Stochastic analysis, fall 2014, Exercises-6, 29.10.2014
Consider a probability space (2, F, P) equipped with the dicrete-time filtration F = (F; : t € N)

1. In discrete time, show that a F-predictable (P, F)-martingale is constant, i,e M, (w) = My(w)
vn.

Solution
Mn = E(Mn|fn—1) = Mn—l
then M, (w) = My(w) Vn.
2. A potential (Zy, : n € N) is a non-negative (P, F)-supermartingale with

lim E(Z,) =0

n— oo

Show that a potential is uniformly integrable.

Solution
Note that, since Z, is non-negative, then Z, converges to 0 in L'. Then, by theorem 12 in
the lecture notes, we have that is uniformly integrable.

3. An (F, P)-supermartingale (X, : n € N) has Riesz decomposition if it can be written as
Xn=Y,+ 2,
where Y, is a martingale and Z,, is a potential.
(a) Show that if sup, ey Ep(X,;) < co then X,, has Riesz decomposition with
Y, =M, — E(Ax|Fn), Zn=FE(Ax|Fn) — Ap,

where X,, = M,, — A,, is the Doob decomposition of X into a martingale part M and
a predictable part with A non-decreasing and Ay = 0.

(b) Show that the Riesz decomposition is unique.

Solution

(a) By the Doob convergence theorem and Doob decomposition we have that there exist
almost surely
lim X, = Xoo = Moo — Aey € Lt

n—oo

Furthermore, note that

so we get
sup E(4,) < o0
n

By linearity we get

X, = My+ E(My — As|Fp) — E(Moo — As| F) — Ay, =
= M, — E(Ax|Fp) + E(As|Fp) — Ap = Yoo + Zo,

We check that Y,, is a martingale: it is integrable since M, is a martingale

E(|Mn *E(Aoo|]:n>|) < E|Mn| +E(E(Aoo|]:n)) = E|Mn| +E‘(Aoo) <0



and by the tower property the martingale property holds
E(My — E(As|Fn)|Frn-1) = M1 — E(E(Ax| )| Fr-1) = Mn—1 — E(Acc| Fp1).
Now we check that Z,, is a potential: it is clearly non negative and it is integrable
E|Z,| = E(E(Ax|Fn) — An) < E(E(Ax|Fr)) = E(Ax) < 0
and the super-martingale property holds
E(Z,|Fn-1) = E(E(Ax|Fn) — An|Fn-1) < E(Aco|Frn-1) — An-1
Finally we check that lim,,,~ E(Z,) = 0:

lim E(Z,) = lim E(E(Ax|Fy) — Ay) = E(Ax) — B( lim A,) =0
n—oo

n—oo n—roo
where we used monotone convergence in the last equality.

(b) Let be X,, =Y, + Z =Y, + Z,, then we have

Y —Y, =Z,— 7,

n

We know that both Z,, and Z/ converge to 0 both in probability and in L! since they
are uniformly integrable, then (Y,! —Y,,) converges to 0 both in probability and in L*.
But (Y —Y,,) is a martingale, so almost surely ¥n

(Zn - Z’:L) = (Yri - Yn) = E(Yo/o - Y<><>|]:n) =0
4. Show that a martingale (X : ¢ € N) has Krickeberg decomposition
Xi =Ly — My
where L; and M; are non-negative (P, F)-martingales, if and only if

sup Ep (| X;]) < o0
teN

Hints: You can always assume without loss of generality that My = 0, otherwise consider
the martingale (M; — My).

For sufficiency show take the decomposition X; = X;" — X, , and show first that (=X, ) is
a a supermartingale and which admits a Riesz decomposition

(_X;):Y;t‘f'zt

where Y; is a martingale and Z; is a potential. Show then that X; has Krickeberg decom-
position with

Li=(X;—Y)=X+2,>0, and M;=-Y,=X; +Z;>0.

Solution
For sufficiency, we start by showing that — X, is a super-martingale: since the map f : z —
—x~ is concave, then the Jensen inequality for conditional expectation implies

E(f(X)|Fi1) < FIE(Xi|Fia)) = =Xy

Then we get immediately that —X; has a Riesz decomposition —X; = Y; + Z;, for the
hypothesis sup,cy Ep (] X¢]) < oc.
Now write

Xe=Xe - Y+ Yy



and define L; := X; — Y; and M, := —Y;, which are non-negative martingales.
To show the necessity we need to show that if X; = L, — My, where L;, M; are non-negative

martingales, then
sup E(|X¢|) < oo
t

and this is true because V¢

E(X.]) < B(L) + E(My) = E(Ly) + E(My) < 0

. Suppose we have an urn which contains at time ¢t = 0 two balls, one black and one white.
At each time t € N we draw uniformly at random from the urn one ball, and we put it back
together with a new ball of the same colour.

