣∣∣∣Fs)
− f(B∗s )

P (W ∗`−s ∈ dv|W0 = Bs)

dv
(B∗s −Bs)

}
dBs

= EP (f(B∗` )) +

∫ T

0

EP
(
f ′(B∗` )1(B∗` > B∗s )

∣∣Fs)dBs
where (Wt) is an independent Brownian motion. The last expression holds only
when f(x) is absolutely continuous.

Suppose now we want to compute the representation of f(BT (ω), B∗T (ω)) ∈
L2(P ) We need to compute the joint conditional laws P (BT ∈ dx,B∗T ∈ dy|Ft) =
P (BT ∈ dx,B∗T ∈ dy|Bt, B∗t ).

7.5 Stochastic differential equation
Given a Brownian motion (Bt) we look for a stochatic process (Xt : t ∈ [s, T ])
such that

Xt = η +

∫ t

s

b(u,Xu)du+

∫ t

s

σ(u,Xu)dBu 0 ≤ s ≤ t (7.16)

with η(ω) FBs -measurable. If such process exists and it is adapted to the (FBt )
we say that it is a strong solution of the stochastic differential equation (7.17)
In differential notation we write

dXt = b(t,Xt)dt+ σ(t,Xt)dBt, t ≥ s (7.17)

with initial condition Xs(ω) = η(ω).
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7.5.1 Generator of a diffusion
Lemma 36. Assume that the SDE 7.17 has a strong solution and that ϕ(t, x) ∈
C1,2(R+ ×Rm;R). Then

dϕ(t,Xt) =
∂ϕ(t,Xt)

∂x
dXt +

1

2

∂2ϕ(t,Xt)

∂x2
d〈X〉t +

∂ϕ(t,Xt)

∂t
dt =

∂ϕ(t,Xt)

∂x
σ(t,Xt)dBt +

{
∂ϕ(t,Xt)

∂x
b(t,Xt) +

1

2

∂2ϕ(t,Xt)

∂x2
σ(t,Xt)

2 +
∂ϕ(t,Xt)

∂t

}
dt

Define the space-time generator operator

(Ltφ)(t, x) = b(t, x)
∂ϕ(t, x)

∂x
+

1

2
σ(t, x)2 ∂

2ϕ(t, x)

∂x2
+
∂ϕ(t, x)

∂t

It follows that

Mt(ϕ) := ϕ(t,Xt)− ϕ(0, X0)−
∫ t

0

(Lsϕ)(s,Xs)ds =

∫ t

0

∂ϕ(s,Xs)

∂x
σ(s,Xs)dBs

is a continuous local martingale with M0(ϕ) = 0, such that for any local mar-
tingale (Nt)

〈M(ϕ), N〉t =

∫ t

0

∂ϕ(s,Xs)

∂x
σ(s,Xs)d〈B,N〉s

In particular for another ψ(t, x) ∈ C2,1

〈M(ϕ),M(ψ)〉t =

∫ t

0

∂ϕ(s,Xs)

∂x

∂ψ(s,Xs)

∂x
σ(s,Xs)

2ds

Exercise 22. Using the definition show that

〈M(ϕ),M(ψ)〉t =

∫ t

0

(Ls(ϕψ)− ϕLsψ − ψLsϕ)(s,Xs)ds

Hint: By polarization it is enough to consider the case ψ(t, x) = ϕ(t, x) For
simplicity you can consider the time-homogeneous case with σ(t, x) = σ(x)
b(t, x) = b(x) and ϕ(t, x) = ϕ(x).

Note that by construction for H(s, ω) progressively measurable the Ito inte-
gral Xt = (H · B)t =

∫ t
0
HsdBs is the continuous local martingale (unique up

to indistinguishability) such that

〈(H ·B),M〉t =

∫ t

0

Hsd〈B,M〉s

for any local martingale (Mt). This implies that for another progressively mea-
surable K(s, ω)

Yt := (K ·X)t =

∫ t

0

KsdXs =

∫ t

0

KsHsdBs = ((KH) ·B)t

since for any local martingale (Mt)

〈Y,M〉t =

∫ t

0

Ksd〈X,M〉s =∫ t

0

KsHsd〈B,M〉 =
〈
((KH) ·B),M

〉
t

since this associative property holds for Lebesgue Stieltjes integrals.
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7.5.2 Stratonovich integral
Let Mt be a continuous local martingale and Xt a semimartingale. We define
the Stratonovich integral as∫ t

