
Stochastic analysis, fall 2014, Exercises-6, 29.10.2014

Consider a probability space (Ω,F , P ) equipped with the dicrete-time filtration F = (Ft : t ∈ N)

1. In discrete time, show that a F-predictable (P,F)-martingale is constant, i,e Mn(ω) = M0(ω)
∀n.

Solution

Mn = E(Mn|Fn−1) = Mn−1

then Mn(ω) = M0(ω) ∀n.

2. A potential (Zn : n ∈ N) is a non-negative (P,F)-supermartingale with

lim
n→∞

E(Zn) = 0

Show that a potential is uniformly integrable.

Solution
Note that, since Zn is non-negative, then Zn converges to 0 in L1. Then, by theorem 12 in
the lecture notes, we have that is uniformly integrable.

3. An (F, P )-supermartingale (Xn : n ∈ N) has Riesz decomposition if it can be written as

Xn = Yn + Zn

where Yn is a martingale and Zn is a potential.

(a) Show that if supn∈NEP

(
X−n ) <∞ then Xn has Riesz decomposition with

Yn = Mn − E(A∞|Fn), Zn = E(A∞|Fn)−An,

where Xn = Mn − An is the Doob decomposition of X into a martingale part M and
a predictable part with A non-decreasing and A0 = 0.

(b) Show that the Riesz decomposition is unique.

Solution

(a) By the Doob convergence theorem and Doob decomposition we have that there exist
almost surely

lim
n→∞

Xn = X∞ = M∞ −A∞ ∈ L1

Furthermore, note that

E(An) = E(Mn)− E(Xn) ≤ E(M0) + E(X−n )

so we get
sup
n
E(An) <∞

By linearity we get

Xn = Mn + E(M∞ −A∞|Fn)− E(M∞ −A∞|Fn)−An =

= Mn − E(A∞|Fn) + E(A∞|Fn)−An = Yn + Zn

We check that Yn is a martingale: it is integrable since Mn is a martingale

E(|Mn − E(A∞|Fn)|) ≤ E|Mn|+ E(E(A∞|Fn)) = E|Mn|+ E(A∞) <∞
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and by the tower property the martingale property holds

E(Mn − E(A∞|Fn)|Fn−1) = Mn−1 − E(E(A∞|Fn)|Fn−1) = Mn−1 − E(A∞|Fn−1).

Now we check that Zn is a potential: it is clearly non negative and it is integrable

E|Zn| = E(E(A∞|Fn)−An) ≤ E(E(A∞|Fn)) = E(A∞) <∞

and the super-martingale property holds

E(Zn|Fn−1) = E(E(A∞|Fn)−An|Fn−1) ≤ E(A∞|Fn−1)−An−1

Finally we check that limn→∞E(Zn) = 0:

lim
n→∞

E(Zn) = lim
n→∞

E(E(A∞|Fn)−An) = E(A∞)− E( lim
n→∞

An) = 0

where we used monotone convergence in the last equality.

(b) Let be Xn = Y ′n + Z ′n = Yn + Zn, then we have

Y ′n − Yn = Zn − Z ′n

We know that both Zn and Z ′n converge to 0 both in probability and in L1 since they
are uniformly integrable, then (Y ′n − Yn) converges to 0 both in probability and in L1.
But (Y ′n − Yn) is a martingale, so almost surely ∀n

(Zn − Z ′n) = (Y ′n − Yn) = E(Y ′∞ − Y∞|Fn) = 0

4. Show that a martingale (Xt : t ∈ N) has Krickeberg decomposition

Xt = Lt −Mt

where Lt and Mt are non-negative (P,F)-martingales, if and only if

sup
t∈N

EP

(
|Xt|

)
<∞

Hints: You can always assume without loss of generality that M0 = 0, otherwise consider
the martingale (Mt −M0).
For sufficiency show take the decomposition Xt = X+

t −X−t , and show first that (−X−t ) is
a a supermartingale and which admits a Riesz decomposition

(−X−t ) = Yt + Zt

where Yt is a martingale and Zt is a potential. Show then that Xt has Krickeberg decom-
position with

Lt = (Xt − Yt) = X+
t + Zt ≥ 0, and Mt = −Yt = X−t + Zt ≥ 0.

Solution
For sufficiency, we start by showing that −X−t is a super-martingale: since the map f : x 7→
−x− is concave, then the Jensen inequality for conditional expectation implies

E(f(Xt)|Ft−1) ≤ f(E(Xt|Ft−1)) = −X−t−1

Then we get immediately that −X−t has a Riesz decomposition −X−t = Yt + Zt, for the
hypothesis supt∈NEP

(
|Xt|

)
<∞.

