
Stochastic analysis, fall 2014, Exercises-8, 26.11.2013

It is not true that all uniformly integrable local martingales are true martingales. Even local
martingales bounded in L2(P ) need not to be true martingales! Here we study such counterex-
ample.

Let Bt = (B
(1)
t , B

(2)
t , B

(3)
t ) a 3-dimensional brownian motion starting from 0 at time 0 , with

independent components, so that 〈B(i), B(j)〉t = δij . The process

Rt = |Bt| =

√√√√ 3∑
i=1

(
B

(i)
s

)2
is called the 3-dimensional Bessel process.

1. Use Ito formula to compute the semimartingale decomposition of Rt into a continuous local
martingale part Wt and a continuous process of finite variation.
Solution

Let f(x1, x2, x3) =
√
x21 + x22 + x23. Then by Ito formula

f(Bt) = f(B0) +

3∑
i=1

∫ t

0

∂if(Bs)dB
(i)(s) +

1

2

3∑
i,j

∫ t

0

∂i∂jf(Bs)d〈B(i), B(j)〉s

=

3∑
i=1

∫ t

0

∂if(Bs)dB
(i)(s) +

1

2

3∑
i

∫ t

0

∂2i f(Bs)d〈B(i)〉s

=

3∑
i=1

∫ t

0

B
(i)
s√

(B
(i)
s )2 + (B

(i)
s )2 + (B

(i)
s )2

dB(i)(s) +

∫ t

0

1√
(B

(i)
s )2 + (B

(i)
s )2 + (B

(i)
s )2

ds

We see that the first term is an Ito integral, so it is a continuous local martingale and the
second term is a continuous non decreasing process with finite variation. This means that
R is a semimartingale. Note that the second term is P a.s. finite because

E

(∫ t

0

1√
(B

(i)
s )2 + (B

(i)
s )2 + (B

(i)
s )2

ds

)
= E

(
1√

(B
(i)
1 )2 + (B

(i)
1 )2 + (B

(i)
1 )2

)∫ t

0

ds√
s
<∞

where we used the fact that B
(i)
s ∼

√
tB1. This implies that

P

(∫ t

0

ds

Rs
<∞

)
= 1

2. Compute 〈R〉t = 〈W 〉t and use Paul Lévy’s characterization theorem for Brownian motion
to show that the local martingale part of Rt which satisifies

Wt = Rt −
∫ t

0

1

Rs
ds

is a Brownian motion in the filtration F generated by (Bt).

Solution
By proposition 27 we have

〈Wt〉 =

3∑
i=1

∫ t

0

(B
(i)2

s )

(B
(i)
s )2 + (B

(i)
s )2 + (B

(i)
s )2

d〈B(i)〉s =

∫ t

0

ds = t
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By the Doob-Meyer decompostion we have

W 2
t = Nt + 〈W 〉 = Nt + t

where Nt is a local martingale, so that W 2
t − t is a local martingale and the Lev characteri-

zation theorem says that Wt is a Brownian Motion.

3. Show that Rt is a F-submartingale.

Solution
By Jensen inequality one has

E(Rt|Fs) = E(|Bt||Fs) ≥ |E(Bt|Fs)| = |Bs| = Rs

4. Let Mt = R−1t for t ≥ 1. We start the process at time 1 since R0 = 0.
Use Ito formula to show that (Mt)t≥1 is a local martingale, and write its Ito integral repre-
sentation.

Solution
Let Mt = f(Rt) = R−1t , then

Mt = f(R1)−
∫ t

1

dRs
R2
s

+

∫ t

1

ds

R3
s

= f(R1)−
∫ t

1

dWs

R2
s

−
∫ t

1

ds

R3
s

+

∫ t

1

ds

R3
s

=
1

R1
−
∫ t

1

dWs

R2
s

where we used exercise 2 to get dRs = dWs − ds/Rs. We see that Mt is a martingale by
proposition 27.

5. Compute 〈M〉t.

Solution
Again by proposition 27 we have

〈M〉t =

∫ t

1

d〈W 〉s
R4
s

=

∫ t

1

ds

R4
s

6. Show that (Mt) is a supermartingale. Hint: it is non-negative, you can use Fatou lemma for
the sequence of localized martingales (Mt∧τn : t ≥ 1), n ∈ N.

