
Stochastic analysis, Fall 2014, Exercises-5, 15.10.2014

1. Let τ(ω) ∈ N be a stopping time w.r.t. F = (Ft : t ∈ N). Show that

Fτ =
{
A ∈ F : A ∩ {τ ≤ t} ∈ Ft∀t ∈ N}

is a σ-algebra.

Solution
First of all, note that Ω, the universe set of F , belongs to Fτ because for all t ∈ N we have
Ω ∩ {τ ≤ t} ∈ Ft.
Then we need to show the closeness of Fτ with respect to the complementation: observe
that if A ∈ Fτ , then ∀t ∈ N

A ∩ {τ ≤ t} ∈ Ft ⇒ (A ∩ {τ ≤ t})c = Ac ∪ {τ > t} ∈ Ft
⇒ Ft 3 (Ac ∪ {τ > t}) ∩ {τ ≤ t} = (Ac ∩ {τ ≤ t}).

For the closeness under countable unions, note that if An ∈ Fτ , ∀n ∈ N then ∀t ∈ N(⋃
n∈N

An

)
∩ {τ ≤ t} =

⋃
n∈N

(An ∩ {τ ≤ t}) ∈ Ft.

2. We continue with the random walk. We have

Mt(ω) =

t∑
s=1

Xs(ω)

is a binary random walk where t ∈ N and (Xs : s ∈ N) are i.i.d. random variables with

P (Xs = ±1) = P (Xs = ±1|Fs−1) = 1/2

Xs is Fs measurable and P -independent from Fs−1.

Recall that (Mt)t∈N and (M2
t − t)t∈N are F-martingales.

(a) Consider the stopping time τ = τK = inf{t : Mt ≥ K} for K ∈ N. Show that
P (τ <∞) = 1.

Hint: the stopped martingale (Mt∧τ : t ∈ N) is a sub-martingale bounded from above

(equivalently (−Mt∧τ ) is a supermartingale bounded from below).

Apply Doob forward convegence theorem,

(b) Show that P almost surely Mτ (ω) = K

(c) Show that (Mt∧τ (ω) : t ∈ N) is not uniformly integrable.

Hint: otherwise we could interchange the expectation and the limit for t → ∞ opera-
tions.

(d) Show that E(τ) = +∞
Hint: prove it by using the properties of the martingale

M2
t∧τ − t ∧ τ

Resume : a gambler plays a fair coin-toss game with unit stakes, playing from time 0 until
the stopping time τK(ω), when he quits the game a profit K > 0. With probability one
τK(ω) <∞, the gambler always makes a profit K which is arbitrarilty large.

This free-lunch paradox is explained as follows:
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The gambler’s strategy, to play until τK(ω) requires an infinite amount of capital, because
∀M ∈ N P (τ−M > τK) > 0, for any finite amount of capital there is a positive probability
to lose everything before τK .

And even with an infinite amount of capital at disposal, although τK(ω) is P a.s. finite, the
expected time for winning K is E(τK) =∞.

Solution

(a) First, we prove that Mt∧τ is a martingale, in fact

Mt∧τ =

t∑
s=1

χ(s ≤ τ)(Ms −Ms−1)

Note that {s ≤ τ} = {τ > s}c = {τ ≥ s− 1}c ∈ Fs−1, hence χ(s ≤ τ) is a predictable
process.
Moreover E|χ(s ≤ τ)(Ms −Ms−1)| ≤ 1, hence, via the theorem about the martingale
transform, we get that Mt∧τ is a martingale. Note that this proof holds for every
stopped martingale since we did not use the special form of our martingale Mt.
Moreover, observe that Mt∧τ , a fortiori, is a submartingale bounded from above since
Mt∧τ ≤ K. Then

E(|Mt∧τ |) = −E(Mt∧τ ) + 2E(M+
t∧τ )

≤ −E(M0) + 2E(M+
t∧τ ) ≤ 2K (1)

Therefore we can apply the Doob convergence theorem which says that almost surely
there exists the limit

lim
t→∞

Mt∧τ = Mτ

and Mτ ∈ L1. Now, by looking at the proof of the Doob convergenze theorem we have
that

P

(⋃
a∈Z
{U[a,a+1]([0,∞)) =∞}

)
= 0

i.e. the oscillation of the process are finite almost surely, which means that, since the
process is discrete and we cannot have any asymptotic behaviour, the process reaches
its limit in finite time almost surely, therefore P (τ <∞) = 1.

