Stochastic analysis, Fall 2014, Exercises-7, 12.07.2014
1. Let 7(w) € [0,400] be a random time, F(t) = P(r < t) for ¢ € [0, 00).
Consider the single jump counting process Ny(w) = 1(7(w) < ) which generates the filtration

F = (FY) with FN = o(N, : s < t).

(a) Show that 7 is a stopping time in the filtration F.
Solution
Obviously

{wiT(w) <ty co({r(w) <s}:s<t)=F)
(b) Show first that for every Borel function f(x), the random variable
fr(@)(r(w) <s)

is Fs-measurable.
Solution :
If f(z) =1(x € (a,b]), with a < b,

frw)1l(r(w) <s) =1Lt € (ans,bAs]) =11 <bAs)—1L(T<aAs)

which is F-measurable.

(c¢) Define the cumulative hazard function

A(t) = /0 %@_)F(ds)

where F'(s—) = P(7 < s) denotes the limit from the left.
Show that

M; = Ny — Aar

is a an F-martingale.
Hint: use the definition, and show that for s < ¢ and every A € F;

Ep <(Nt - Ns)1A> = FEp <(At/\‘f' - ASAT)1A>

It turns out that it is enough to do the computation for A = {w : 7(w) > s} (why ?).
Fubini’s theorem may be also useful.

Solution
It is enough to do the computation for A because for {w : 7(w) < s} the relation is
trivially satisfied.

Ep((Ny — No)1( > 5)) = P(7 € (s,1]) = F(t) — F(s)

Ep((AMt —Arps)1(T > s)) = /000 (AMt — AMS)l(r > s)F(dr)

- / ) ( / iA 1Fl(u)F(du))F(dr) = / ) / T %F(du)F(dr)
= [([ ran) - | t L) ) = ) (o



(d) Assume that t — F(t) and therefore also ¢ — A(t) are continuous, which means P(r =
t) =0Vt e R" and P(r = o0) = 0.
Show that A, has l-exponential distribution:

P(A: > z)=exp(-z), >0

Hint: one line of proof compute the Laplace transform
L(0):=Ep (exp(—@AT)) >0

and compare it with the Laplace transform of the 1-exponential distribution.
Solution Note that when ¢t — F(¢) is continuous, by the change of variables formula

dlog(l — F(t)) = —%F(t)F(dt)

Ep <exp(0AT)> = /000 exp (0/(: 1_1F(S)F(ds))F(dt)
/OOO exp(&/otdlog(l _ F(s)))F(dt) - /OOO exp(o(logu _ P - log(l)))F(dt) -
1

/000(1 — F(t)F(dt) = T /OOO exp(—(1 + 0)t)dt

(e) Assuming again that F(¢) is continuous, show that the martingale M; is uniformly
integrable. What is M,,?.

Note that |M;| is uniformly bounded in L', in fact
|Mt(w)| < (1+A‘r(w)) eLl(P)7 VE>0

thus it is uniformly integrable. Note that both N; and A;r, are non-negative and
non-decreasing processes, so that the limit is My, =1 — A-.

2. Let (M; : t € RT) a F-martingale, and G a filtration with G; C F; We assume that (M) is
also G-adapted. Show that (M;) is a martingale in the smaller filtration G.
Solution

3. Let (M, : t € R) a F-martingale under P, and G; a filtration such that V¢ > 0, the o-algebrae
G: and o(M; : s < t) are P-independent.
Show that under P, (M; : t € R") is a martingale in the enlarged filtration (F;V G : t > 0).

Solutions This is not always true. What is true is that (M; : t € R") is a martingale in
the enlarged filtration (o(Ms : s <t¢)V G :t > 0). when the o-algebra G is P-independent
from (M : t € RT)

IfGeGand A€ o(M,:r<s)fors<t,

EP((Mt - Ms)lAmG) = EP((Mt - Ms)lAlc) = EP((Mt - Ms)lA)P(G) =0
and the result follows since

o(My:r<s)VG=0(ANG:Aco(M,:17<s),GeG)



Counterexample

Let X1, X2, X3 i.i.d. binary variables with P(X; = 1) = P(X; = 0) = 1/2, and X4 =
(X1 + X5+ Xg) mod 2.

It follows that the distribution of (X1, X, X3, X4) is invariant under permutations,
and for each distinct triple 1 <4 # j # k <4 and a,b,c € {0,1}

P(Xi=a,X;=bX,=c)=2"

The random variables (X7, Xs, X3, X4) are 3-wise independent but are not independent,
since any three random variables determine the 4-th.

Let M() = (Xg — 1/2), M1 = (Xg +X4 - 1), fo = O’(XQ,Xg) Q fl = O’(XQ,Xg,X4).
Now (M, :t =0,1) is a martingale in the filtration (F; : ¢t = 0,1).

But M, is not a martingale in the enlarged filtration (F; V o(X1)), because My # M, are
both 0 Fy V o(X1) measurable.