Solution
Let τn be a localizing sequence for the martingale Mt. Since Mt is non negative, Fatou
lemma gives

E(Mt|Fs) = E( lim
n→∞

Mt∧τn |Fs) ≤ lim inf
n→∞

E(Mt∧τn |Fs) = lim inf
n→∞

Ms∧τn = Ms

7. Let τa := inf{t ≥ 1 : Rt = a}, a > 0, with the convention inf{∅} =∞.
Show that the stopped process (Mτa

t )t≥1 is a martingale and consequently (τ1/n : n ∈ N) is
a localizing sequence for the local martingale (Mt : t ≥ 1)

Solution
Since Mτa

t ≤ 1/a, then by bounded convergence we have

E(Mτa
t |Fs) = lim

n→∞
E(Mτa

t∧τn |Fs) = lim
n→∞

Mτa
s∧τn = Mτa

s

for a localizing sequence τn.
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8. Let 0 < r′ < y < r′′. Use the martingale property of (Mt∧τr : t ≥ 1) to compute
P (τr′ < τr′′ |R1 = y). By the conditioning we mean that we start Rt at time t = 1 in
position y.

Solution
Note that Mt∧τr′ is a bounded martingale, so it is uniformly integrable and by Doob optional
stopping time theorem we have

E(Mτr′∧τr′′ ) =
1

R1

Moreover, we note that a priori Mτr′∧τr′′ can assume three values: 1/r′ when τr′ < τr′′ ,
1/r′′ when τr′ > τr′′ and some unknown value M∞ when τr′ = τ ′r′ =∞. We will show that
actually P (τr′ = τ ′r′ =∞) = 0.
Infact, let us be τr′ = τ or τr′′ = τ . From Doob-Meier decomposition we know that

M2
t = Nt + 〈Mt〉 = Nt +

∫ t

1

ds

R4
s

where Nt is a local martingale, so that the stopped process Nt∧τ is a martingale bounded
from above because

Nt∧τ = M2
t∧τ −

∫ τ∧t

0

ds

R4
s

≤M2
t∧τ ≤M2

τ

By Doob convergence theorem, when we take the limit as t→∞ we get

τ − 1

(r′′)4
≤
∫ τ

1

ds

R4
s

= Nτ −M2
τ ∈ L1

Then we get that τ ∈ L1 and since τ is non negative, we obtain that P (τ =∞) = 0. So we
have

1

y
= E(Mτr′∧τr′′ ) = P (τr′ < τr′′ |R1 = y)

1

r′
+ (1− P (τr′ < τr′′ |R1 = y))

1

r′′

from which we get

P (τr′ < τr′′ |R1 = y) =
1/y − 1/r′′

1/r′ − 1/r′′

9. For 0 < r < y compute also P (τr <∞|R1 = y).

Solution
Note that {ω : τr(ω) <∞} = {ω : ∪∞n τr(ω) < τn} where the sequence of events {ω : τr(ω) <
τn} is increasing because τn →∞ as n→∞. Then we get

P (τr <∞|R1 = y) = P (∪∞n≥r(τr(ω) < τn)|R1 = y) = lim
n→∞

P (τr(ω) < τn|R1 = y) = r/y

Since

P (τr <∞|R1 = y)→ 0 as r ↓ 0

by Borel Cantelli there is a sequence rn ↓ 0 with τrn(ω) =∞ for rn small enough.
This shows that (τ1/n(ω) : n ∈ N) is a localizing sequence for the local martingales (Mt(ω) :
t ≥ 1)

10. Show that the 3-dimensional Brownian motion is transient, |Bt| → ∞ P a.s., meaning that
it leaves eventually any ball centered around the origin without coming back, and therefore
M∞ = lim

t→∞
Mt = 0.
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Solution
Starting at R1 = y, we consider the stopping time τy/2. By 9, there is a probability of 1/2
that Rt → ∞. Otherwise we hit y/2 and consider τy/4. In this case we have a probability
1/4 that Rt →∞. By iterating this procedure, we get that

P (Rt →∞) =

∞∑
j=1

2−j = 1

Alternatively, let

An = {ω : |Bt(ω)| > n∀t ≥ τn3(ω)}

P (Acn) is given by exercise 8 with r′ = n and y = n3.

P (Acn) =
n

n3
= n−2

By Borel Cantelli lemma P (lim supAcn) = 0, equivalently

P (lim inf An) = 1

Note also that P (τn3 < ∞) = 1, since for the 3-dimensional Brownian motion |Bt|2 =

|B(1)
t |2 + |B(2)

t |2 + |B(3)
t |2 ≥ |B

(i)
t |2 → ∞ as t → ∞. and we have seen that the one

dimensional Brownian motion reaches any level with probability 1.

