
Stochastic analysis, fall 2014, Exercises-3, 01.10.14

1. Let (η̇n(t) : n ∈ N) an othonormal system in L2([0, 1], dt), with∫ 1

0

η̇n(s)η̇m(s)ds = δn,m

for example the Haar system we have used in Paul Lévy’s construction of Brownian motion,
and let (Gn(ω) : n ∈ N) a sequence of i.i.d. Gaussian random variable with E(G) = 0 and
E(G2) = 1. show that the random functions

n∑
k=1

η̇k(s)Gk(ω)

do not converge in L2(Ω× [0, 1], dP ⊗ dt). Hint: compute the squared norm

E

(∫ 1

0

{ N∑
k=1

Gk(ω)η̇k(s)

}2

ds

)

Solution
Note that by triangle inequality one can show that if the sequence fn ∈ L2(µ) for some
measure µ and f is its L2(µ) limit, then

lim
n→∞

‖fn‖L2(µ) = ‖f‖L2(µ).

Consider

E

(∫ 1

0

{ N∑
k=1

Gk(ω)η̇k(s)

}2

ds

)
= E

(∫ 1

0

{ N∑
k,m=1

Gk(ω)Gm(ω)η̇k(s)η̇m(s)

}
ds

)
=

= E

( N∑
k,m=1

Gk(ω)Gm(ω)δmk

)
=

= E

( N∑
k=1

G2
k(ω)

)
= N

which diverges as N →∞.
This means that

∑n
k=1 η̇k(s)Gk(ω) does not converge in L2(Ω× [0, 1], dP ⊗ dt).

2. Let ξ(ω) = (ξ1(ω), . . . , ξd(ω)) ∈ Rd a Gaussian random vector with independent and identi-
cally distributed components standard Gaussian components ξk(ω) ∼ N (0, 1), EP (ξk) = 0
ja EP (ξkξ`) = δk`. Let µ = (µ1, . . . , µd) ∈ Rd a deterministic vector and A = (Aij : 0 ≤ i ≤
j ≤ d) a deterministic d× d matrix.

Let X(ω) = (µ+Aξ(ω)>) ∈ Rd.

(a) Show that EP (X) = µ ja EP (XiXj)− EP (Xi)EP (Xj) = Σij , where Σ = AA>.

(b) Show that the random vector X has density with respect to the Lebesgue measure in
Rd given by

pX(x) = (2π)−d/2 det(Σ)−1/2 exp
(
−1

2
(x− µ)Σ−1(x− µ)>

)
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in other words, if g : Rd → R is

EP

(
g(X)

)
= EP

(
g(µ+Aξ>)

)
=∫

R
. . .

∫
R
g
(
µ1 +

d∑
j=1

A1jyj , . . . , µd +

d∑
j=1

A1jyj)

d∏
j=1

{
1√
2π

exp(−y2
j /2)

}
dy1 . . . dyd =∫

Rd

g(x1, . . . , xd)pX(x1, . . . , xd)dx1 . . . dxd

Hint use the change of variables x = µ + Ay>. You can assume that m = n and the
matrix A is invertible.

Solution:

(a) Componentwise we have

EP (Xi) = EP

(
µi +

∑
j

Aijξj

)
= µi +

∑
j

AijEP ξj = µi

EP (XiXj)− EP (Xi)EP (Xj) = EP (µi +
∑
j

Aikξk)(µj +
∑
m

Ajmξm)− µiµj =

=
∑
k,m

AikAjmEP (ξkξm) =

=
∑
k,m

AikAjmδkm =

=
∑
k

AikAjk =

=
∑
k

AikA
>
kj = Σij

(b) Consider

EP

(
g(X)

)
= EP

(
g(µ+Aξ>)

)
=

∫
Rd

g
(
µ1 +

d∑
j=1

A1jyj , . . . )

d∏
j=1

{
1√
2π

exp(−y2
j /2)dyi

}
We use the change of variables x = µ+Ay>, so that the Jacobian matrix is ∂yi/∂xj =
A−1
ij . Then we have

EP

(
g(X)

)
=

∫
Rd

|detA−1|g
(
x1, . . . , xd)(2π)−d/2 ×

× exp

−1

2

∑
j

(
∑
k

A−1
jk (xk − µk))(

∑
m

A−1
jm(xm − µm))

 dx1 · · · dxd

Let us concentrate on the exponent:

−1

2

∑
j

(
∑
k

A−1
jk (xk − µk))(

∑
m

A−1
jm(xm − µm)) = −1

2

∑
k,m

(xk − µk)
∑
j

(A−1
kj )>A−1

jm(xm − µm) =

= −1

2

∑
k,m

(xk − µk)Σ−1
km(xm − µm) =

= −1

2
(x− µ)Σ−1(x− µ)>
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where we used that Σ−1 = (AA>)−1 = (A>)−1A−1 = (A−1)>A−1.
Moreover, note that det Σ = detAdetA> = (detA)2 and that detA−1 = (detA)−1.
So we get

EP

(
g(X)

)
=

∫
Rd

g(x1, . . . , xd)pX(x1, . . . , xd)dx1 . . . dxd.

