Stochastic analysis, fall 2014, Exercises-6, 29.10.2014

Consider a probability space (Ω, \mathcal{F}, P) equipped with the dicrete-time filtration $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right)$

1. In discrete time, show that a \mathbb{F}-predictable (P, \mathbb{F})-martingale is constant, i,e $M_{n}(\omega)=M_{0}(\omega)$ $\forall n$.

Solution

$$
M_{n}=E\left(M_{n} \mid \mathcal{F}_{n-1}\right)=M_{n-1}
$$

then $M_{n}(\omega)=M_{0}(\omega) \forall n$.
2. A potential $\left(Z_{n}: n \in \mathbb{N}\right)$ is a non-negative (P, \mathbb{F})-supermartingale with

$$
\lim _{n \rightarrow \infty} E\left(Z_{n}\right)=0
$$

Show that a potential is uniformly integrable.

Solution

Note that, since Z_{n} is non-negative, then Z_{n} converges to 0 in L^{1}. Then, by theorem 12 in the lecture notes, we have that is uniformly integrable.
3. An (\mathbb{F}, P)-supermartingale $\left(X_{n}: n \in \mathbb{N}\right)$ has Riesz decomposition if it can be written as

$$
X_{n}=Y_{n}+Z_{n}
$$

where Y_{n} is a martingale and Z_{n} is a potential.
(a) Show that if $\sup _{n \in \mathbb{N}} E_{P}\left(X_{n}^{-}\right)<\infty$ then X_{n} has Riesz decomposition with

$$
Y_{n}=M_{n}-E\left(A_{\infty} \mid \mathcal{F}_{n}\right), \quad Z_{n}=E\left(A_{\infty} \mid \mathcal{F}_{n}\right)-A_{n}
$$

where $X_{n}=M_{n}-A_{n}$ is the Doob decomposition of X into a martingale part M and a predictable part with A non-decreasing and $A_{0}=0$.
(b) Show that the Riesz decomposition is unique.

Solution

(a) By the Doob convergence theorem and Doob decomposition we have that there exist almost surely

$$
\lim _{n \rightarrow \infty} X_{n}=X_{\infty}=M_{\infty}-A_{\infty} \in L^{1}
$$

Furthermore, note that

$$
E\left(A_{n}\right)=E\left(M_{n}\right)-E\left(X_{n}\right) \leq E\left(M_{0}\right)+E\left(X_{n}^{-}\right)
$$

so we get

$$
\sup _{n} E\left(A_{n}\right)<\infty
$$

By linearity we get

$$
\begin{aligned}
X_{n} & =M_{n}+E\left(M_{\infty}-A_{\infty} \mid \mathcal{F}_{n}\right)-E\left(M_{\infty}-A_{\infty} \mid \mathcal{F}_{n}\right)-A_{n}= \\
& =M_{n}-E\left(A_{\infty} \mid \mathcal{F}_{n}\right)+E\left(A_{\infty} \mid \mathcal{F}_{n}\right)-A_{n}=Y_{n}+Z_{n}
\end{aligned}
$$

We check that Y_{n} is a martingale: it is integrable since M_{n} is a martingale

$$
E\left(\left|M_{n}-E\left(A_{\infty} \mid \mathcal{F}_{n}\right)\right|\right) \leq E\left|M_{n}\right|+E\left(E\left(A_{\infty} \mid \mathcal{F}_{n}\right)\right)=E\left|M_{n}\right|+E\left(A_{\infty}\right)<\infty
$$

and by the tower property the martingale property holds

$$
E\left(M_{n}-E\left(A_{\infty} \mid \mathcal{F}_{n}\right) \mid \mathcal{F}_{n-1}\right)=M_{n-1}-E\left(E\left(A_{\infty} \mid \mathcal{F}_{n}\right) \mid \mathcal{F}_{n-1}\right)=M_{n-1}-E\left(A_{\infty} \mid \mathcal{F}_{n-1}\right)
$$

Now we check that Z_{n} is a potential: it is clearly non negative and it is integrable

$$
E\left|Z_{n}\right|=E\left(E\left(A_{\infty} \mid \mathcal{F}_{n}\right)-A_{n}\right) \leq E\left(E\left(A_{\infty} \mid \mathcal{F}_{n}\right)\right)=E\left(A_{\infty}\right)<\infty
$$

and the super-martingale property holds

$$
E\left(Z_{n} \mid \mathcal{F}_{n-1}\right)=E\left(E\left(A_{\infty} \mid \mathcal{F}_{n}\right)-A_{n} \mid \mathcal{F}_{n-1}\right) \leq E\left(A_{\infty} \mid \mathcal{F}_{n-1}\right)-A_{n-1}
$$