Now write
Xt = Xt − Yt + Yt

2



and define Lt := Xt − Yt and Mt := −Yt, which are non-negative martingales.
To show the necessity we need to show that if Xt = Lt−Mt, where Lt,Mt are non-negative
martingales, then

sup
t
E(|Xt|) <∞

and this is true because ∀t

E(|Xt|) ≤ E(Lt) + E(Mt) = E(L0) + E(M0) <∞

5. Suppose we have an urn which contains at time t = 0 two balls, one black and one white.
At each time t ∈ N we draw uniformly at random from the urn one ball, and we put it back
together with a new ball of the same colour.

We introduce the random variables

Xt(ω) = 1
{

the ball drawn at time t is black
}

and denote St = (1 +X1 + · · ·+Xt),

Mt = St/(t+ 2), the proportion of black balls in the urn.

We use the filtration {Fn} with Fn = σ{Xs : s ∈ N, s ≤ t}.

(a) Compute the Doob decomposition of (St), St = S0+Nt+At, where (Nt) is a martingale
and (At) is predictable.

(b) Show that (Mt) is a martingale and find the representation of (Mt) as a martingale
transform Mt = (C · N)t, where (Nt) is the martingale part of (St) and (Ct) is pre-
dictable.

(c) Note that the martingale (Mt)t≥0 is uniformly integrable (Why ?). Show that P a.s.
and in L1 exists M∞ = limt→∞Mt . Compute E(M∞).

(d) Show that P (0 < M∞ < 1) > 0.

Since M∞(ω) ∈ [0, 1], it is enough to show that 0 < E(M2
∞) < E(M∞) with strict inequali-

ties.

Hint: compute the Doob decomposition of the submartingale (M2
t ), and than take expecta-

tions before going to the limit to find the value of E(M2
∞).

Solution

(a) We recall that according to the Doob decomposition we have

Nt =

t∑
r=1

(Sr − E(Sr|Fr−1)) At =

t∑
r=1

(E(Sr|Fr−1)− Sr−1)

where

E(St|Ft−1) = St−1 + E(Xt|Ft−1) = St−1 +Mt−1 = St−1

(
1 +

1

t+ 1

)
So the Doob decomposition is

St = 1 +

t∑
r=1

Sr−1
1

t+ 1
+

t∑
r=1

(Xr −Mr−1)

Since the predictable part is non-decreasing, we see that St is a submartingale.
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(b) Mt is a martingale because

E
(
Mt|Ft−1

)
=

1

t+ 2
E(St|Ft−1) =

1

t+ 2

(
1 +

1

t+ 1

)
St−1 =

St−1

t+ 1
= Mt−1

and in order to find its representation as a martingale transform we consider

Mt −Mt−1 =
St

t+ 2
− St−1

t+ 1
=
St−1 +Xt

t+ 2
− St−1

t+ 1
=

1

t+ 2

(
Xt + St−1

(
1− t+ 2

t+ 1

))
=

1

t+ 2

(
Xt −

St−1

t+ 1

)
=

1

t+ 2
(Xt −Mt−1)

Therefore

Mt =
1

2
+

t∑
r=1

1

r + 2
(Xr −Mr−1) =

1

2
+ (C ·N)t

with Ct = 1
t+2 (deterministic).

(c) Mt is uniformly integrable because

|Mt| =
|St|
t+ 2

≤ t+ 1

t+ 2
< 1

By Doobs’ martingale convergence theorem Mt(ω)→M∞(ω) P -almost surely, and by
uniform integrability also in L1(P ). Since Mt is uniformly integrable, then E(M∞) =
E(Mt) = E(M0) = 1/2.

(d) First we show that if 0 < E(M2
∞) < E(M∞) then P (0 < M∞ < 1) > 0.

Note that 0 < E(M2
∞) is always true because, via the Jensen inequality, we have

E(M2
∞) ≥ (E(M∞))2 = 1/4 > 0

Moreover, note that E(M2
∞) ≤ E(M∞) because 0 ≤M2

∞ ≤M∞.
Thus, we actually want to prove that if E(M2

∞) < E(M∞) then P (0 < M∞ < 1) > 0.
Suppose that P (0 < M∞ < 1) = 0, then we get

E(M2
∞) = E[M2

∞(1(0 < M∞ < 1) + 1(M∞ = 0) + 1(M∞ = 1))] = P (M∞ = 1)