0

Xs ◦ dMs =

∫ t

0

XsdMs +
1

2
[X,M ]t

The idea is that the Ito integral corresponds with the forward integral which
is the limit in probability of the approximating Riemann sums∫ t

0

Xsd
−Ms = (P ) lim

∆(Π)→0

∑
ti∈Π

Xti(Mti+1∧t −Mti∧t)

This corresponds adapted piecewise constant approximating integrands

X−s = Xti when s ∈ (ti, ti+1]

The choice

X+
s = Xti+1

when s ∈ (ti, ti+1]

does not give necessarily an adapted integrand. Nevertheless it is clear that
since

Xti+1
(Mti+1∧t −Mti∧t) = Xti(Mti+1∧t −Mti∧t) + (Xti+1

−Xti)(Mti+1∧t −Mti∧t) =

necessarily the backward integral∫ t

0

Xsd
+Ms = (P ) lim

∆(Π)→0

∑
ti∈Π

Xti+1(Mti+1∧t −Mti∧t) =

∫ t

0

Xsd
−Ms + [X,M ]t

is also well defined.
The Stratonovich integral is approximated by picking the middle point

X◦s = X(ti+ti+1)/2 when s ∈ (ti, ti+1]

We have∑
ti∈Π

X(ti+ti+1)/2(Mti+1∧t −Mti∧t) =

∑
ti∈Π

Xti(Mti+1∧t −Mti∧t) +
∑
ti∈Π

(X(ti+ti+1)/2 −Xti)(M(ti+ti+1)/2∧t −Mti∧t)

+
∑
ti∈Π

(X(ti+ti+1)/2 −Xti)(Mti+1∧t −M(ti+ti+1)/2∧t)

P→
∫ t

0

Xsd
−Ms +

1

2
[M,X]t + 0

as ∆(Π)→ 0
Therefore ∫ t

0

Xs ◦ dMs =
1

2

(∫ t

0

Xsd
−Ms +

∫ t

0

Xsd
+Ms

)
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the Stratonovich integral is the average of forward integral and a backward
integral.

Note the Stratonovich integral obeys the law of standard calculus. Assuming
for simplicity that f ∈ C3, By Ito formula,

f(Mt) = f(M0) +

∫ t

0

f ′(Ms)d
−Ms +

1

2
f ′′(Ms)d〈M〉s = f(M0) +

∫ t

0

f ′(Ms)◦dMs

since

〈f ′(M),M〉t =

〈∫ ·
0

f ′′(Ms)dMs,M

〉
t

=

∫ t

0

f ′′(Ms)d〈M,M〉s

7.5.3 Doss-Sussman explicit solution of a SDE

In the one-dimenstional case, sometimes we are able to proceed as follows:
Consider the SDE in Stratonovich sense

dXt = b(Xt)dt+ σ(Xt) ◦ dWt

= b(Xt)dt+ σ(Xt)dWt +
1

2
d〈σ(X), B〉t =

(
b(Xt) +

1

2
σ′(Xt)σ(Xt)

)
dt+ σ(Xt)dWt

where in the first line the stochastic integral is in Stratonovich sense and on the
second line in Ito sense. Here σ′(x) = d

dxσ(x)
We look for a solution of the form Xt = u(Wt, Yt) for some smooth function

u(x, y) and a continous process of finite variation Yt.
Taking Stratonovich differential we get

dXt =
∂

∂x
u(Wt, Yt) ◦ dWt +

∂

∂y
u(Wt, Yt)dYt

which means that

∂

∂x
u(x, y) = σ(u(x, y))

dYt =

(
∂

∂y
u(Wt, Yt)

)−1

b(u(Wt, Yt))dt

We get also

∂2

∂x2
u(x, y) = σ′(u(x, y))σ(u(x, y)),

∂2

∂x∂y
u(x, y) = σ′(u(x, y))

∂

∂y
u(x, y),

We impose the additional condition u(0, y) = y, from which follows

∂

∂y
u(0, y) = 1,

∂

∂y
u(x, y) = 1 +

∫ x

0

∂2

∂x∂y
u(ξ, y)dξ = 1 +

∫ x

0

∂

∂y
u(ξ, y)σ′(u(ξ, y))dξ =

= exp

(∫ x

0

σ′(u(ξ, y))dξ

)
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Substituting

Yt = Y0 +

∫ t

0

exp

(
−
∫ Ws

0

σ′(u(ξ, Ys))dξ

)
b(u(Ws, Ys))ds

By solving these ODE we obtain the solution Xt = u(Wt, Yt).