Finally we check that $\lim _{n \rightarrow \infty} E\left(Z_{n}\right)=0$:

$$
\lim _{n \rightarrow \infty} E\left(Z_{n}\right)=\lim _{n \rightarrow \infty} E\left(E\left(A_{\infty} \mid \mathcal{F}_{n}\right)-A_{n}\right)=E\left(A_{\infty}\right)-E\left(\lim _{n \rightarrow \infty} A_{n}\right)=0
$$

where we used monotone convergence in the last equality.
(b) Let be $X_{n}=Y_{n}^{\prime}+Z_{n}^{\prime}=Y_{n}+Z_{n}$, then we have

$$
Y_{n}^{\prime}-Y_{n}=Z_{n}-Z_{n}^{\prime}
$$

We know that both Z_{n} and Z_{n}^{\prime} converge to 0 both in probability and in L^{1} since they are uniformly integrable, then $\left(Y_{n}^{\prime}-Y_{n}\right)$ converges to 0 both in probability and in L^{1}. But $\left(Y_{n}^{\prime}-Y_{n}\right)$ is a martingale, so almost surely $\forall n$

$$
\left(Z_{n}-Z_{n}^{\prime}\right)=\left(Y_{n}^{\prime}-Y_{n}\right)=E\left(Y_{\infty}^{\prime}-Y_{\infty} \mid \mathcal{F}_{n}\right)=0
$$

4. Show that a martingale ($X_{t}: t \in \mathbb{N}$) has Krickeberg decomposition

$$
X_{t}=L_{t}-M_{t}
$$

where L_{t} and M_{t} are non-negative (P, \mathbb{F})-martingales, if and only if

$$
\sup _{t \in \mathbb{N}} E_{P}\left(\left|X_{t}\right|\right)<\infty
$$

Hints: You can always assume without loss of generality that $M_{0}=0$, otherwise consider the martingale $\left(M_{t}-M_{0}\right)$.
For sufficiency show take the decomposition $X_{t}=X_{t}^{+}-X_{t}^{-}$, and show first that $\left(-X_{t}^{-}\right)$is a a supermartingale and which admits a Riesz decomposition

$$
\left(-X_{t}^{-}\right)=Y_{t}+Z_{t}
$$

where Y_{t} is a martingale and Z_{t} is a potential. Show then that X_{t} has Krickeberg decomposition with

$$
L_{t}=\left(X_{t}-Y_{t}\right)=X_{t}^{+}+Z_{t} \geq 0, \quad \text { and } \quad M_{t}=-Y_{t}=X_{t}^{-}+Z_{t} \geq 0
$$

Solution

For sufficiency, we start by showing that $-X_{t}^{-}$is a super-martingale: since the map $f: x \mapsto$ $-x^{-}$is concave, then the Jensen inequality for conditional expectation implies

$$
E\left(f\left(X_{t}\right) \mid \mathcal{F}_{t-1}\right) \leq f\left(E\left(X_{t} \mid \mathcal{F}_{t-1}\right)\right)=-X_{t-1}^{-}
$$

Then we get immediately that $-X_{t}^{-}$has a Riesz decomposition $-X_{t}^{-}=Y_{t}+Z_{t}$, for the hypothesis $\sup _{t \in \mathbb{N}} E_{P}\left(\left|X_{t}\right|\right)<\infty$.
Now write

$$
X_{t}=X_{t}-Y_{t}+Y_{t}
$$

and define $L_{t}:=X_{t}-Y_{t}$ and $M_{t}:=-Y_{t}$, which are non-negative martingales.
To show the necessity we need to show that if $X_{t}=L_{t}-M_{t}$, where L_{t}, M_{t} are non-negative martingales, then

$$
\sup _{t} E\left(\left|X_{t}\right|\right)<\infty
$$

and this is true because $\forall t$

$$
E\left(\left|X_{t}\right|\right) \leq E\left(L_{t}\right)+E\left(M_{t}\right)=E\left(L_{0}\right)+E\left(M_{0}\right)<\infty
$$