(b) Note that τ ≥ K, so we can write

Mτ (ω) = Mτ (ω)

∞∑
m=0

χ{τ=m}(ω)

=

∞∑
m=0

Mm(ω)χ{τ=m}(ω)

=

K−1∑
m=0

Mm(ω)χ{τ=m}(ω) +

∞∑
m=K

Mm(ω)χ{τ=m}(ω)

=

K−1∑
m=0

Mm(ω)χ{τ=m}(ω) +K

∞∑
m=K

χ{τ=m}(ω)

But P (τ < K) = 0, then almost surely it holds Mτ (ω) = K.

(c) By using the hint we observe if Mt∧τ were uniformly integrable then the optional
stopping time theorem says that

E(Mt∧τ ) = E(M0).

But E(Mτ ) = K and E(M0) = 0, so we have a contradiction.
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(d) By the martingale property of M2
t∧τ − t ∧ τ , we get ∀t ∈ N

E(M2
t∧τ ) = E(t ∧ τ) ≤ E(τ)

and then
sup
t
E(M2

t∧τ ) = sup
t
E(t ∧ τ) = E(τ)

If E(τ) were finite, then also suptE(M2
t∧τ ) would be finite, but we know that if for

some p > 1
sup
t
E(|Mt|p) <∞

then the sequence {Mt : t ∈ N} is uniformly integrable, which is a contradiction.

3. A three-player ruin problem: Initially, three players have respectively a, b, c ∈ N units of
capital. Games are independent and each game consists of choosing two players at random
(i.e. uniformly) and transferring one unit from the first-chosen to the second-chosen player.
Once a player is ruined, he is ineligible for further play.

Let τ1 be the number of games required for one player to be ruined, and let τ2 be the number
of games required for two players to be ruined.

Let (Xt, Yt, Zt) be the numbers of units possessed by the three players after the t-game, and

Mt := XtYtZt +
(a+ b+ c)t

3
and

Nt := XtYt +XtZt + YtZt + t

(a) Show that the stopped processes (Mt∧τ1 : t ∈ N) and (Nt∧τ2 : t ∈ N) are non-negative
F-martingales where Ft = σ(Xs, Ys, Zs, s ≤ t).

(b) Use Doob martingale convergence theorem and Fatou lemma to show that E(τk) <∞,
for k = 1, 2

(c) Knowing that E(τk) <∞,

show that (Mt∧τ1 : t ∈ N) and (Nt∧τ2 : t ∈ N) are uniformly integrable.

(d) Use uniform integrability of the stopped martingales (Mt∧τ1 : t ∈ N) and (Nt∧τ2 : t ∈ N)
to compute E(τk) for k = 1, 2.

Solution

(a) We check the martingale property for the process Mt on the set {ω : τ1(ω) > t}:

Mt = (Xt−1 + ∆Xt)(Yt−1 + ∆Yt)(Zt−1 + ∆Zt) +
(a+ b+ c)t

3
= Mt−1 + ∆XtYt−1Zt−1 + ∆YtXt−1Zt−1 + ∆ZtYt−1Xt−1

+∆Xt∆YtZt−1 + ∆Yt∆ZtXt−1 + ∆Zt∆XtYt−1

+∆Xt∆Yt∆Zt +
t(a+ b+ c)

3

Now, since the games are independent, we have

E(∆Xt∆Yt∆Zt|Ft−1) = E(∆Xt∆Yt∆Zt) = 0

E(∆Xt∆YtZt−1|Ft−1) = Zt−1E(∆Xt∆Yt) = −Zt−1
3

E(∆XtYt−1Zt−1|Ft−1) = Yt−1Zt−1E(∆Xt)

3



By using the symmetry and noting that Xt + Yt + Zt = a+ b+ c we get

E(∆Mt|Ft−1) = 0,

then Mt∧τ1 is a martingale. In addition, Mt∧τ1 is non-negative since

Xt∧τ1Yt∧τ1Zt∧τ1 ≥ 0

Similarly for Nt on the set {ω : τ1(ω) > t} we have

Nt = (Xt−1 + ∆Xt)(Yt−1 + ∆Yt) + (Xt−1 + ∆Xt)(Zt−1 + ∆Zt)