Example Consider the SDE

dXt = cos(Xt)dt+Xt ◦ dWt = (cos(Xt) +
1

2
Xt)dt+XtdWt

written respectively with Stratonovich and Ito differentials
the ODE

∂

∂x
u(x, y) = u(x, y), u(0, y) = y

has solution

u(x, y) = y exp(x)

and

Yt = Y0 +

∫ t

0

exp(−Ws) cos(Ys exp(Ws))ds

The solution is Xt = Yt exp(Wt). In fact by using integration by parts,

◦ dXt = exp(Wt)dYt + Yt ◦ d exp(Wt)

exp(Wt) exp(−Wt) cos(Yt exp(Wt))dt+ Yt exp(Wt) ◦ dWt = cos(Xt)dt+Xt ◦ dWt

7.6 Existence and Uniqueness of solutions of SDE

Definition 45. In a filtration F = (Ft : t ≥ 0), for p ≥ 1 let CB([0, T ], Lp(Ω))
the space of F-adapted stochastic processes X(ω, t) with

• Xt ∈ Lp(Ω,Ft, P ) ∀t ∈ [0, T ]

• ‖ X ‖CB([0,T ],Lp):= supt∈[0,T ] ‖ Xt ‖Lp(Ω)<∞

•

∀t ∈ [0, T ], lim
u→t

EP

(∣∣Xt −Xu

∣∣p) = 0

i.e. the process is continuous in Lp(Ω).

If we differantiate formally with respect to the initial condition, assumin
smoothness of the coefficient we obtain the SDE

∂xX
x
t = 1 +

∫ t

s

∂xb(u,Xx
u)∂xX

x
udu+

∫ t

s

∂xσ(u,Xx
u)∂xX

x
udBu
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Consider the system of SDE{
Xx
t = x+

∫ t
s
b(u,Xx

u)du+
∫ t
s
∂xσ(u,Xx

u)∂xX
x
udBu

ξxt = 1 +
∫ t
s
∂xb(u,Xx

u)ξxudu+
∫ t
s
∂xσ(u,Xx

u)ξxudBu

If the coefficients
(
b(s, x), ∂xb(s, x)

) (
σ(s, x), σxb(s, x)

)
are jointly continuous

and satisy the Lipschitz and linear growth conditions, There exists an unique
solution (Xx

t , ξ
x
t ).

We show that necessarily

ξxt = lim
h→0

1

h

(
Xx+h
t −Xx

t

)
= ∂xXx

t

Xx+h
t −Xx

t

−
h∂xXx

t =

∫ t

s

(
b(u,Xx+h

u )− b(u,Xu)− h∂xb(u,Xx
u)ξxu

)
du+

∫ t

s

(
σ(u,Xx+h

u )− σ(u,Xu)− h∂xσ(u,Xx
u)ξxu

)
du =

∫ t

s

∂xb(u,Xx
u)
(
Xx+h
u −Xx

u + hξxu
)
du+

∫ t

s

∂xσ(u,Xx
u)
(
Xx+h
u −Xx

u + hξxu
)
dBu+∫ t

s

(
∂xb(u,X∗u)− ∂xb(u,Xx

u)
)(
Xx+h
u −Xx

u)du+

∫ t

s

(
∂xb(u,X∗u)− ∂xb(u,Xx

u)
)(
Xx+h
u −Xx

u)du

∫ t

s

(
σ(u,Xx+h

u )− σ(u,Xu)− h∂xσ(u,Xx
u)ξxu

)
du =

7.7 Cameron-Martin-Girsanov theorem

7.7.1 Discrete time heuristics
Let (∆B1, . . . ,∆Bn) i.i.d. Gaussian random variable with EP (∆B1) = 0,
EP (∆B2

1) = ∆t, let Fn = σ(∆Bi : i = 1 . . . , n).
Consider another measure Q on (Ω,Fn) such that under Q the ∆Bi are i.i.d.

with mean EP (∆Bi) = Hi∆t and variance EP (∆B2
1) = ∆t.