5. Suppose we have an urn which contains at time $t=0$ two balls, one black and one white. At each time $t \in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables
$X_{t}(\omega)=\mathbf{1}\{$ the ball drawn at time t is black $\}$
and denote $S_{t}=\left(1+X_{1}+\cdots+X_{t}\right)$,
$M_{t}=S_{t} /(t+2)$, the proportion of black balls in the urn.
We use the filtration $\left\{\mathcal{F}_{n}\right\}$ with $\mathcal{F}_{n}=\sigma\left\{X_{s}: s \in \mathbb{N}, s \leq t\right\}$.
(a) Compute the Doob decomposition of $\left(S_{t}\right), S_{t}=S_{0}+N_{t}+A_{t}$, where $\left(N_{t}\right)$ is a martingale and $\left(A_{t}\right)$ is predictable.
(b) Show that $\left(M_{t}\right)$ is a martingale and find the representation of $\left(M_{t}\right)$ as a martingale transform $M_{t}=(C \cdot N)_{t}$, where $\left(N_{t}\right)$ is the martingale part of $\left(S_{t}\right)$ and $\left(C_{t}\right)$ is predictable.
(c) Note that the martingale $\left(M_{t}\right)_{t \geq 0}$ is uniformly integrable (Why ?). Show that P a.s. and in L^{1} exists $M_{\infty}=\lim _{t \rightarrow \infty} M_{t}$. Compute $E\left(M_{\infty}\right)$.
(d) Show that $P\left(0<M_{\infty}<1\right)>0$.

Since $M_{\infty}(\omega) \in[0,1]$, it is enough to show that $0<E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale $\left(M_{t}^{2}\right)$, and than take expectations before going to the limit to find the value of $E\left(M_{\infty}^{2}\right)$.

Solution

(a) We recall that according to the Doob decomposition we have

$$
N_{t}=\sum_{r=1}^{t}\left(S_{r}-E\left(S_{r} \mid \mathcal{F}_{r-1}\right)\right) \quad A_{t}=\sum_{r=1}^{t}\left(E\left(S_{r} \mid \mathcal{F}_{r-1}\right)-S_{r-1}\right)
$$

where

$$
E\left(S_{t} \mid \mathcal{F}_{t-1}\right)=S_{t-1}+E\left(X_{t} \mid \mathcal{F}_{t-1}\right)=S_{t-1}+M_{t-1}=S_{t-1}\left(1+\frac{1}{t+1}\right)
$$

So the Doob decomposition is

$$
S_{t}=1+\sum_{r=1}^{t} S_{r-1} \frac{1}{t+1}+\sum_{r=1}^{t}\left(X_{r}-M_{r-1}\right)
$$

Since the predictable part is non-decreasing, we see that S_{t} is a submartingale.
(b) M_{t} is a martingale because

$$
E\left(M_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{t+2} E\left(S_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{t+2}\left(1+\frac{1}{t+1}\right) S_{t-1}=\frac{S_{t-1}}{t+1}=M_{t-1}
$$

and in order to find its representation as a martingale transform we consider

$$
\begin{aligned}
& M_{t}-M_{t-1}=\frac{S_{t}}{t+2}-\frac{S_{t-1}}{t+1}=\frac{S_{t-1}+X_{t}}{t+2}-\frac{S_{t-1}}{t+1}=\frac{1}{t+2}\left(X_{t}+S_{t-1}\left(1-\frac{t+2}{t+1}\right)\right) \\
& =\frac{1}{t+2}\left(X_{t}-\frac{S_{t-1}}{t+1}\right)=\frac{1}{t+2}\left(X_{t}-M_{t-1}\right)
\end{aligned}
$$

Therefore

$$
M_{t}=\frac{1}{2}+\sum_{r=1}^{t} \frac{1}{r+2}\left(X_{r}-M_{r-1}\right)=\frac{1}{2}+(C \cdot N)_{t}
$$

with $C_{t}=\frac{1}{t+2}$ (deterministic).
(c) M_{t} is uniformly integrable because

$$
\left|M_{t}\right|=\frac{\left|S_{t}\right|}{t+2} \leq \frac{t+1}{t+2}<1
$$

By Doobs' martingale convergence theorem $M_{t}(\omega) \rightarrow M_{\infty}(\omega) P$-almost surely, and by uniform integrability also in $L^{1}(P)$. Since M_{t} is uniformly integrable, then $E\left(M_{\infty}\right)=$ $E\left(M_{t}\right)=E\left(M_{0}\right)=1 / 2$.
(d) First we show that if $0<E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$ then $P\left(0<M_{\infty}<1\right)>0$.