= E[M∞(1(0 < M∞ < 1) + 1(M∞ = 0) + 1(M∞ = 1))] = E(M∞)

so we got a contradiction.
Now we will show the inequality E(M2

∞) < E(M∞): by the discrete integration by
parts we have

M2
t −M2

t−1 = 2Mt−1(Mt −Mt−1) + (Mt −Mt−1)2

and since by the martingale property

E

(
2Mt−1(Mt −Mt−1)

)
= E

(
E(2Mt−1(Mt −Mt−1)|Ft−1

))
= E

(
2Mt−1E(Mt −Mt−1|Ft−1

))
= 0

it follows

E(M2
t ) =

1

4
+ E

( t∑
r=1

(
(Mr −Mr−1)2

)
=

1

4
+

t∑
r=1

E

(
E
(
(Mr −Mr−1)2

∣∣Fr−1
))

Recall that ∆Mr = 1
r+2 (Xr −Mr−1), thus

E
(
(Xr −Mr−1)2

∣∣Fr−1
)

= E(X2
r |Fr−1) +M2

r−1 − 2Mr−1E(Xr|Fr−1)

= E(Xr|Fr−1) +M2
r−1 − 2M2

r−1

= Mr−1 −M2
r−1
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So we have

E(M2
t ) =

1

4
+

t∑
r=1

1

(r + 2)2

(
E(Mr−1)− E(M2

r−1)

)
=

1

4
+

t∑
r=1

1

(r + 2)2

(
1

2
− E(M2

r−1)

)

<
1

4
+

1

2

t∑
r=1

1

(r + 2)2

By Fatou’s lemma

E(M2
∞) ≤ lim inf

t→∞
E(M2

t ) ≤ 1

4
+

1

2

∞∑
r=1

1

(r + 2)2
=

1

4
+

1

2

∞∑
r=3

1

r2
<

1

4
+

1

4
= E(M∞)

where
∞∑
r=3

r−2 <
∞∫
2

x−2dx = 1/2 with strict inequality.

6. Consider an i.i.d. random sequence (Ut : t ∈ N) with uniform distribution on [0, 1], P (U1 ∈
dx) = 1[0,1](x)dx. Note that EP (Ut) = 1/2.

Consider also the random variable − log(U1(ω)) which is 1-exponential w.r.t. P .

P (− log(U1) > x) =

{
exp(−x) kun x ≥ 0
1 kun x < 0

− log(U1) ∈ L1(P ) with EP (− log(U1)) = 1.

(a) Let Z0 = 1, and

Zt(ω) = 2t
t∏

s=1

Us(ω)

Show that (Zt) is a martingale in the filtration F = (Ft : t ∈ N), with Ft = σ(Z1, Z2, . . . , Zt) =
σ(U1, U2, . . . , Ut).

(b) Show that EP (Zt) = 1.

(c) Show that the limit Z∞(ω) = limt→∞ Zt(ω) exists P almost surely.

(d) Show that

Z∞(ω) = 0 P -a.s.

Hint Compute first the P -a.s. limit

lim
t→∞

1

t
log(Zt(ω))

(remember Kolmogorov’s strong law of large numbers!).

(e) Show that the martingale (Zt(ω) : t ∈ N) is not uniformly integrable.

(f) Show that log(Zt(ω)) is a supermartingale, does it satisfy the assumptions of Doob’s
martingale convergence theorem ?

(g) At every time t ∈ N, define the probability measure

Qt(A) := EP (Zt1A) ∀A ∈ Ft

on the probability space (Ω,F).

Show that the random variables (U1, . . . , Ut) are i.i.d. also under Qt, compute their
probability density under Qt.
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Solution

(a) Note that 0 ≤ Zt ≤ 2t ∀t ∈ N, then Zt is integrable ∀t ∈ N and it enjoys the martingale
property

E(Zt|Ft−1) = 2t
t−1∏
s=1

Us(ω)E(Ut) = Zt−1

(b) EP (Zt) = EP (Z0) = Z0 = 1.

(c) (Zt : t ∈ N) is a non-negative martingale, by Doob’s martingale convergence theorem
limt→∞ Zt(ω) exists a.s.

(d) Via the strong law of large numbers

1

t
log(Zt) =

1

t

(
t log(2) +

t∑
s=1

log(Us)

)

= log(2) +
1

t

t∑
s=1

log(Us)→ log(2) + E(log(U1)) = log(2)− 1 < 0.

with convergence P a.s., then P a.s. as t→∞ Zt(ω) = O(exp(t(log(2)− 1))→ 0, that
is Z∞(ω) = 0.

