
Stochastic analysis, spring 2014, Exercises-4, 8.10.2014

1. Let τ1(ω) and τ2(ω) stopping times with respect to the filtration F = (Ft : t ∈ T ) taking
values in T . Here T could be either R+ or N.
Use the definition of stopping time to show that σ(ω) = min(τ1(ω), τ2(ω)) is a F-stopping
time.

Solution
We have

{σ(ω) ≤ t} = {ω : τ1(ω) ≤ t} ∪ {ω : τ2(ω) ≤ t} ∈ Ft
so σ(ω) is a stopping time.

2. Let (Mt(ω))t∈N a martingale with respect to the filtration F = (Ft) with M0(ω) = 0. Define
the family of random times τx : x ∈ R

τx(ω) =

{
inf{s : Ms ≥ x} for x ≥ 0
inf{s : Ms ≤ x} for x < 0

Show that τx is a stopping time.

Solution
Assume x ≥ 0, then

{τx ≤ t} = {ω : inf{s : Ms(ω) ≥ x} ≤ t} = ∪ts=0{ω : Ms(ω) ≥ x}

where {ω : Ms(ω) ≥ x} ∈ Fs ⊆ Ft, so {τx ≤ t} ∈ Ft and τx is a stopping time.
The case x ≤ 0 is analogous.

3. Consider a symmetric random walk in discrete time,

Mn = X1 + · · ·+Xn

where (Xk : k ∈ N) are independent and identically distributed Bernoulli random variables
with P (Xn = 1) = P (Xn = −1) = 1/2.

(a) Compute P (Mn = k) for n, k ∈ N.

(b) For x ∈ R, use Stirling approximation of the factorial of a large n ∈ N

n! ∼ exp(−n)nn
√

2πn

to approximate

P
(
M2n = 2bxc

)
(c) Consider the filtration generated by the random walk F =

(
FXn ), with FXn = σ(Xk :

0 ≤ k ≤ n). Show that

Mn, (M2
n − n), and exp

(
−θMn) cosh(θ)−n

are (P,F)-martingales, where cosh(x) =
(
ex + e−x)/2.

(d) Prove the Markov property

P
(
Mn = k

∣∣Fn−1)(ω) = P
(
Mn

∣∣Mn−1
)
(ω) = P

(
Xn = k − `

)∣∣∣∣
`=Mn−1(ω)

and, for 0 ≤ m ≤ n

P
(
Mn = k

∣∣Fm)(ω) = P
(
Mn

∣∣Mm

)
(ω) = P

(
Mn−m = k − `

)∣∣∣∣
`=Mm(ω)
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(e) In discrete time, let τ be a stopping time with respect to the filtration F, then the
stopped σ-algebra Fτ is defined as

Fτ =
{
A ∈ F : ∀t ∈ N, A ∩ {τ ≤ t} ∈ Ft

}
Show that τ itself is Fτ -measurable. Hint: use the definition of stopping time.

(f) Show the strong Markov property of the random walk:

M̃n := (Mτ+n −Mτ )

is a symmetric random walk independent from the stopped σ-algebra Fτ . Hint:

A =
⋃
k∈N

A ∩ {τ = k}

and A is Fτ -measurable if and only if ∀k, A ∩ {τ = k} is Fk measurable. Use the
definition of conditional expectation w.r.t. Fτ .

(g) Consider the stopping time σ(ω) = min(τa, τb) where a < 0 < b ∈ N, and the stopped
martingales (Mt∧σ)t∈N and (M2

t∧σ − t ∧ σ)t∈N.

Show that Doob’s martingale convergence theorem applies and

lim
t→∞

Mt∧σ(ω) = Mσ(ω)

exists P -almost surely.

(h) Consider now (M2
t∧σ − t ∧ σ). Use the martingale property together with the reverse

Fatou lemma to show that E(σ) <∞ which implies P (σ <∞) = 1.

(i) For a < 0 < b ∈ N, compute P (τa < τb).

Hint: a martingale has constant expectation EP (Mt) = EP (M0). This holds also for
the stopped martingale Mτ

t = Mt∧τ .

Solution

(a) Let denote by m the number of X’s taking value 1. When Mn = k we have necessarily
that

k = m− (n−m)

therefore we have m = (k + n)/2 random variables X taking value 1 and (n − k)/2
taking value −1. This means that

P (Mn = k) =

(
1

2

)(n+k
2 )(

1

2

)(n−k
2 )(

n

(n+k2 )

)
= 2−n

n!(
k+n
2

)
!
(
n−k
2

)
!