Note that $0<E\left(M_{\infty}^{2}\right)$ is always true because, via the Jensen inequality, we have

$$
E\left(M_{\infty}^{2}\right) \geq\left(E\left(M_{\infty}\right)\right)^{2}=1 / 4>0
$$

Moreover, note that $E\left(M_{\infty}^{2}\right) \leq E\left(M_{\infty}\right)$ because $0 \leq M_{\infty}^{2} \leq M_{\infty}$.
Thus, we actually want to prove that if $E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$ then $P\left(0<M_{\infty}<1\right)>0$.
Suppose that $P\left(0<M_{\infty}<1\right)=0$, then we get

$$
\begin{aligned}
E\left(M_{\infty}^{2}\right) & =E\left[M_{\infty}^{2}\left(\mathbf{1}\left(0<M_{\infty}<1\right)+\mathbf{1}\left(M_{\infty}=0\right)+\mathbf{1}\left(M_{\infty}=1\right)\right)\right]=P\left(M_{\infty}=1\right) \\
& =E\left[M_{\infty}\left(\mathbf{1}\left(0<M_{\infty}<1\right)+\mathbf{1}\left(M_{\infty}=0\right)+\mathbf{1}\left(M_{\infty}=1\right)\right)\right]=E\left(M_{\infty}\right)
\end{aligned}
$$

so we got a contradiction.
Now we will show the inequality $E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$: by the discrete integration by parts we have

$$
M_{t}^{2}-M_{t-1}^{2}=2 M_{t-1}\left(M_{t}-M_{t-1}\right)+\left(M_{t}-M_{t-1}\right)^{2}
$$

and since by the martingale property

$$
E\left(2 M_{t-1}\left(M_{t}-M_{t-1}\right)\right)=E\left(E\left(2 M_{t-1}\left(M_{t}-M_{t-1}\right) \mid \mathcal{F}_{t-1}\right)\right)=E\left(2 M_{t-1} E\left(M_{t}-M_{t-1} \mid \mathcal{F}_{t-1}\right)\right)=0
$$

it follows

$$
E\left(M_{t}^{2}\right)=\frac{1}{4}+E\left(\sum_{r=1}^{t}\left(\left(M_{r}-M_{r-1}\right)^{2}\right)=\frac{1}{4}+\sum_{r=1}^{t} E\left(E\left(\left(M_{r}-M_{r-1}\right)^{2} \mid \mathcal{F}_{r-1}\right)\right)\right.
$$

Recall that $\Delta M_{r}=\frac{1}{r+2}\left(X_{r}-M_{r-1}\right)$, thus

$$
\begin{aligned}
E\left(\left(X_{r}-M_{r-1}\right)^{2} \mid \mathcal{F}_{r-1}\right) & =E\left(X_{r}^{2} \mid \mathcal{F}_{r-1}\right)+M_{r-1}^{2}-2 M_{r-1} E\left(X_{r} \mid \mathcal{F}_{r-1}\right) \\
& =E\left(X_{r} \mid \mathcal{F}_{r-1}\right)+M_{r-1}^{2}-2 M_{r-1}^{2} \\
& =M_{r-1}-M_{r-1}^{2}
\end{aligned}
$$

So we have

$$
\begin{aligned}
E\left(M_{t}^{2}\right) & =\frac{1}{4}+\sum_{r=1}^{t} \frac{1}{(r+2)^{2}}\left(E\left(M_{r-1}\right)-E\left(M_{r-1}^{2}\right)\right)=\frac{1}{4}+\sum_{r=1}^{t} \frac{1}{(r+2)^{2}}\left(\frac{1}{2}-E\left(M_{r-1}^{2}\right)\right) \\
& <\frac{1}{4}+\frac{1}{2} \sum_{r=1}^{t} \frac{1}{(r+2)^{2}}
\end{aligned}
$$