(e) Since E(Z1) = 1 > E(Z∞) = 0, so the martingale property does not hold at infinity, so
Zt is not uniformly integrable.

(f) By Jensen’ inequality for the conditional expectation:

logZt−1 = log

(
EP (Zt|Ft−1)

)
≥ EP (logZt|Ft−1)

therefore log(Zt) is a supermartingale. We see that the hypothesis of the Doob conver-
gence theorem does not hold, in fact

EP (logZt) = t log 2 +

t∑
s=1

E(logUs) = t(log 2− 1) < 0

and

sup
t∈N

EP

(
| log(Zt)|

)
≥ sup

t∈N

∣∣∣∣EP

(
log(Zt)

)∣∣∣∣ = (1− log 2) sup
t∈N

t = +∞

Therefore the collection {log(Zt) : t ∈ N} is not bounded uniformly in L1(P ).

(g) For bounded measurable test functions gi(x), i = 1, . . . , t,

EQt

(
g1(U1) . . . gt(Ut)

)
= EP

(
Ztg1(U1) . . . gt(Ut)

)
= EP

(
2t

t∏
s=1

Usgs(Us)

)
=

t∏
s=1

EP (2Usg(Us))

=

t∏
s=1

EP (Zsg(Us)) =

t∏
s=1

EP (Ztgs(Us)) =

t∏
s=1

EQt
(gs(Us))

which means that U1, . . . , Ut are independent under Qt.

For t ∈ [0, 1]

Q(U ≤ t) = EP

(
2U1(U ≤ t)

)
= 2

∫ t

0

udu = t2

and Q(U ∈ dt) = 2tdt.
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7. ( Paley’s and Littlewood’s maximal function) Consider a function in f(x) ∈ L1(Rd,B(Rd), dx).

Define the σ-algebra

Fk = σ
{
Qk,z =

(
z2−k, (z + 1)2−k

]
, z ∈ Zd

}
⊆ B(Rd), k ∈ Z

and the two sided filtration F = (Fk : k ∈ Z) where the dyadic cubes (Qk,z : z ∈ Zd) form a
partition of Rd, and the functions

fk(x) =
∑
z∈Zd

1(x ∈ Qk,z)
1

|Qk,z|

∫
Qk,z

f(y)dy

where for k ∈ Z, |Qk,z| = 2−kd is the Lebesgue measure of the d-dimensional dyadic cube

(a) Show that fk(x) is an F-martingale w.r.t. Lebesgue measure. Note that the definition
of conditional expectation martingales extends directly to the case where we integrate
with respect to σ-finite positive measures, where the martingale property in this case
means ∫

Rd

f(x)gk(x)dx =

∫
Rd

f(x)gk(x)dx

∀k ∈ Z and gk(x) bounded and Fk-measurable.

To work with a probability measure, we could take instead with f(x) ∈ L1([0, 1]d,B([0, 1]d), dx).

(b) Show that

lim
k→−∞

fk(x) = 0, ∀x ∈ Rd,

but it does not converge in L1.
In particular this means that the Doob’s martingale backward convergence theorem
does NOT extend to the case of σ-finite measures.

(c) Show that limk→+∞ fk(x) = f(x) almost everywhere and in L1.

(d) Define the maximal function

f�(x) := sup
k∈Z

fk(x)

Use the martingale maximal inequalities to show that for 1 < p <∞

‖ f�(x) ‖Lp(Rd)≤
p

p− 1
sup
k∈Z
‖ fk ‖Lp(Rd)≤

p

p− 1
‖ f ‖Lp(Rd)

and

cP (|f�(x)| > c) ≤ sup
k∈Z
‖ fk ‖L1(Rd)≤‖ f ‖L1(Rd)

Solution

(a) Note that fk ∈ Fk and that Fk ⊆ Fk+1. We want to show that fk is a martingale, so
first we see that fk is integrable ∀k ∈ Z.∫

Rd

dx|fk(x)| =

∫
Rd

dx
∑
z∈Zd

1(x ∈ Qk,z)2kd
∣∣∣∣ ∫

Qk,z

f(y)dy

∣∣∣∣
≤

∫
Rd

dx
∑
z∈Zd

1(x ∈ Qk,z)2kd
∫
Qk,z

|f(y)|dy

≤
∑
z∈Zd

∫
Qk,z

|f(y)|dy = ‖f‖1 <∞
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where we used the monotone convergence theorem to switch the order between the sum
and the integral.
Note that every A ∈ Fk is a disjoint union of squares Qk, i.e. A = ∪i∈IQk,i for some
set I ⊆ Z, and each Qk,i is clearly the union of four squares of size 2−(k+1). Then we
can check the martingale property by using the Kolmogorov’s definition of conditional
expectation just for a generic Qk∫