We introduce the random variables

X;(w) = 1{ the ball drawn at time ¢ is black }

and denote S; = (14+ X1 + -+ Xy),

M, = Si/(t + 2), the proportion of black balls in the urn.
We use the filtration {F,,} with 7, = o{X,: s €N, s <t}.

(a) Compute the Doob decomposition of (S;), Sy = So+ N¢+ As, where (IV;) is a martingale
and (A;) is predictable.

(b) Show that (M) is a martingale and find the representation of (M;) as a martingale
transform M; = (C - N);, where (N;) is the martingale part of (S;) and (Cy) is pre-
dictable.

(c) Note that the martingale (M,;);>o is uniformly integrable (Why ?). Show that P a.s.
and in L! exists My, = lim;_, o M; . Compute E(M,).

(d) Show that P(0 < My, < 1) > 0.

Since M, (w) € [0,1], it is enough to show that 0 < E(M?2) < E(M,,) with strict inequali-
ties.

Hint: compute the Doob decomposition of the submartingale (M?), and than take expecta-
tions before going to the limit to find the value of E(M?2).

Solution
(a) We recall that according to the Doob decomposition we have

Ne=3"(8 = B(S;|Frm1)) Av=Y (E(S,|Fio1) = Sr—1)

r=1 r=1

where

1
E(S|Fi—1) = Si—1 + E(X¢|Fi1) = Se—1+ M1 = S (1 + t—|-1>

So the Doob decomposition is

t
S,g_1+ZS,1 ZX M,_;)

Since the predictable part is non-decreasing, we see that S; is a submartingale.



(b) M; is a martingale because

1 1 1 Sy
E(M|Fiq) = P QE(St‘ft—l) = t—|—2<1 + t+1>St1 = t:—i =M

and in order to find its representation as a martingale transform we consider

S Si_ Si_1+ X Si_ 1 t+2
M, — M,_, = t t—1 _ Ot—1+ A4 D1 (Xt+St—1<1_ + ))

t+2 t+1  t+2 t+1 t+2 t+1
1 S, 1 1
- (X, - 2= = — (x, - M,
t+2<t t+1> 7oKt~ M)
Therefore
M—1+Z L xo—my= L4
t—2 T:17‘+2 r r—1 —2 t
with C; = t-&-% (deterministic).

(¢) M, is uniformly integrable because

[Sel _t41

— <1
t+2 " t+2

M| =

By Doobs’ martingale convergence theorem M;(w) — My (w) P-almost surely, and by
uniform integrability also in L!(P). Since M, is uniformly integrable, then F(M..) =
E(M;) = E(My) =1/2.
(d) First we show that if 0 < F(M2) < E(My,) then P(0 < My, < 1) > 0.
Note that 0 < E(M2) is always true because, via the Jensen inequality, we have
BE(MZ) > (B(Mx))® =1/4>0

Moreover, note that E(M2) < E(My,) because 0 < M2 < M.
Thus, we actually want to prove that if E(M2) < E(My) then P(0 < My, < 1) > 0.
Suppose that P(0 < My, < 1) =0, then we get
E(MZ) = E[MZ2(1(0 < My < 1)+ 1( Mo =0) + 1(Mo = 1))] = P(Mo = 1)
E[Moc(]-(o <M < 1) + l(Moo = O) + 1(Moo = 1))] = E(Moo)

so we got a contradiction.
Now we will show the inequality F(M2) < E(My): by the discrete integration by
parts we have

MZ — M2 | =2M;_ (M — My_y) + (M — My_1)?

and since by the martingale property

E<2Mt1(Mt - Mt1)> = E(E(ZMtl(Mt - Mt1)|]-'t1)> = E(zMHE(Mt - Mt1|]—'t1)> =0

it follows
1 ¢ 1 <
2 2 2
B(M}) = ; E(;«Mr — M, ) ) =1+ TE_;E(E((MT — M, ) !fm))
Recall that AM,. = T}r2 (X, — M,_1), thus
E((X; — M,_1)?|Fro1) = E(X2|Fror) + M2y — 2M, 1 E(X,|Fro1)
= E(Xr‘]:r—l) + Mf—l - 2Mr2—1
M, — ME—I



So we have

E(M?) = %Jr > ! (E(M,._l) - E(M3_1)> = i + Xt: ( ! (; - E(M3_1)>

t
1 1 1
< It3 iy

By Fatou’s lemma

1 1S 1 1 1 1 1
2 s 2 _
E(Moo)ghgéng(Mt)§Z+§§ _14-75 f<1_|_

%) oo
where Y r=? < [ 272dz = 1/2 with strict inequality.
r=3 2

6. Consider an i.i.d. random sequence (U; : t € N) with uniform distribution on [0, 1], P(U; €
dI) = 1[0,1] (l’)dl’ Note that EP(Ut) = 1/2

Consider also the random variable —log(U;(w)) which is 1-exponential w.r.t. P.