By Fatou's lemma

$$
E\left(M_{\infty}^{2}\right) \leq \liminf _{t \rightarrow \infty} E\left(M_{t}^{2}\right) \leq \frac{1}{4}+\frac{1}{2} \sum_{r=1}^{\infty} \frac{1}{(r+2)^{2}}=\frac{1}{4}+\frac{1}{2} \sum_{r=3}^{\infty} \frac{1}{r^{2}}<\frac{1}{4}+\frac{1}{4}=E\left(M_{\infty}\right)
$$

where $\sum_{r=3}^{\infty} r^{-2}<\int_{2}^{\infty} x^{-2} d x=1 / 2$ with strict inequality.
6. Consider an i.i.d. random sequence $\left(U_{t}: t \in \mathbb{N}\right)$ with uniform distribution on $[0,1], P\left(U_{1} \in\right.$ $d x)=\mathbf{1}_{[0,1]}(x) d x$. Note that $E_{P}\left(U_{t}\right)=1 / 2$.
Consider also the random variable $-\log \left(U_{1}(\omega)\right)$ which is 1-exponential w.r.t. P.

$$
P\left(-\log \left(U_{1}\right)>x\right)= \begin{cases}\exp (-x) & \text { kun } x \geq 0 \\ 1 & \text { kun } x<0\end{cases}
$$

$-\log \left(U_{1}\right) \in L^{1}(P)$ with $E_{P}\left(-\log \left(U_{1}\right)\right)=1$.
(a) Let $Z_{0}=1$, and

$$
Z_{t}(\omega)=2^{t} \prod_{s=1}^{t} U_{s}(\omega)
$$

Show that $\left(Z_{t}\right)$ is a martingale in the filtration $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right)$, with $\mathcal{F}_{t}=\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{t}\right)=$ $\sigma\left(U_{1}, U_{2}, \ldots, U_{t}\right)$.
(b) Show that $E_{P}\left(Z_{t}\right)=1$.
(c) Show that the limit $Z_{\infty}(\omega)=\lim _{t \rightarrow \infty} Z_{t}(\omega)$ exists P almost surely.
(d) Show that

$$
Z_{\infty}(\omega)=0 \quad P \text {-a.s. }
$$

Hint Compute first the P-a.s. limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(Z_{t}(\omega)\right)
$$

(remember Kolmogorov's strong law of large numbers!).
(e) Show that the martingale $\left(Z_{t}(\omega): t \in \mathbb{N}\right)$ is not uniformly integrable.
(f) Show that $\log \left(Z_{t}(\omega)\right)$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem ?
(g) At every time $t \in \mathbb{N}$, define the probability measure

$$
Q_{t}(A):=E_{P}\left(Z_{t} \mathbf{1}_{A}\right) \quad \forall A \in \mathcal{F}_{t}
$$

on the probability space (Ω, \mathcal{F}).
Show that the random variables $\left(U_{1}, \ldots, U_{t}\right)$ are i.i.d. also under Q_{t}, compute their probability density under Q_{t}.

Solution

(a) Note that $0 \leq Z_{t} \leq 2^{t} \forall t \in \mathbb{N}$, then Z_{t} is integrable $\forall t \in \mathbb{N}$ and it enjoys the martingale property

$$
E\left(Z_{t} \mid \mathcal{F}_{t-1}\right)=2^{t} \prod_{s=1}^{t-1} U_{s}(\omega) E\left(U_{t}\right)=Z_{t-1}
$$

(b) $E_{P}\left(Z_{t}\right)=E_{P}\left(Z_{0}\right)=Z_{0}=1$.
(c) $\left(Z_{t}: t \in \mathbb{N}\right)$ is a non-negative martingale, by Doob's martingale convergence theorem $\lim _{t \rightarrow \infty} Z_{t}(\omega)$ exists a.s.
(d) Via the strong law of large numbers

$$
\begin{aligned}
& \frac{1}{t} \log \left(Z_{t}\right)=\frac{1}{t}\left(t \log (2)+\sum_{s=1}^{t} \log \left(U_{s}\right)\right) \\
& =\log (2)+\frac{1}{t} \sum_{s=1}^{t} \log \left(U_{s}\right) \rightarrow \log (2)+E\left(\log \left(U_{1}\right)\right)=\log (2)-1<0
\end{aligned}
$$

with convergence P a.s., then P a.s. as $t \rightarrow \infty Z_{t}(\omega)=\mathcal{O}(\exp (t(\log (2)-1)) \rightarrow 0$, that is $Z_{\infty}(\omega)=0$.
(e) Since $E\left(Z_{1}\right)=1>E\left(Z_{\infty}\right)=0$, so the martingale property does not hold at infinity, so Z_{t} is not uniformly integrable.
(f) By Jensen' inequality for the conditional expectation:

$$
\log Z_{t-1}=\log \left(E_{P}\left(Z_{t} \mid \mathcal{F}_{t-1}\right)\right) \geq E_{P}\left(\log Z_{t} \mid \mathcal{F}_{t-1}\right)
$$