Rd

dxfk+1(x)χQk
(x) =

∫
Rd

dx
∑

i:∪4
i=1Qk+1,i=Qk

χQk+1,i
(x)

|Qk+1,i|

∫
Qk+1,i

f(y)dy =

=

∫
Qk

f(y)dy =

∫
Rd

dxfk(x)χQk
(x)

(b) Note that

|fk(x)| ≤ 2kd ‖ f ‖L1(Rd)−→ 0, as k → −∞

On the other hand we have

E|fk| =
∑
z∈Z

∣∣∣∣ ∫
Qz,k

f(x)dx

∣∣∣∣→ |E(f)|

as k → −∞, then fk → f in L1 as k → −∞ only if |E(f)| = 0

(c) To show convergence in L1 convergence, we split the integral into two parts. Let ε > 0.
Then there exists a dyadic cube Q, such that∫

Rd\Q
|f(x)|dx < ε

Then also ∫
Rd\Q

|fk(x)− f(x)|dx <
∫
Rd\Q

(|fk(x)|+ f(x)|)dx < 2ε

because
∫
Rd\Q |fk(x)| ≤

∫
Rd\Q |f(x)| when k is large enough so that the cubes on the

level k tile the set Rd\Q.
On the other hand, Q has finite measure (which we can normalize to be 1), and fk|Q
is uniformly integrable because

fk = E(f |Fk)

Therefore fk|Q→ f |Q in L1.
The result follows since∫

Rd

|fk(x)− f(x)|dx ≤
∫
Q

|fk(x)− f(x)|dx+

∫
Rd\Q

|fk(x)− f(x)|dx < 3ε

for k large enough.
On the other hand the convergence almost surely follows from the Doob martingale
convergence theorem.

(d) For n ∈ N, the process (|fk(x)| : k = −n, . . . , 0, . . . , n) is a submartingale as one can
see by the Jensen’s inequality.
We want to apply the maximal Doob inequality, so we need to consider a probability
measure: for each z ∈ Zd, consider the probability space Q−n,z equipped with the
normalized Lebesgue measure 2−nddx.
Then ∀z ∈ Z, c > 0, by using Doob’s martingale maximal inequalities

c

∫
Q−n,z

1
(

sup
−n≤k≤n

|fk(x)| > c
)
dx ≤

∫
Q−n,z

|fn(x)|1
(

sup
−n≤k≤n

|fk(x)| > c
)
dx

≤
∫
Q−n,z

|fn(x)|dx
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and we can sum over z ∈ Zd obtaining

c

∫
Rd

1
(

sup
−n≤k≤n

|fk(x)| > c
)
dx ≤

∫
Rd

|fn(x)|1
(

sup
−n≤k≤n

|fk(x)| > c
)
dx

≤
∫
Rd

|fn(x)|dx ≤‖ f ‖L1(R) (1)

This implies easily that

c

∫
Rd

1
(

sup
−n≤k≤n

|fk(x)| > c
)
dx ≤

∫
Rd

|fn(x)|dx ≤ sup
n∈Z
‖fn‖1 ≤ ‖f‖1

Moreover, by monotone convergence we get that

lim
n→∞

c

∫
Rd

1
(

sup
−n≤k≤n

|fk(x)| > c
)
dx = c

∫
Rd

1
(
sup
k∈Z
|fk(x)| > c

)
dx

≥ c

∫
Rd

1
(∣∣ sup

k∈Z
fk(x)

∣∣ > c
)
dx =: cP (|f�(x)| > c)

so we finally get the second inequality from 1

cP (|f�(x)| > c) ≤ sup
k∈Z
‖ fk ‖L1(Rd)≤‖ f ‖L1(Rd)

Now, if f ∈ Lp, then ‖fk‖p ≤ ‖f‖p ∀k ∈ Z. Equation 1 means that the hypothe-
sis of Lemma 20 are satisfied in the probability space specified above and for X =
supk∈Z |fk(x)| ≥ f�(x) and Y = fn(x) ∀n ∈ N.
Thus we get ∫

Q−n,z

|f�(x)|pdx ≤
(

p

p− 1

)p ∫
Q−n,z

|fn(x)|pdx

By summing all over z ∈ Zd we get finally

‖f�(x)‖p ≤
p

p− 1
‖fn‖p ≤

p

p− 1
sup
k∈Z
‖fk‖p ≤

p

p− 1
‖f‖p
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