(a)

exp(—x kun z > 0
P(—log(Uy) > z) :{ ) p(~2) o @ < 0
—log(Uy) € LY(P) with Ep(—log(Uy)) = 1.
Let Zy =1, and
t
Zy(w) =2' [] Us(w)

o o

()
(f)

(2)

Show that (Z;) is a martingale in the filtration F = (F; : t € N), with Fy = 0(Z1, 22, ..., 2Z;) =
o(Ur,Us, ..., Up).

Show that Ep(Z;) = 1.
Show that the limit Zy(w) = lim;_, o Z¢(w) exists P almost surely.
Show that

Zoo(w) =0 P-as.

Hint Compute first the P-a.s. limit
lim 711 Zi(w
e P 0g(Z¢(w))

(remember Kolmogorov’s strong law of large numbers!).
Show that the martingale (Z;(w) : t € N) is not uniformly integrable.

Show that log(Z;(w)) is a supermartingale, does it satisfy the assumptions of Doob’s
martingale convergence theorem ?

At every time ¢ € N, define the probability measure
Qi(A) := Ep(Z;14) VA € F

on the probability space (€2, F).
Show that the random variables (Uy,...,U;) are i.i.d. also under Q, compute their
probability density under Q.



Solution

(a) Note that 0 < Z; < 2Vt € N, then Z; is integrable V¢ € N and it enjoys the martingale
property

E(Zy|Fir) =2 H Us( =7
(b) Ep(Z) = Ep(Zo) = Zo = 1.

(¢) (Z; : t € N) is a non-negative martingale, by Doob’s martingale convergence theorem
limy_ 00 Zt(w) exists a.s.

(d) Via the strong law of large numbers

1
n log(Z;) = (t log(2) + Z log(U. )

log(2 Zlog ) —log(2) + E(log(U1)) = log(2) —1 < 0.

with convergence P a.s., then P a.s. ast — 0o Z;(w) = O(exp(t(log(2) —1)) — 0, that
is Zoo(w) = 0.

(e) Since E(Z1) = 1> E(Z) = 0, so the martingale property does not hold at infinity, so
Zy is not uniformly integrable.

(f) By Jensen’ inequality for the conditional expectation:
log Z;—1 = log (EP(Zt]:t—l)> > Ep(log Zy| Fi-1)

therefore log(Z;) is a supermartingale. We see that the hypothesis of the Doob conver-
gence theorem does not hold, in fact

¢
Ep(log Z;) = tlog2 + ZE(log Us)=t(log2—-1) <0
s=1

and

sup Ep (|log(Z;)]) > sup
teN teN

Ep (log(Zt))‘ =(1—-1log2)supt = 400
teN

Therefore the collection {log(Z;) : t € N} is not bounded uniformly in L(P).

(g) For bounded measurable test functions g;(z), i = 1,...,¢t,

Eq, (gl(Ul) . -gt(Ut)) = EP(Ztgl(Ul) e gt(Ut)) =Ep <2t H UsgS(Us)) = H Ep(2Us9(Us))

s=1 s=1
¢ t
= [1 Er(Z.9(©.) = [] Er(Zug:(Us) H Eq,(9:(U.
s=1 s=1

which means that Uy, ..., U; are independent under ;.
For t € [0,1]

QU <t)=Ep(2QUL(U < t)) = 2/tudu =t?
0

and Q(U € dt) = 2tdt.



7. (Paley’s and Littlewood’s maximal function) Consider a function in f(x) € L*(R%, B(R?), dx).
Define the o-algebra

Fr=0{Qr. = (2275, (2 +1)27%], 2 € 24} CBRY), keZ

and the two sided filtration F = (Fy, : k € Z) where the dyadic cubes (Qy,. : z € Z%) form a
partition of R?, and the functions

felw) = 1z € Q)

zE€Z2

1
—— d
@l Jo, . f(y)dy

where for k € Z, |Qy..| = 27%¢ is the Lebesgue measure of the d-dimensional dyadic cube

(a) Show that fi(z) is an F-martingale w.r.t. Lebesgue measure. Note that the definition
of conditional expectation martingales extends directly to the case where we integrate
with respect to o-finite positive measures, where the martingale property in this case
means

| s@ate)ia = [ f@eis

Vk € Z and gg(z) bounded and Fj-measurable.
To work with a probability measure, we could take instead with f(z) € L'([0, 1]¢, B([0, 1]¢), dx).