Note that if n is even, the previous formula holds only if k is even as well, otherwise
P (Mn = k) = 0 and, conversely, is n is odd the previous formula holds only if k is odd,
otherwise P (Mn = k) = 0.

(b) By using the Stirling’s formula we get

P (M2n = 2bxc) ' 2−2n
e−2n(2n)2n

√
4πn

(n+ bxc)n+bxc(n− bxc)n−bxc
√

4π(n2 − bxc2)
=

= n2n
√

n

n2 − bxc2
(n− k)k

(n+ k)k(n2 − k2)n
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(c) Clearly Mn and M2
n−n are bounded by n and n2− 1, so they are integrable. They are

also martingales since if m < n, then

E(Mn|Fm) = E(Mm +Xm+1 + · · ·+Xn|Fm) = Mm

by independence. Similarly for M2
n − n we have

E(M2
n − n|Fm) = E((Mm +

n∑
i=m+1

Xi)
2 − n|Fm) =

= E(M2
m + 2Mm(

n∑
i=m+1

Xi) + (

n∑
i=m+1

Xi)
2 − n|Fm) =

= M2
m − n+

n∑
i,j=m+1

E(XiXj |Fm) =

= M2
m − n+

n∑
i,j=m+1

E(XiXj) = M2
m −m

And finally for e−θMn(cosh θ)
−n

we get

E(e−θMn(cosh θ)−n|Fm) = (cosh θ)−nE(e−θ(Mm+
∑n

i=m+1Xi)|Fm)

= (cosh θ)−ne−θMm

n∏
i=m+1

E(e−θXi) = (cosh θ)−me−θMm

(d) By using the independence we get

P (Mn = k|Fn−1)(ω) = P (Mn−1 +Xn = k|Fn−1)(ω)

= P (`+Xn = k)|`=Mn−1

= P (Xn = k − `)`=Mn−1

and similarly we get

P (Mn = k|Fm)(ω) = P (Mm +

n∑
i=m+1

Xi = k|Fm)(ω)

= P (Mm + M̂n−m = k|Fm)

= P (M̂n−m = k − `)`=Mm
= P (Mn−m = k − `)`=Mm

where M̂n−m is a copy of the random variable Mnm
independent from Mm.

(e) Note that τ ∈ Fτ if and only if {ω : τ(ω) ≤ s} ∈ Fτ ,∀ s ∈ N.
Consider the set F 3 A := {ω : τ(ω) ≤ s}. According to the definition of Fτ , we want
to show that for all s, t ∈ N we have

A ∩ {τ ≤ t} ∈ Ft.

In fact, for all s, t ∈ N we have

A ∩ {τ ≤ t} = {τ ≤ s} ∩ {τ ≤ t} ∈ Fs∧t ⊂ Ft

(f) Consider a bounded test function f and A ∈ Fτ , then

E(f(M̃n)χ(A)) = E

(
f(M̃n)χ(A)

∞∑
k=0

χ(τ = k)

)

=

∞∑
k=0

E
(
f(M̃n)χ(A)χ(τ = k)

)
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where we used the dominated convergence theorem and we observe that χ(A)χ(τ =
k) = χ(A ∩ {τ = k}) ∈ Fk. Thus, we have

E(f(M̃n)χ(A)) =

∞∑
k=0

E (f(Mn+k −Mk)χ(A ∩ {τ = k}))

=

∞∑
k=0

E
(
f(M̂n)χ(A ∩ {τ = k})

)
= E

(
f(M̂n)

∞∑
k=0

χ(A ∩ {τ = k})

)
= E(f(M̂n))P (A) = E(f(Mn))P (A)

where M̂n is a copy of Mn independent from τ .

(g) We recall that the Doob’s martingale convergence theorem says that, given a super-
martingale Xt : t ∈ N with

sup
t∈N

EP (X−t ) <∞,

then P -almost surely there exist the limit

lim
t→∞

Xt(ω) = X∞(ω)

with X∞(ω) ∈ L1(Ω).
Hence, in order to show the existence of the limit, we just need to check that

sup
t∈N

EP (M−t∧σ) <∞

which is clear because M−t∧σ ≤ −a.
For M2

t∧σ − t ∧ σ, the martingale property implies

E(M2
t∧σ − t ∧ σ)− = E(M2

t∧σ − t ∧ σ)+ − E(M2
0 )

then if we get a bound for supt≥0E(M2
t∧σ− t∧σ)+ we get a bound for (M2

t∧σ− t∧σ)−

since E(M2
0 ) = 0.