therefore $\log \left(Z_{t}\right)$ is a supermartingale. We see that the hypothesis of the Doob convergence theorem does not hold, in fact

$$
E_{P}\left(\log Z_{t}\right)=t \log 2+\sum_{s=1}^{t} E\left(\log U_{s}\right)=t(\log 2-1)<0
$$

and

$$
\sup _{t \in \mathbb{N}} E_{P}\left(\left|\log \left(Z_{t}\right)\right|\right) \geq \sup _{t \in \mathbb{N}}\left|E_{P}\left(\log \left(Z_{t}\right)\right)\right|=(1-\log 2) \sup _{t \in \mathbb{N}} t=+\infty
$$

Therefore the collection $\left\{\log \left(Z_{t}\right): t \in \mathbb{N}\right\}$ is not bounded uniformly in $L^{1}(P)$.
(g) For bounded measurable test functions $g_{i}(x), i=1, \ldots, t$,

$$
\begin{aligned}
& E_{Q_{t}}\left(g_{1}\left(U_{1}\right) \ldots g_{t}\left(U_{t}\right)\right)=E_{P}\left(Z_{t} g_{1}\left(U_{1}\right) \ldots g_{t}\left(U_{t}\right)\right)=E_{P}\left(2^{t} \prod_{s=1}^{t} U_{s} g_{s}\left(U_{s}\right)\right)=\prod_{s=1}^{t} E_{P}\left(2 U_{s} g\left(U_{s}\right)\right) \\
& =\prod_{s=1}^{t} E_{P}\left(Z_{s} g\left(U_{s}\right)\right)=\prod_{s=1}^{t} E_{P}\left(Z_{t} g_{s}\left(U_{s}\right)\right)=\prod_{s=1}^{t} E_{Q_{t}}\left(g_{s}\left(U_{s}\right)\right)
\end{aligned}
$$

which means that U_{1}, \ldots, U_{t} are independent under Q_{t}.
For $t \in[0,1]$

$$
Q(U \leq t)=E_{P}(2 U \mathbf{1}(U \leq t))=2 \int_{0}^{t} u d u=t^{2}
$$

and $Q(U \in d t)=2 t d t$.
7. (Paley's and Littlewood's maximal function) Consider a function in $f(x) \in L^{1}\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right), d x\right)$. Define the σ-algebra

$$
\mathcal{F}_{k}=\sigma\left\{Q_{k, z}=\left(z 2^{-k},(z+1) 2^{-k}\right], z \in \mathbb{Z}^{d}\right\} \subseteq \mathcal{B}\left(\mathbb{R}^{d}\right), \quad k \in \mathbb{Z}
$$

and the two sided filtration $\mathbb{F}=\left(\mathcal{F}_{k}: k \in \mathbb{Z}\right)$ where the dyadic cubes $\left(Q_{k, z}: z \in \mathbb{Z}^{d}\right)$ form a partition of \mathbb{R}^{d}, and the functions

$$
f_{k}(x)=\sum_{z \in \mathbb{Z}^{d}} \mathbf{1}\left(x \in Q_{k, z}\right) \frac{1}{\left|Q_{k, z}\right|} \int_{Q_{k, z}} f(y) d y
$$

where for $k \in \mathbb{Z},\left|Q_{k, z}\right|=2^{-k d}$ is the Lebesgue measure of the d-dimensional dyadic cube
(a) Show that $f_{k}(x)$ is an \mathbb{F}-martingale w.r.t. Lebesgue measure. Note that the definition of conditional expectation martingales extends directly to the case where we integrate with respect to σ-finite positive measures, where the martingale property in this case means

$$
\int_{\mathbb{R}^{d}} f(x) g_{k}(x) d x=\int_{\mathbb{R}^{d}} f(x) g_{k}(x) d x
$$

