
Stochastic analysis, Fall 2014, Exercises-7, 12.07.2014

1. Let τ(ω) ∈ [0,+∞] be a random time, F (t) = P (τ ≤ t) for t ∈ [0,∞).
Consider the single jump counting process Nt(ω) = 1(τ(ω) ≤ t) which generates the filtration
F = (FNt ) with FNt = σ(Ns : s ≤ t).

(a) Show that τ is a stopping time in the filtration F.

Solution

Obviously

{ω : τ(ω) ≤ t} ∈ σ({τ(ω) ≤ s} : s ≤ t) = FNt

(b) Show first that for every Borel function f(x), the random variable

f(τ(ω))1(τ(ω) ≤ s)

is Fs-measurable.

Solution :

If f(x) = 1(x ∈ (a, b]), with a < b,

f(τ(ω))1(τ(ω) ≤ s) = 1(τ ∈ (a ∧ s, b ∧ s]) = 1(τ ≤ b ∧ s)− 1(τ ≤ a ∧ s)

which is Fs-measurable.

(c) Define the cumulative hazard function

Λ(t) =

∫ t

0

1

1− F (s−)
F (ds)

where F (s−) = P (τ < s) denotes the limit from the left.

Show that

Mt = Nt − Λt∧τ

is a an F-martingale.

Hint: use the definition, and show that for s ≤ t and every A ∈ Fs

EP

(
(Nt −Ns)1A

)
= EP

(
(Λt∧τ − Λs∧τ )1A

)
It turns out that it is enough to do the computation for A = {ω : τ(ω) > s} (why ?).
Fubini’s theorem may be also useful.

Solution
It is enough to do the computation for A because for {ω : τ(ω) ≤ s} the relation is
trivially satisfied.

EP
(
(Nt −Ns)1(τ > s)

)
= P (τ ∈ (s, t]) = F (t)− F (s)

EP
(
(Λτ∧t − Λτ∧s)1(τ > s)

)
=

∫ ∞
0

(
Λr∧t − Λr∧s

)
1(r > s)F (dr)

=

∫ ∞
s

(∫ t∧r

s∧r

1

1− F (u−)
F (du)

)
F (dr) =

∫ ∞
s

∫ r

s

1(u ≤ t)
1− F (u−)

F (du)F (dr)

=

∫ ∞
s

(∫ ∞
u

F (dr)

)
1(u ≤ t)

1− F (u−)
F (du) =

∫ t

s

1− F (u−)

1− F (u−)
F (du) = F (t)− F (s)
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(d) Assume that t 7→ F (t) and therefore also t 7→ Λ(t) are continuous, which means P (τ =
t) = 0 ∀t ∈ R+ and P (τ =∞) = 0.

Show that Λτ has 1-exponential distribution:

P
(
Λτ > x) = exp(−x), x ≥ 0

Hint: one line of proof compute the Laplace transform

L(θ) := EP

(
exp(−θΛτ

))
θ > 0

and compare it with the Laplace transform of the 1-exponential distribution.

Solution Note that when t 7→ F (t) is continuous, by the change of variables formula

d log(1− F (t)) = − 1

1− F (t)
F (dt)

EP

(
exp(−θΛτ

))
=

∫ ∞
0

exp

(
−θ
∫ t

0

1

1− F (s)
F (ds)

)
F (dt)∫ ∞

0

exp

(
θ

∫ t

0

d log(1− F (s))

)
F (dt) =

∫ ∞
0

exp

(
θ(log(1− F (t))− log(1))

)
F (dt) =∫ ∞

0

(1− F (t))θF (dt) =
1

1 + θ
=

∫ ∞
0

exp(−(1 + θ)t)dt

(e) Assuming again that F (t) is continuous, show that the martingale Mt is uniformly
integrable. What is M∞?.

Note that |Mt| is uniformly bounded in L1, in fact

|Mt(ω)| ≤
(
1 + Λτ(ω)

)
∈ L1(P ), ∀t ≥ 0

thus it is uniformly integrable. Note that both Nt and Λt∧τ are non-negative and
non-decreasing processes, so that the limit is M∞ = 1− Λτ .