On (Ω,Fn) the likelihood ratio factorizes as

dQ
∣∣Fn

dP
∣∣Fn =

n∏
k=1

exp

(
− (∆Bk −Ak∆t)2

2∆t
+

(∆Bk)2

2∆t

)
=

exp

( n∑
i=1

Ak∆Bi −
1

2

n∑
i=1

A2
k∆t

)
This extends to the case when under Q the random variables ∆Bk are condi-
tionally Gaussian given Fk−1, with

EQ(∆Bk|Fk−1) = Ak∆t,

where Ak is predictable, and

EQ((∆Bk)2|Fk−1)−A2
k∆t2 = ∆t

If Ak ∈ L1(P ) ∀k then under Q

Mk =

k∑
i=1

∆Bi −
k∑
i=1

Ai∆t

is a Q-martingale with predictable variation 〈M〉k =
∑k
i=1 ∆t.
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7.7.2 Change of drift in continuous time
We denote by Pt the restriction of P on the σ-algebra Ft.

Let (Mt) a continuous {Ft}-local martingale under the measure P and(Ht)
an {Ft}-progressive process such that for all 0 ≤ t < +∞∫ t

0

H2
sd〈M〉s <∞ P almost surely

We want to find a probability measure Q such that

M̃t = Mt +

∫ t

0

Hsd〈M〉s, (7.18)

is a local martingale with respect to the measure Q and Qt � Pt ∀t < ∞.

(notation Q
loc
� P )

Lemma 37. Assume that Q
loc
� P . The likelihood ratio process

Zt(ω) :=
dQt
dPt

(ω) (7.19)

is a true martingale with respect to the reference measure P .

Proof For s < t, if A ∈ Fs ⊆ Ft,

Q(A) = EP (Zt1A) = EP (Zs1A)

which gives the martingale property under P .

Note We recall also that a non-negative local martingale Zt is a super-
martingale, since if τn ↑ ∞ is a localizing sequence, for s ≤ t by the Fatou
lemma for conditional expectation

EP (Zt|Fs) = EP
(
lim inf
n↑∞

Zt∧τn
∣∣Fs) ≤ lim inf

n↑∞
EP (Zt∧τn |Fs)

≤ lim inf
n↑∞

Zs∧τn = Zs

Moreover Zt is a true martingale if and only if EP (Zt) = 1, since in such case

Zs − EP (Zt|Fs) ≥ 0 and EP (Zs) = EP (Zt) = 1

implies Zs = EP (Zt|Fs) P -almost surely.

Lemma 38. Let Q
loc
� P probability measures on (Ω,F) equipped with the

filtration F = {Ft} Then Xt is a Q (local)-martingale if and only if the product
process (XtZt) is a P (local)-martingale.

Proof for s ≤ t A ∈ Fs we have

EQ(Xt1A) = EP (ZtXt1A)

EQ(Xs1A) = EP (ZsXs1A)
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therefore the right hand sides coincide if and only if the left hand sides do.
Moreover if τn ↑ ∞ is a localizing sequence of stopping times, by the abstract

Bayes formula,

Xs∧τn = EQ(Xt∧τn |Fs) =
EP
(
Zt∧τnXt∧τn

∣∣Fs)
Zs∧τn

⇐⇒ EP
(
Zt∧τnXt∧τn

∣∣Fs) = Xs∧τnZs∧τn

where by Doob optional sampling theorem for bounded stopping times

EP (Zt∧τ |Fs∧τ ) = Zs∧τ = Zs1(τ > s) + Zτ1(τn ≤ s) =

it is Fs-measurable and coincides with EP (Zs∧τ |Fs)

Theorem 36. (Cameron-Martin-Girsanov) Let Q
loc
� P probability measure on

(Ω,F) equipped with the filtration F = (Ft : t ≥ 0), and Mt a continuous F-local
martingale such that change of drift formula (7.18) holds.

Necessarily

Zt =
dQt
dPt

= Yt exp

(∫ t

0

HsdMs −
1

2

∫ t

0

H2
sd〈M〉s

)
where Yt ≥ 0 is a P -martingale with EP (Y0) = 1 and [M,Y ]t = 0 ∀t.