(b) Show that
lim fi(z) =0, VzeRY,

k——o0

but it does not converge in L*.
In particular this means that the Doob’s martingale backward convergence theorem
does NOT extend to the case of o-finite measures.

(c) Show that limy_ 4o fx(z) = f(z) almost everywhere and in L.

(d) Define the maximal function

fP (@) = sup fu(z)

keZ

Use the martingale maximal inequalities to show that for 1 < p < oo

12 (@) [l ) <

D D
sup k PR —— p(Rd
Prsup | fu oS -2 I lnes
and

cP(|f9(z)] > ¢) < iuIZ) Il fr o ey <Il £ It (may
S

Solution

(a) Note that fi € Fi and that F, C Fry1. We want to show that fj is a martingale, so
first we see that fj is integrable Vk € Z.

_ kd
/]Rd dx|fr(x)] = /Rd dz Z 1(z € Q,2)2

z€Z4

/ f(y)dy]

< d 1 ; de d
</, PIRLEL /Q F)ldy
< ¥ /Q @)y = |l < oo

ZE€Z2



where we used the monotone convergence theorem to switch the order between the sum
and the integral.

Note that every A € Fy, is a disjoint union of squares Qy, i.e. A = U;crQy,; for some
set I C Z, and each @y ; is clearly the union of four squares of size 2=+ Then we
can check the martingale property by using the Kolmogorov’s definition of conditional
expectation just for a generic Qy

_ XQk+1,z‘(x) .
/Rd dz frr1(T)xqQ, (r) = /Rd dzx Z Qrrral /62k+1,i fly)dy =

U Qry1,i=Qk

=/ fly)dy = /R | dofe(@)xq. (@)

Note that
[fe(@)| <25 £ llpray— 0,  ask — —o0

On the other hand we have

Elfsl =)

2€L

= [E(f)]

/QM f(z)dx

as k — —oo, then fi — f in L' as k — —oo only if |[E(f)| =0
To show convergence in L' convergence, we split the integral into two parts. Let € > 0.
Then there exists a dyadic cube @, such that

[ if@lds<e

Then also

/ o) — f(@))dz < / (fe(@)| + fla))dr < 2
RANQ RANQ

because fRd\Q |[fe(z)| < fRd\Q |f(z)| when k is large enough so that the cubes on the

level k tile the set R4\Q.
On the other hand, @ has finite measure (which we can normalize to be 1), and f5|Q
is uniformly integrable because

[ = E(f|F)

Therefore fx|Q — f|Q in L!.
The result follows since

/Rd|f’“(x)_f(x)|dx</62fk(x)—f(w)dx+/

R\

| fe(z) — f(z)|dz < 3e
Q

for k large enough.
On the other hand the convergence almost surely follows from the Doob martingale
convergence theorem.

For n € N, the process (|fx(z)| : &k = —n,...,0,...,n) is a submartingale as one can
see by the Jensen’s inequality.

We want to apply the maximal Doob inequality, so we need to consider a probability
measure: for each z € Z%, consider the probability space Q—n,» equipped with the
normalized Lebesgue measure 2~ "%dzx.

Then Vz € Z, ¢ > 0, by using Doob’s martingale maximal inequalities

c/ 1( sup |fu(z)]>c)dz < / |fo(@)[1( sup |fe(z)| > c)da

—n,z —n<k<n mz —n<k<n

< / o)l de

—n,z



and we can sum over z € Z? obtaining

A

C/Rdl( sup | fi(@)| > ¢)dz < /]Rd|fn(x)|1( sup | fr(x)| > ¢)dx

—n<k<n —n<k<n

IN

[ a@ide <1 £ e (1)

This implies easily that

c/ 1( sup |fu(z)| > c)dz < /Ifn(x)ldxﬁsupl\fnlllﬁ||f||1
Rd Rd nez

—n<k<n

Moreover, by monotone convergence we get that

lim c/ 1( sup |fu(z)| > c)dz = c/ 1(sup | f(z)| > ¢)dx
n=00  Jrd —n<k<n Re  k€EZ

Y

C/]Rd 1(|sup fr(z)| > ¢)dz =: cP(|fP(x)] > ¢)

keZ

so we finally get the second inequality from 1
cP(|fP (@) > ¢) < sup I il @ay<ILf |22 ey
€

Now, if f € LP, then ||fill, < [|flp Yk € Z. Equation 1 means that the hypothe-
sis of Lemma 20 are satisfied in the probability space specified above and for X =
supgez | fx()] > fP(z) and YV = f,(x) ¥n € N.

Thus we get ,
[ mpes (G2) [ e

—n,z —

By summing all over z € Z¢ we get finally

p
p—1

] p p
/= (@)l < ﬁ”fn”p < iléfz)”fk”p < Zfl\fllp