We construct a counterexmple there exist finitely exchangeale binary random variables
(X1, X2, X3, X4) with values in {0,1}

which are 3-wise independent but not fourwise independent, In other words words for every
distinct i # j # k
P(X;=a,X;=bX;=c) =2 Va,bce {01}

but for some a, b, c,d

PXi=a,Xo=0,X3=c,Xg=d) #274

4. Let (B : t > 0) a Brownian motion in the filtration F, which means

[ Bo(w) =0
e t— B;(w) is continuous

e V0 < s<t,(B;y— By) is P-independent from By, conditionally Gaussian with condi-
tional mean E(B; — Bs|B;) = 0 and conditional variance E((B; — Bs)?|Bs) =t — s

(a) Show that for a > 0 the process (a~'/2B,; : t € RT) is also a Brownian motion.
Solution
Note that the last property of the Brownian motion is equivalent to require the incre-
ments (B; — Bs) to be independent from By and to be distributed as G(0,t — s).
Let be W, := a~'/2B,; and note that W is a just a rescaled version of B. Then we
have
[ ] W() =0
e W, is continuous because B; is continuous
o W, — W, = a_l/Q(Bat — Bus) L a~12B,, = W,. Furthermore, W; is Gaussian
because By is, thus W} is also conditionally Gaussian. Finally we check that W;—W
has the expected mean and variance:

E(W, —=W,) = a Y?E(By; — Bas) =0
E(Wy =W = a Y2E((Bat — Bas)?) =t —s

(b) The process Wy = 0, W; = tB; ; is also a Brownian motion.
Solution



° WO = 0
e W, is trivially continuous for ¢t > 0. To show that it continuous in ¢t = 0 we need
to prove that almost surely

t—0
which is equivalent to show that
B
lim =X =0
t—oo

which is a continuous version of the strong law of large numbers and it is equivalent
to

lim sup|B:|/t=0

N—00 t>n

P-a.s. We show that

B, 1
lim (l |1 sup Bt—Bn|>:

n—00 n n te(n,n+1]

Now B,,/n — 0 P a.s. by the strong law of large numbers.
Also let Xy, = supse(pni1] | Bt — Bul. Note that (X, : n € N) are i.i.d., and by
Doob submartigale inequality

P(Xy>c)=P(sup B} >c*) <c 'E(B})=c"?
te(0,1]

where the submartingale inequality holds in continuous time, because it holds in
discrete time and by taking monotone limit it holds also when we take the supre-
mum over the dyadics, and since the Brownian path is continuous it holds also in
continuous time.

Therefore for all ¢ > 0

ZP(X > cn) QZTL

n

by Borel Cantelli P(limsup,,{X,, > ¢n}) = 0, which implies

(U ﬂ{ >—} ) =0 P(im " =0) =1

n
m n k>n

o W; — W, = First, we check that W (t) — W(s) ~ G(0,t — s) with s < ¢ by looking
at the characteristic function:

Eexp{i0(W(t) —W(s))} = FEexp {ie[S(Bl/t — Byys) + (t - S)Bl/t]} =
= FEexp{ifs(Bi); — Bi)s)} Eexp {if(t — s)By s} =
= FEexp{—ifs(Biss — Bi)} Eexp{if(t — s)W (1/t)} =

= exp{—;(95)2 C - 1>}exp{—21t92(t— 5)2} =
— {309} 1)

Using the same decomposition as before, one can check that the characteristic
function of Wy 4+ (W; — W) factorizes, i.e

Eexp {i0[(W(t) — W (s)) + Ws]} = Eexp {id(W (t) — W(s))} Eexp {i0W,}



()

Let 8 € R, and ¢ = y/—1 the imaginary unit
Show that

Ep(exp(ifB;)) = exp(—%@zt)

Hint: Use complex integration over the rectangular contour delimited by in the complex
plane by the points R, (R + i6), (—R + i6),—R with R € R and let R — cc.

Solution We can ignore the hint and just compute

; 1 —x i0x _ 62t 1 —(2=—4 )2 _ 6%t
Ep(exp(zﬁBt)):/Rdeme 22t 4i07 _ % /Rdx 27Tte (F& 0y/%) g

For 6 € R, consider now
. Lo Lo Loy o
M; = exp(i0B; + 50 t) = exp(§0 t) cos(0B;) + v —1 exp(§0 t)sin(9B;) p €C

where i = v/—1 is the imaginary unit.
Recall that E(exp(ifG)) = exp(—60202/2) when G(w) ~ N(0,0?).
e Show that M, is complex valued F-martingale, which means that real and imaginary
parts are F-martingales.
e Show that lim;, o | M (w)| = 00
Solution

e Note that M; is integrable for any ¢ € R since |M;| < e?’t/2, Moreover, the
martingale property holds:

E(Mt‘fs) — 69’4’t/2E(6i0(BtfBS)eiGBS ]_-q) _ eg2t/2ei9Bseg2(tfs)/2 =M,

e We have pointwise
. T 0%t/2
lim |M;| = lim e
t—o0 t—o0

=