We rewrite the the change of drift formula (7.18) as

M̃t = Mt −
∫ t

0

1

Zs
d〈M,Z〉s

In particular when Yt ≡ 1 ∀t, the change of measure is minimal, in the sense
that P = Q on the initial σ-algebra F0, and every P -(local) martingale Xt such
that [X,M ]t ≡ 0 is also a Q-(local) martingale.

Proof By the assumption and lemma 38, the product (ZtM̃t) is a local
martingale under P . Using integration by parts, we obtain the martingale de-
composition under Q

d(ZtM̃t) = ZtdMt + ZtHtd〈M〉t +MtdZt + d〈M̃, Z〉t =(
ZtdMt +MtdZt

)
+
(
ZtHtd〈M〉t + d〈M,Z〉t

)
which implies

〈M,Z〉t = −
∫ t

0

ZsHsd〈M〉s

This is satisfied if and only if

1

Zt
dZt = −HtdMt + dYt

where Yt is a P -martingale with 〈M,Y 〉 = 0.
Let’s assume first that Yt = 0.
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Then by Ito formula the solution of the linear stochatic differential equation
dZt = −ZtHtdMt is the exponential martingale

Zt = Z0E(H ·M)t = Z0E
(
−
∫ ·

0

HsdMs

)
t

:=

Z0 exp

(
−
∫ t

0

HsdMs −
∫ t

0

H2
sd〈M〉s

)
Here Z0(ω) = dQ0

dP0
(ω) is F0-measurable.

More in general

Zt = Z0E(H ·M + Y )t = Z0E(H ·M)tE(Y )t �

where the stochastic exponential E(Y )t satisfies

E(Y )t = 1 +

∫ t

0

E(Y )sdYs ,

and when Yt is continuous

E(Y )t = exp
(
Yt −

1

2
〈Y 〉t

)
.

Notes Igor Vladimirovich Girsanov (1934-1965) was a Russian mathematician.

7.8 Stochastic filtering

Lemma 39. Let Mt be a continuous local martingale under P with respect
to a filtration (Gt)t≥0, and assume that (Mt) is adapted to a smaller filtration
(Ft)t≥0, with Ft ⊆ G.

Then Mt is also a (Ft)-local martingale.

Proof
Let τn = inf{t : |Mt| ≥ n}. Since Mt is (Ft)-adapted, τn are stopping times

in the (Ft)- filtration, with τn ↑ ∞, and we know that for each n, the stopped
processMτn

t = Mt∧τn is a true (Gt)-martingale since it is bounded, which means
that in particular for 0 ≤ s ≤ t ∀A ∈ Gs

EP (
(
Mt∧τn −Ms∧τn)1A

)
= 0

But this holds in particular ∀A ∈ Fs, which means that (Mτn
t )t≥0 is a true

(Ft)-martingale.

Note Without the continuity assumption we are not able to to produce a
localizing sequence of (Ft)-stopping times, just knowing that there is a localizing
sequence of (Gt)-stopping times.

Lemma 40. Let (Bt) be a Brownian motion with the martingale property in the
filtration (Gt) and obviously also with respect to the smaller filtration (FBt ) ⊆
(Gt) generated by itself.

http://en.wikipedia.org/wiki/Igor_Vladimirovich_Girsanov
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Let H(s, ω) a (Gt)-adapted process which is not necessarily (FBt )-adapted,
such that ∫ t

0

EP (H2
s )ds <∞

Then

EP

(∫ t

0

HsdBs

∣∣∣∣FBt ) =

∫ T

0

EP (Hs|FBs )dBs

Moreover if Mt is a (Gt)-martingale with 〈M,B〉s = 0, ∀0 ≤ s ≤ t then

EP
(
Mt −M0

∣∣FBt ) = 0

Proof Let A ∈ FBt . By the Ito-Clarck representation theorem

1A = P (A) +

∫ t

0

KsdBs

for some K ∈ L2([0, t]× Ω) adapted to (FBt ).