2. Let (Mt : t ∈ R+) a F-martingale, and G a filtration with Gt ⊆ Ft We assume that (Mt) is
also G-adapted. Show that (Mt) is a martingale in the smaller filtration G.

Solution
E(Mt|Gs) = E(E(Mt|Fs)|Gs) = E(Ms|Gs) = Ms

3. Let (Mt : t ∈ R) a F -martingale under P , and Gt a filtration such that ∀t ≥ 0, the σ-algebrae
Gt and σ(Ms : s ≤ t) are P -independent.

Show that under P , (Mt : t ∈ R+) is a martingale in the enlarged filtration (Ft ∨Gt : t ≥ 0).

Solutions This is not always true. What is true is that (Mt : t ∈ R+) is a martingale in
the enlarged filtration (σ(Ms : s ≤ t) ∨ G : t ≥ 0). when the σ-algebra G is P -independent
from (Mt : t ∈ R+)

If G ∈ G and A ∈ σ(Mr : r ≤ s) for s ≤ t,

EP ((Mt −Ms)1A∩G) = EP ((Mt −Ms)1A1G) = EP ((Mt −Ms)1A)P (G) = 0

and the result follows since

σ(Mr : r ≤ s) ∨ G = σ
(
A ∩G : A ∈ σ(Mr : r ≤ s), G ∈ G

)
2



Counterexample

Let X1, X2, X3 i.i.d. binary variables with P (Xi = 1) = P (Xi = 0) = 1/2, and X4 =
(X1 +X2 +X3) mod 2.

It follows that the distribution of (X1, X2, X3, X4) is invariant under permutations,

and for each distinct triple 1 ≤ i 6= j 6= k ≤ 4 and a, b, c ∈ {0, 1}

P (Xi = a,Xj = b,Xk = c) = 2−3

The random variables (X1, X2, X3, X4) are 3-wise independent but are not independent,
since any three random variables determine the 4-th.

Let M0 = (X3 − 1/2), M1 = (X3 +X4 − 1), F0 = σ(X2, X3) ⊆ F1 = σ(X2, X3, X4).

Now (Mt : t = 0, 1) is a martingale in the filtration (Ft : t = 0, 1).

But Mt is not a martingale in the enlarged filtration (Ft ∨ σ(X1)), because M1 6= M0 are
both σF0 ∨ σ(X1) measurable.

We construct a counterexmple there exist finitely exchangeale binary random variables
(X1, X2, X3, X4) with values in {0, 1}
which are 3-wise independent but not fourwise independent, In other words words for every
distinct i 6= j 6= k

P (Xi = a,Xj = b,Xk = c) = 2−3,∀a, b, c ∈ {0, 1}

but for some a, b, c, d

P (X1 = a,X2 = b,X3 = c,Xd = d) 6= 2−4

4. Let (Bt : t ≥ 0) a Brownian motion in the filtration F, which means

• B0(ω) = 0

• t 7→ Bt(ω) is continuous

• ∀0 ≤ s ≤ t , (Bt − Bs) is P -independent from Bs, conditionally Gaussian with condi-
tional mean E(Bt −Bs|Bs) = 0 and conditional variance E((Bt −Bs)2|Bs) = t− s

(a) Show that for a > 0 the process (a−1/2Bat : t ∈ R+) is also a Brownian motion.

Solution
Note that the last property of the Brownian motion is equivalent to require the incre-
ments (Bt −Bs) to be independent from Bs and to be distributed as G(0, t− s).
Let be Wt := a−1/2Bat and note that W is a just a rescaled version of B. Then we
have

• W0 = 0

• Wt is continuous because Bt is continuous

• Wt −Ws = a−1/2(Bat − Bas) ⊥ a−1/2Bas = Ws. Furthermore, Wt is Gaussian
because Bt is, thusWt is also conditionally Gaussian. Finally we check thatWt−Ws

has the expected mean and variance:

E(Wt −Ws) = a−1/2E(Bat −Bas) = 0

E((Wt −Ws)
2) = a−1/2E((Bat −Bas)2) = t− s

(b) The process W0 = 0, Wt = tB1/t is also a Brownian motion.