$\forall k \in \mathbb{Z}$ and $g_{k}(x)$ bounded and \mathcal{F}_{k}-measurable.
To work with a probability measure, we could take instead with $f(x) \in L^{1}\left([0,1]^{d}, \mathcal{B}\left([0,1]^{d}\right), d x\right)$.
(b) Show that

$$
\lim _{k \rightarrow-\infty} f_{k}(x)=0, \quad \forall x \in \mathbb{R}^{d}
$$

but it does not converge in L^{1}.
In particular this means that the Doob's martingale backward convergence theorem does NOT extend to the case of σ-finite measures.
(c) Show that $\lim _{k \rightarrow+\infty} f_{k}(x)=f(x)$ almost everywhere and in L^{1}.
(d) Define the maximal function

$$
f^{\square}(x):=\sup _{k \in \mathbb{Z}} f_{k}(x)
$$

Use the martingale maximal inequalities to show that for $1<p<\infty$

$$
\left\|f^{\square}(x)\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq \frac{p}{p-1} \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq \frac{p}{p-1}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

and

$$
c P\left(\left|f^{\square}(x)\right|>c\right) \leq \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

Solution

(a) Note that $f_{k} \in \mathcal{F}_{k}$ and that $\mathcal{F}_{k} \subseteq \mathcal{F}_{k+1}$. We want to show that f_{k} is a martingale, so first we see that f_{k} is integrable $\forall k \in \mathbb{Z}$.

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} d x\left|f_{k}(x)\right| & =\int_{\mathbb{R}^{d}} d x \sum_{z \in \mathbb{Z}^{d}} \mathbf{1}\left(x \in Q_{k, z}\right) 2^{k d}\left|\int_{Q_{k, z}} f(y) d y\right| \\
& \leq \int_{\mathbb{R}^{d}} d x \sum_{z \in \mathbb{Z}^{d}} \mathbf{1}\left(x \in Q_{k, z}\right) 2^{k d} \int_{Q_{k, z}}|f(y)| d y \\
& \leq \sum_{z \in \mathbb{Z}^{d}} \int_{Q_{k, z}}|f(y)| d y=\|f\|_{1}<\infty
\end{aligned}
$$

where we used the monotone convergence theorem to switch the order between the sum and the integral.
Note that every $A \in \mathcal{F}_{k}$ is a disjoint union of squares Q_{k}, i.e. $A=\cup_{i \in I} Q_{k, i}$ for some set $I \subseteq \mathbb{Z}$, and each $Q_{k, i}$ is clearly the union of four squares of size $2^{-(k+1)}$. Then we can check the martingale property by using the Kolmogorov's definition of conditional expectation just for a generic Q_{k}

$$
\begin{aligned}
\int_{\mathbb{R}^{d}} d x f_{k+1}(x) \chi_{Q_{k}}(x) & =\int_{\mathbb{R}^{d}} d x \sum_{i: \cup \cup_{i=1}^{4} Q_{k+1, i}=Q_{k}} \frac{\chi_{Q_{k+1, i}}(x)}{\left|Q_{k+1, i}\right|} \int_{Q_{k+1, i}} f(y) d y= \\
& =\int_{Q_{k}} f(y) d y=\int_{\mathbb{R}^{d}} d x f_{k}(x) \chi_{Q_{k}}(x)
\end{aligned}
$$

(b) Note that

$$
\left|f_{k}(x)\right| \leq 2^{k d}\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)} \longrightarrow 0, \quad \text { as } k \rightarrow-\infty
$$

On the other hand we have

$$
E\left|f_{k}\right|=\sum_{z \in \mathbb{Z}}\left|\int_{Q_{z, k}} f(x) d x\right| \rightarrow|E(f)|
$$

as $k \rightarrow-\infty$, then $f_{k} \rightarrow f$ in L^{1} as $k \rightarrow-\infty$ only if $|E(f)|=0$
(c) To show convergence in L^{1} convergence, we split the integral into two parts. Let $\epsilon>0$. Then there exists a dyadic cube Q, such that

$$
\int_{\mathbb{R}^{d} \backslash Q}|f(x)| d x<\epsilon
$$

Then also

$$
\int_{\mathbb{R}^{d} \backslash Q}\left|f_{k}(x)-f(x)\right| d x<\int_{\mathbb{R}^{d} \backslash Q}\left(\left|f_{k}(x)\right|+f(x) \mid\right) d x<2 \epsilon
$$

because $\int_{\mathbb{R}^{d} \backslash Q}\left|f_{k}(x)\right| \leq \int_{\mathbb{R}^{d} \backslash Q}|f(x)|$ when k is large enough so that the cubes on the level k tile the set $\mathbb{R}^{d} \backslash Q$.
On the other hand, Q has finite measure (which we can normalize to be 1), and $f_{k} \mid Q$ is uniformly integrable because