EP

(
1A

∫ t

0

HsdBs

)
= P (A)EP

(∫ t

0

HsdBs

)
+ EP

(∫ t

0

KsdBs

∫ t

0

HsdBs

)
= 0 + EP

(
〈K ·B,H ·B〉t

)
= EP

(∫ t

0

KsHsds

)
=∫ t

0

EP (KsHs)ds =

∫ t

0

EP
(
KsEP (Hs|Fs)

)
ds

= EP

(〈∫ ·
0

KsdBs,

∫ ·
0

EP (Hs|Fs)dBs
〉
t

)
= 0 + EP

(∫ t

0

KsdBs

∫ t

0

EP (Hs|Fs)dBs
)

= EP

(
1A

∫ t

0

EP (Hs|Fs)dBs
)

=

where we used the Ito isometry and the definition of conditional expectation �

For the second part of the lemma, if M0 = 0, 〈M,B〉s = 0, s ≤ t, A ∈ FBt
as before,

EP ((Mt −M0)1A) = P (A)EP (Mt −M0) + EP ((Mt −M0)

∫ t

0

KsdBs) =

0 + EP

(∫ t

0

Ksd〈M,B〉s
)

= 0

which means EP (Mt −M0|FBt ) = 0 �

Consider the stochastic filtering settings in the St Flour lecture notes by E
Pardoux :

dXs = b(s, Y,Xs)ds+ f(s, Y,Xs)dVs + g(s, Y,Xs)dWs

dYs = h(s, Y,Xs)ds+ dWs
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with (V,W ) are independent P -Brownian motions and consider the filtration
{Ft} with Ft = FV,W,t and {Yt} with Yt = FYt .

Here Xt is the state process, and the problem is to estimate “on-line” Xt

using the information from the observation filtration {Yt} which gives in noisy
observations of the signals h(s, Y,Xs).

For simplicity, it is assumed all all coefficient processes are bounded and
Lipshitz.

We introduce a reference measure Q under which

dXs = {b(s, Y,Xs)− h(s, Y,Xs)g(s, Y,Xs)
}
ds+ f(s, Y,Xs)dVs + g(s, Y,Xs)dYs

and Y is a Brownian motion w.r.t Q in the {Ft} filtration. It follows that
Pt � Qt with

Zt :=
dPt
dQt

= exp

(∫ t

0

h(s, Y,Xs)dYs −
1

2

∫ t

0

h(s, Y,Xs)
2ds

)
satisfying the linear SDE dZt = Zth(t, Y,Xt)dYt.

For a function ϕ ∈ C2
B , bounded and with bounded derivatives, by abstract

Bayes formula

πt(ϕ) := EP (ϕ(Xt)|Yt) =
EQ(ϕ(Xt)Zt|Yt)

EQ(Zt|Yt)
=
σt(ϕ)

σt(1)

Here πt is the posterior probability measure process, and σt is the unnormalized
posterior measure.

σt(ϕ) = EQ(ϕ(Xt)Zt|Yt) satisfies the following SDE driven by the Q Brow-
nian motion (Yt) in the (Yt) filtration:

σt(ϕ) = σ0(ϕ) +

∫ t

0

σs(Ls,Y ϕ)ds+

∫ t

0

σs(L
1
s,Y ϕ)dYs (7.20)

where Ls,Y and L1
s,Y are differential operators on C2 depending on time and on

the past observations of Y :

Ls,Y ϕ =
1

2
(f2(s, Y, ·) + g2(s, Y, ·)) ∂

2

∂2x
ϕ+ b(s, Y, ·) ∂

∂x
ϕ

L1
s,Y ϕ = h(s, Y, ·)ϕ+ g(s, Y, ·) ∂

∂x
ϕ

To check this step, note that by the integration by parts formula

d(ϕ(Xt)Zt) = Ztdϕ(Xt) + ϕ(Xt)dZt + d〈ϕ(Xt), Z〉t

= Ztϕ
′(Xt)dXt +

1

2
Ztϕ

′′(Xt)d〈X〉t + Ztϕ(Xt)h(t, Y,Xt)dYt + Ztϕ
′(Xt)g(t, Y,Xt)h(t, Y,Xt)dt

= Zt
{
ϕ′(Xt)g(t, Y,Xt) + ϕ(Xt)h(t, Y,Xt)

}
dYt + Ztϕ

′(Xt)f(t, Y,Xt)dVt+

+Ztϕ
′(Xt)

{
b(t, Y,Xt)− h(t, Y,Xt)g(t, Y,Xt) + g(t, Y,Xt)h(t, Y,Xt)

}
dt

+
1

2
Ztϕ

′′(Xt)
{
f(t, Y,Xt)

2 + g(t, Y,Xt)
2
}
dt

= Zt
{
ϕ′(Xt)g(t, Y,Xt) + ϕ(Xt)h(t, Y,Xt)