+(Yt−1 + ∆Yt)(Zt−1 + ∆Zt) + t

= Nt−1 + ∆Xt∆Yt + ∆Yt∆Zt + ∆Xt∆Zt

+Yt−1∆Xt + Yt−1∆Zt +Xt−1∆Yt +Xt−1∆Zt + Zt−1∆Xt + Zt−1∆Yt + 1

Note that

E(Xt−1∆Yt|Ft−1) = Xt−1E(∆Yt) = 0

E(∆Xt∆Yt) = −1

3

Then, by using the symmetries, we get

E(∆Nt|Ft−1) = 0

hence, also Nt∧τ2 is a martingale. Furthermore, Nt∧τ2 is also non negative since

Xt∧τ2Yt∧τ2 +Xt∧τ2Zt∧τ2 + Yt∧τ2Zt∧τ2 ≥ 0.

(b) By Doob convergence theorem we get that almost surely

Mt∧τ1 −→Mτ1 ∈ L1

and
Nt∧τ2 −→ Nτ2 ∈ L1

But by definition Mτ1 = a+b+c
3 τ1 and Nτ2 = τ2, hence τ1, τ2 ∈ L1

(c) Note that

Mt∧τ1 ≤ (a+ b+ c)3 +
a+ b+ c

3
τ1 ∈ L1

and
Nt∧τ2 ≤ 3(a+ b+ c)2 + τ2 ∈ L1

thus both the sequences Mt∧τ1 , Nt∧τ2 : t ∈ N are uniformly integrable since they are
uniformly bounded by an integrable random variable.

(d) SinceMt∧τ1 andNt∧τ2 are uniformly integrable martingales, the Doob optional stopping
theorem applies:

abc = E(M0) = E(Mτ1) =
a+ b+ c

3
E(τ1)

hence

E(τ1) =
3abc

a+ b+ c
.

Similarly for τ2 we have

ab+ bc+ ac = E(N0) = E(Nτ2) = E(τ2)
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4. A generalization of a game by Jacob Bernoulli. In this game a fair dice is rolled, and if the
result is Z1, then Z1 dice are rolled. If the total of the Z1 dice is Z2, then Z2 dice are rolled.
If the total of the Z2 dice is Z3, then Z3 dice are rolled, and so on. Let Z0 ≡ 1.
Find a positive constant α such that

Mt(ω) = Zt(ω)αt t ∈ N

is a F-martingale where Ft = σ(Z0, Z1, . . . , Zt). Hint: compute E(Zt+1|Ft).
What does Doob’s martingale convergence theorem tell us about this?

Solution
By following the hint we consider

E(Zt|Ft−1) = E(

Zt−1∑
i=1

Ut,i|Ft−1)

where (Ut,i : t, i ∈ N) are i.i.d. uniformly distributed on {1, 2, 3, 4, 5, 6}. Now

E

Zt−1(ω)∑
i=1

Ut,i(ω)
6t−1∑
m=0

χ(Zt−1 = m)|Ft−1

 =

6t−1∑
m=0

E

Zt−1(ω)∑
i=1

Ut,i(ω)χ(Zt−1=m)(ω)|Ft−1


=

6t−1∑
m=0

E

(
m∑
i=1

Ut,i

)
χ(Zt−1=m)(ω)

=

6t−1∑
m=0

mE (U1,1)χ(Zt−1=m)(ω)

= E (U1,1)

6t−1∑
m=0

mχ(Zt−1=m)(ω)

= E (U1,1)Zt−1(ω)

This means that the constant α we are looking for is α = (E(U1,1))
−1

.
Note that, by Doob martingale convergence theorem, we get that the limit limt→∞Mt =:
M∞ exists and it is integrable.

5. (a) If (Mt(ω) : t ∈ N) is a F-martingale and f(x) is convex such that E(|f(Xt)|) <∞∀t ∈ N,
show that (f(Mt(ω)) : t ∈ N) is an F-submartingale.

(b) If (Mt(ω) : t ∈ N) is a F-submartingale and f(x) is convex non-decreasing such that
E(|f(Xt)|) <∞∀t ∈ N, show that (f(Mt(ω)) : t ∈ N) is an F-submartingale. Hint: use
Jensen inequality for conditional expectation.

Solution

(a) By using the Jensen inequality for conditional expectations we get

E(f(Mt)|Ft−1) ≥ f(E(Mt|Ft−1) = f(Mt−1).

(b) As in the former case we have

E(f(Mt)|Ft−1) ≥ f(E(Mt|Ft−1) ≥ f(Mt−1)

where in the last inequality we used the monotonicity of f .
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