$$
f_{k}=E\left(f \mid \mathcal{F}_{k}\right)
$$

Therefore $f_{k}|Q \rightarrow f| Q$ in L^{1}.
The result follows since

$$
\int_{\mathbb{R}^{d}}\left|f_{k}(x)-f(x)\right| d x \leq \int_{Q}\left|f_{k}(x)-f(x)\right| d x+\int_{\mathbb{R}^{d} \backslash Q}\left|f_{k}(x)-f(x)\right| d x<3 \epsilon
$$

for k large enough.
On the other hand the convergence almost surely follows from the Doob martingale convergence theorem.
(d) For $n \in \mathbb{N}$, the process $\left(\left|f_{k}(x)\right|: k=-n, \ldots, 0, \ldots, n\right)$ is a submartingale as one can see by the Jensen's inequality.
We want to apply the maximal Doob inequality, so we need to consider a probability measure: for each $z \in \mathbb{Z}^{d}$, consider the probability space $Q_{-n, z}$ equipped with the normalized Lebesgue measure $2^{-n d} d x$.
Then $\forall z \in \mathbb{Z}, c>0$, by using Doob's martingale maximal inequalities

$$
\begin{gathered}
c \int_{Q_{-n, z}} \mathbf{1}\left(\sup _{-n \leq k \leq n}\left|f_{k}(x)\right|>c\right) d x \leq \int_{Q_{-n, z}}\left|f_{n}(x)\right| \mathbf{1}\left(\sup _{-n \leq k \leq n}\left|f_{k}(x)\right|>c\right) d x \\
\leq \int_{Q_{-n, z}}\left|f_{n}(x)\right| d x
\end{gathered}
$$

and we can sum over $z \in \mathbb{Z}^{d}$ obtaining

$$
\begin{align*}
c \int_{\mathbb{R}^{d}} \mathbf{1}\left(\sup _{-n \leq k \leq n}\left|f_{k}(x)\right|>c\right) d x & \leq \int_{\mathbb{R}^{d}}\left|f_{n}(x)\right| \mathbf{1}\left(\sup _{-n \leq k \leq n}\left|f_{k}(x)\right|>c\right) d x \\
& \leq \int_{\mathbb{R}^{d}}\left|f_{n}(x)\right| d x \leq\|f\|_{L^{1}(\mathbb{R})} \tag{1}
\end{align*}
$$

This implies easily that

$$
c \int_{\mathbb{R}^{d}} \mathbf{1}\left(\sup _{-n \leq k \leq n}\left|f_{k}(x)\right|>c\right) d x \leq \int_{\mathbb{R}^{d}}\left|f_{n}(x)\right| d x \leq \sup _{n \in \mathbb{Z}}\left\|f_{n}\right\|_{1} \leq\|f\|_{1}
$$

Moreover, by monotone convergence we get that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} c \int_{\mathbb{R}^{d}} \mathbf{1}\left(\sup _{-n \leq k \leq n}\left|f_{k}(x)\right|>c\right) d x & =c \int_{\mathbb{R}^{d}} \mathbf{1}\left(\sup _{k \in \mathbb{Z}}\left|f_{k}(x)\right|>c\right) d x \\
& \geq c \int_{\mathbb{R}^{d}} \mathbf{1}\left(\left|\sup _{k \in \mathbb{Z}} f_{k}(x)\right|>c\right) d x=: c P\left(\left|f^{\square}(x)\right|>c\right)
\end{aligned}
$$

so we finally get the second inequality from 1

$$
c P\left(\left|f^{\square}(x)\right|>c\right) \leq \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

Now, if $f \in L^{p}$, then $\left\|f_{k}\right\|_{p} \leq\|f\|_{p} \forall k \in \mathbb{Z}$. Equation 1 means that the hypothesis of Lemma 20 are satisfied in the probability space specified above and for $X=$ $\sup _{k \in \mathbb{Z}}\left|f_{k}(x)\right| \geq f^{\square}(x)$ and $Y=f_{n}(x) \forall n \in \mathbb{N}$.
Thus we get

$$
\int_{Q_{-n, z}}\left|f^{\square}(x)\right|^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{Q_{-n, z}}\left|f_{n}(x)\right|^{p} d x
$$

By summing all over $z \in \mathbb{Z}^{d}$ we get finally

$$
\left\|f^{\square}(x)\right\|_{p} \leq \frac{p}{p-1}\left\|f_{n}\right\|_{p} \leq \frac{p}{p-1} \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{p} \leq \frac{p}{p-1}\|f\|_{p}
$$