}
dYt + Ztϕ

′(Xt)f(t, Y,Xt)dVt

+Zt
{
ϕ′(Xt)b(t, Y,Xt) +

1

2
Ztϕ

′′(Xt)
(
f(t, Y,Xt)

2 + g(t, Y,Xt)
2
)}
dt
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In integral form this means

ϕ(Xt)Zt = ϕ(X0) +

∫ t

0

Zs
{
ϕ′(Xs)g(s, Y,Xs) + ϕ(Xs)h(s, Y,Xs)

}
dYs+∫ t

0

Zsϕ
′(Xs)f(s, Y,Xs)dVs

+

∫ t

0

Zs
{
ϕ′(Xs)b(s, Y,Xs) +

1

2
ϕ′′(Xs)

(
f(s, Y,Xt)

2 + g(s, Y,Xt)
2
)}
ds

We take now conditional expectation under Q with respect to the σ-algebra Yt.

σt(ϕ) := EQ(ϕ(Xt)Zt|Yt) =

EQ(ϕ(X0)|Yt)

+EQ

(∫ t

0

Zs
{
ϕ′(Xs)g(s, Y,Xs) + ϕ(Xs)h(s, Y,Xs)

}
dYs

∣∣∣∣Yt)
+EQ

(∫ t

0

Zsϕ
′(Xs)f(s, Y,Xs)dVs

∣∣∣∣Yt)
+EQ

(∫ t

0

Zs
{
ϕ′(Xs)b(s, Y,Xs) +

1

2
ϕ′′(Xs)

(
f(s, Y,Xt)

2 + g(s, Y,Xt)
2
)}
ds

∣∣∣∣Yt)
and 7.20 follows by lemma 40.

When ϕ(x) ≡ 1 we get a linear SDE for the random normalizing constant in
Bayes formula:

σt(1) = 1 +

∫ t

0

σs(1)EP (h(s, Y,Xs)|Ys)dYs

with solution

σt(1) = exp

(∫ t

0

EP (h(s, Y,Xs)|Ys)dYs −
1

2

∫ t

0

EP (h(s, Y,Xs)|Ys)2ds

)
Consequently by the Cameron Martin Girsanov theorem (36)

Yt −
∫ t

0

EP (h(s, Y,Xs)|Ys)ds

is a P Brownian motion in the {Yt} filtration.

7.9 Final exam
: It is allowed to consult the literature and to collaborate with fellow students.

Question 1 ): Use the change of measure formula to show that

EQ(Zt|Yt) = σt(1) =
dP |Yt
dQ|Yt

Question 2 ): Use integration by parts formula for the ratio πt(ϕ) =
σt(ϕ)/σt(1) to prove the Zakai filter equation

πt(ϕ) = π0(ϕ) +

∫ t

0

πs(Ls,Y ϕ)ds+

∫ t

0

{
πs(L

1
s,Y ϕ)− πs(h(s, Y, ·))πs(ϕ)

}(
dYs − πs(h(s, Y, ·))ds

)
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Question 3) Show that

Yt −
∫ t

0

πs(h(s, Y, ·))ds

is a Brownian motion with respect to the measure P and the filtration (Yt).

Consider the linear Gaussian case with

dXs = Xsb(s)ds+ f(s)dVs + g(s)dWs

dYs = Xsh(s)ds+ dWs

with b(s), h(s), f(s), g(s) deterministic functions.

Question 4):Write down the Zakai filter equation for the prediction process

X̂t := E(Xt|Yt)

Question 5): Write down the equation for the prediction error variance

σ̂2
t := E((Xt − X̂t)

2|Yt)

Since the process (Xt, Yt) is jointly Gaussian (why ? for example one can study
the characteristic function ) you should get a deterministic equation, called Ric-
cati equation.

Since (Xt, Yt) is jointly Gaussian, it follows that conditionally on the σ-
algebra Yt, Xt is conditionally Gaussian with (random) conditional mean X̂t

and (deterministic) conditional variance σ̂2
t . You must use Gaussianity in order

to compute the conditional moments πt(xk) for k = 1, 2, 3 which will appear in
the Zakai equation.

For simplicity you can assume that the functions b(s), h(s), f(s), g(s) are
constant. If you want to simplify further, assume that g(s) = 0.

A standard reference on stochastic filtering theory is in Liptser and Shiryaev
statistics of random processes.
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