But we have that
(M2

t∧σ − t ∧ σ)+ ≤ a2 + b2

hence M2
t∧σ − t ∧ σ converges almost surely to M2

σ − σ, so the claim is proved.

(h) We know that M2
t∧σ − t∧ σ is a martingale that converges almost surely to M2

σ − σ, so
by reverse Fatou lemma

E(M2
σ − σ) ≥ lim sup

t→∞
E(M2

t∧σ − t ∧ σ) = 0,

therefore it follows that
E(σ) ≤ E(M2

σ) <∞

(i) By the bounded convergence theorem we get

lim
t→∞

E(Mσ∧t) = E(Mσ) = E[Mσ(χ(τa < τb)+χ(τa > τb))] = P (τa < τb)a+(1−P (τa < τb))b

but E(Mσ) = E(M0) = 0, then

P (τa < τb) =
b

b− a
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4. Let Mt(ω) = Bt(ω), t ∈ R+, a Brownian motion which is assumed to be F-adapted, and
such that for all 0 < s < t the increment (Bt−Bs) is P -independent from the σ-algebra Fs.
Note this since by assumption the Brownian motion is F-adapted, it follows that FBt =
σ(Bs : 0 ≤ s ≤ t) ⊆ Ft, which could be strictly bigger.

We have seen in the lectures that

Bt, Mt = (B2
t − t) and Zt = exp(aBt − a2t/2)

are (P,F)-martingales.

(a) Let σ(ω) = min(τa(ω), τb(ω)), for a < 0 < b ∈ R. We will see in the lectures that
the Doob martingale convergence theorem applies also to continuous martingales in
continuous time. By following the same line of proof as in the random walk case check
that P

(
σ <∞

)
= 1.

(b) Let a < 0 < b ∈ R. Compute P
(
τa < τb

)
.

Hints: When M is either a Brownian motion or a random walk, the stopped process
Mt∧σ(ω) is a uniformly bounded martingale. To compute P (τa < τb), use first the
martingale property

E(Mt∧σ) = E(M0) = 0,

then for t→∞ use the bounded convergence theorem.

(c) Use Doob martingale convergence theorem to show that Z∞ = limt→∞ Zt(ω) exists P
almost surely.

(d) Show that Z∞(ω) = 0 P -a.s.

Hint: Use the strong law of large numbers to show that

lim
t→∞

log(Zt)/t = −1/2, P a.s.

Solution

(a) Exactly as in the discrete time case, by using the martingale convergence theorem and
the reverse Fatou lemma for the martingale B2

t∧σ − (t ∧ σ) we get

E(σ) ≤ E(B2
σ) <∞

and hence P (σ <∞) = 1

(b) Again, like in the previous exercise we get

E(Bσ) = E(B0) = P (τa < τb)a+ (1− P (τa < τb))b

so that

P (τa < τb) =
b

b− a

(c) Since suptE(Z−t ) = 0, the martingale convergence theorem tells us that there exists
the limit Z∞ with probability 1.

(d) Consider
C(t) := log(Zt)/t = aBt/t− a2/2

By the strong law of large numbers we know that

lim
t→∞

Bt/t = 0 P a.s.

then we get
lim
t→∞

C(t) = −a2/2 P a.s.
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Finally

Z∞(ω) = lim
t→∞

e−a
2t/2 = 0 P a.s.

Note that for any t we have E(Zt)=1, in fact In fact we have

E(zt) = E(eaBt−a2t/2) = e−a
2t/2E(eaBt) =

= e−a
2t/2E

( ∞∑
k=1

1

k!
akBkt

)
=

= e−a
2t/2

∞∑
k=1

1

k!
ak

(2k)!

2kk!
tk =

= e−a
2t/2

∞∑
k=1

1

k!

(
ta2

2

)k
= 1

This shows that the L1-limit is not Z∞ which is, according to the martingale conver-
gence theorem, just the limit with probability 1.
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