11. Using the multivariate gaussian density in polar coordinates, compute the probability den-
sities of Rt and Mt, and show that the local martingale (Mt : t ≥ 1) is bounded in L2 , so
that in particular it is uniformly integrable. ( We start the martingale at time 1 since there
is the square norm explodes near the origin ).
Note however that (Mt)t≥1 is not a martingale. Otherwise (Xt) would be an uniformly
integrable martingale so that Mt = E(M∞|Ft), t ≥ 1. But in dimension 3 the Brownian
motion is transient, which means that M∞ = 0.

Solution
The multivariate Gaussian density is given by

P (Bt ∈ d3x) =
1

(2πt)3/2
e−|x|

2/2td3x

Passing to polar coordinate we have d3x = ρ2 sin θdθdφdρ. To get the marginal distribution
of the radius varaible ρ we just need to intergate over θ and φ:

P (Rt ∈ d3x) =

∫ 2π

0

dφ

∫ π

0

dθ
1

(2πt)3/2
e−ρ

2/2tρ2 sin θdρ =

√
2

πt3
e−ρ

2/2tρ2dρ

Therefore

P (Mt ∈ du) =
d

du
P (Mt ≤ u) =

d

du
P (Rt ≥ 1/u) =

√
2

πt3
e−u

−2/2tu−4du

Now we can estimate the L2 norm of Mt:

E(M2
t ) =

√
2

πt3

∫ ∞
0

u2e−u
−2/2tu−4du =

√
2

πt3

∫ ∞
0

e−v
−2/2tdv =

√
2

πt3

√
2πt

2
=

1

t
<∞

12. Compute also the probability distribution of R2
t .
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Show first that for t = 1,

P (R2
1 ∈ dx) = 1(x ≥ 0)

1

Γ(3/2)23/2
exp(−x/2)x

3
2−1dx

which is the distribtion of a Gamma random variable with shape parameter 3/2 and scale
parameter 2, (also called chi-square with 3 degrees of freedom and use the scaling property
of Brownian motion.
Solution
By the previous exercise we know

P (R2
t ≤ u) = P (Rt ≤

√
u) =

∫ √u
0

P (Rt ∈ dv)

so we get

P (R2
t ∈ du) =

d

du

∫ √u
0

P (Rt ∈ dv) =

√
2

πt3
e−u/2tu

2
√
u

du =
e−u/2t

√
u√

2πt3
du

13. Show that E(〈M〉t) =∞ ∀t ≥ 1.

Remark This is not in contradiction with E(M2
∞) <∞, since

E
(
(Mt −M1)2

)
= E

(
〈M〉t − 〈M〉1

)
holds for martingales but does not need to hold for local martingales. Even if the local
martingale Mt is bounded in L2, it means that M2

t is bounded in L1 which does not give the
uniform integrability condition which is necessary to take the limit of a localizing sequence
under the expectation.

Solution
By exercise 5 we have

E(〈Mt〉) =

∫ t

1

ds

∫ ∞
0

dx
1

x2
e−x/2s

√
x√

2πs3
=∞

since x−3/2 is not integrable in 0.

Remark In general, when Mt is a continuous local martingale with localizing sequence τn ↑ ∞,
to show that it is a true martingale, you need to show that for s ≤ t and A ∈ Fs

EP (Mt∧τn1A)
?→ EP (Mt1A)

EP (Ms∧τn1A)
?→ EP (Ms1A)

where the left sides are equal by since (Mt∧τn : t ≥ 0) is a martingale. When the local martingale
(Mt : t ≥ 0) is uniformly integrable or bounded in L2(P ), for fixed t, the sequence (Mt∧τn : n ∈ N)
does not need to be uniformly integrable, which is the condition that we need to take the limit
inside the expectation.

Of course if the local martingale is bounded on finite intervals, |Mt(ω)| ≤ c(t) < ∞ P a.s.,
then it is a true martingale.

Also, when Mt ∈ L2(P ) is a martingale and ∀t and Yt is a progressive integrand with

E

(∫ t

0

Y 2
s d〈M〉s

)
<∞ ∀t (1)

then the Ito integral (Y ·M)t ∈ L2(P ) is a true martingale.
If Mt is not a square integrable martingale, or Y does not satisfy the condition 1, the stochastic

integral (Y ·M)t is just local martingale.
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