Solution
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• W0 = 0

• Wt is trivially continuous for t > 0. To show that it continuous in t = 0 we need
to prove that almost surely

lim
t→0

Wt = 0

which is equivalent to show that

lim
t→∞

Bt
t

= 0

which is a continuous version of the strong law of large numbers and it is equivalent
to

lim
n→∞

sup
t>n
|Bt|/t = 0

P -a.s. We show that

lim
n→∞

(
|Bn|
n

+
1

n
sup

t∈(n,n+1]

|Bt −Bn|
)

= 0

Now Bn/n→ 0 P a.s. by the strong law of large numbers.
Also let Xn = supt∈(n,n+1] |Bt − Bn|. Note that (Xn : n ∈ N) are i.i.d., and by
Doob submartigale inequality

P (X1 > c) = P ( sup
t∈(0,1]

B2
t > c2) ≤ c−1E(B2

1) = c−2

where the submartingale inequality holds in continuous time, because it holds in
discrete time and by taking monotone limit it holds also when we take the supre-
mum over the dyadics, and since the Brownian path is continuous it holds also in
continuous time.
Therefore for all c > 0 ∑

n

P (Xn > cn) ≤ c−2
∑
n

n−2 <∞

by Borel Cantelli P (lim supn{Xn > cn}) = 0, which implies

P
(⋂
m

⋃
n

⋂
k>n

{Xk

k
>

1

m
}
)

= 0⇐⇒ P
(
lim
n

Xn

n
= 0
)

= 1

• Wt −Ws = First, we check that W (t)−W (s) ∼ G(0, t− s) with s ≤ t by looking
at the characteristic function:

E exp {iθ(W (t)−W (s))} = E exp
{
iθ[s(B1/t −B1/s) + (t− s)B1/t]

}
=

= E exp
{
iθs(B1/t −B1/s)

}
E exp

{
iθ(t− s)B1/t

}
=

= E exp
{
−iθs(B1/s −B1/t)

}
E exp {iθ(t− s)W (1/t)} =

= exp

{
−1

2
(θs)2

(
1

s
− 1

t

)}
exp

{
− 1

2t
θ2(t− s)2

}
=

= exp

{
−1

2
θ2(t− s)

}
(1)

Using the same decomposition as before, one can check that the characteristic
function of Ws + (Wt −Ws) factorizes, i.e

E exp {iθ[(W (t)−W (s)) +Ws]} = E exp {iθ(W (t)−W (s))}E exp {iθWs}
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(c) Let θ ∈ R, and i =
√
−1 the imaginary unit

Show that

EP
(
exp(iθBt)

)
= exp

(
−1

2
θ2t
)

Hint: Use complex integration over the rectangular contour delimited by in the complex
plane by the points R, (R+ iθ), (−R+ iθ),−R with R ∈ R and let R→∞.

Solution We can ignore the hint and just compute

EP
(
exp(iθBt)

)
=

∫
R
dx

1√
2πt

e−x
2/2t+iθx = e−

θ2t
2

∫
R
dx

1√
2πt

e
−( x√

2t
−iθ
√

t
2 )

2

= e−
θ2t
2

(d) For θ ∈ R, consider now

Mt = exp
(
iθBt +

1

2
θ2t
)

=

{
exp
(1

2
θ2t
)

cos(θBt) +
√
−1 exp

(1

2
θ2t
)

sin(θBt)

}
∈ C

where i =
√
−1 is the imaginary unit.

Recall that E(exp(iθG)) = exp(−θ2σ2/2) when G(ω) ∼ N (0, σ2).

• Show thatMt is complex valued F-martingale, which means that real and imaginary
parts are F-martingales.

• Show that limt→∞ |Mt(ω)| =∞
Solution

• Note that Mt is integrable for any t ∈ R since |Mt| ≤ eθ
2t/2. Moreover, the

martingale property holds:

E(Mt|Fs) = eθ
2t/2E(eiθ(Bt−Bs)eiθBs |Fs) = eθ

2t/2eiθBseθ
2(t−s)/2 = Ms

• We have pointwise

lim
t→∞

|Mt| = lim
t→∞

eθ
2t/2 =∞
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