3. Let (X,Y ) ∼ N (0,Σ) jointly Gaussian random vectors with X(ω) ∈ Rnx and Y (ω) ∈ Rny ,
with means E(X) = µX E(Y ) = µY , and covariance

Σ =

(
Σxx Σxy
Σ>xy Σyy

)
Use Bayes formula to compute the conditional densities

pX|Y (x|Y = y) and pY |X(y|X = x)

Solution

We obtain all the identities by using the formula multivariate gaussian formula. Consider
D = Σ−1, X(ω) ∈ Rnx , Y (ω) ∈ Rny , n = nx + ny. Σ is the covariance matrix of (X,Y ).
We define the notation |A| := |detA|, A being a matrix. For the sake of simplicity, let be
µX = µY = 0. Later we will consider the general case with non vanishing expectations.
By Bayes’ formula we have

pXY (x, y) = (2π)−n/2
√
|D| exp

(
−1

2

{
(x, y)D(x, y)>

})
= pX(x)pY |X(y|x)

where

pX(x) = (2π)−nx/2|Σxx|−1/2 exp

(
−1

2

{
xΣ−1

xxx
>
})

pY |X(y|x) =
pXY (x, y)

pX(x)
= (2π)−ny/2

√
|D| × |Σxx| exp

(
−1

2

{
(x, y)D(x, y)> − xΣ−1

xxx
>
})

=

(2π)−ny/2
√
|D| × |Σxx| exp

(
−1

2

{
x(Dxx − Σ−1

xx )x>
)

exp

(
−1

2

{
yDyyy

> + 2yD>yxx
>
})

=

(2π)−ny/2
√
|D| × |Σxx| exp

(
−1

2

{
x(Dxx −DxyD

−1
yy D

>
xy − Σ−1

xx )x>
})

× exp

(
−1

2

{
(y + xDxyD

−1
yy )Dyy(y + xDxyD

−1
yy )>

})
where in the last line we used the trick of the completion of the square.
Now conditionally on X we treat x as a constant. It follows that the conditional distri-
bution pY |X(y|x) is gaussian and the normalization constraint implies that the conditional
covariance matrix is

Σy|x = D−1
yy

and conditional mean

E(y|x) = −xDxyD
−1
yy

Also since this conditional variance does not depend on x we must have

Σ−1
xx = Dxx −DxyD

−1
yy D

>
xy

3



and also

|Dyy| = |D| × |Σxx| = |Σxx|/|Σ|

Note also that by inverting the roles of Σ and D (D = Σ−1 is also a symmetric non-negative
matrix, which corresponds to a covariance matrix ), we obtain

D−1
xx = Σxx − ΣxyΣ−1

yy Σ>xy, (1)

|Σyy| = |Σ| × |Dxx| = |Dxx|/|D| (2)

By changing the roles of x and y we obtain also

Σx|y = D−1
xx , (3)

Σ−1
yy = Dyy −D>xyD−1

xxDxy, (4)

D−1
yy = Σyy − Σ>xyΣ−1

xxΣxy = Σy|x (5)

Now we use the property of the inverse matrix: since ΣD = DΣ = Id(
Σxx Σxy
Σ>xy Σyy

)(
Dxx Dxy

D>xy Dyy

)
=

(
Id 0
0 Id

)
=

(
Dxx Dxy

D>xy Dyy

)(
Σxx Σxy
Σ>xy Σyy

)
we have

ΣxxDxx + ΣxyD
>
xy = Id = DxxΣxx +DxyΣ>xy

ΣxxDxy + ΣxyDyy = 0 = DxxΣxy +DxyΣyy

Σ>xyDxx + ΣyyD
>
xy0 = D>xyΣxx +DyyΣ>xy

Σ>xyDxy + ΣyyD
>
yy = Id = D>xyΣxy +DyyΣ>yy

We can use it to obtain a new expression for the conditional expectation:

E(y|x) = −xDxyD
−1
yy = −xDxy

(
Σyy − Σ>xyΣ−1

xxΣxy
)

= x
(
−DxyΣyy +DxyΣ>xyΣ−1

xxΣxy
)

= x
(
DxxΣxy + {Id−DxxΣxx}Σ−1

xxΣxy
)

= x
(
DxxΣxy + Σ−1

xxΣxy −DxxΣxy
)

= xΣ−1
xxΣxy

By changing the roles of x and y we get also

E(x|y) = −yD>xyD−1
xx = yΣ−1

yy Σ>xy

When X and Y a priori have non zero mean, by using X ′ = (X − µX) and Y ′ = (Y − µY )
we obtain

E(X|Y ) = µX + (Y − µY )Σ−1
yy Σ>xy (6)

E(Y |X) = µY + (X − µX)Σ−1
xxΣxy (7)

It follows also that

Dxy = −Σ−1
xxΣxyDyy = −Σ−1

xxΣxyΣ−1
y|x = −Σ−1

x|yΣxyΣ−1
yy
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and

D =

(
Dxx Dxy

D>xy Dyy

)
= Σ−1 =

(
Σ−1
x|y −Σ−1

x|yΣxyΣ−1
yy

−Σ−1
xxΣxyΣ−1

y|x Σ−1
y|x

)

To sum up, we obtained that both pX|Y (x|Y = y) and pY |X(y|X = x) are Gaussian distri-
bution and their explicit formulae read

pX|Y (x|Y = y) = (2π)−nx/2|Dxx|1/2 exp

(
−1

2

{
[x− E(x|y)]Dxx [x− E(x|y)]

>
})

pY |X(y|X = x) = (2π)−ny/2|Dyy|1/2 exp

(
−1

2

{
[y − E(y|x)]Dyy [y − E(y|x)]

>
})

where E(y|x) and E(x|y) are given by 6 and 7 and D−1
xx and D−1

yy are given by 1 and 5.

4. Consider a random variable Y (ω) ∈ L2(Ω,F , P ). Consider the linear subspace spanned by
the random variable Y (ω).

LinearSpan(Y )
{
b+ aY (ω) : a, b ∈ R}

⊂ L2(Ω, σ(Y ), P ) = {g(Y (ω)) : g(y) Borel measurable
}
∩ L2(Ω,F , P )

(a) Show that LinearSpan(Y ) is a closed subspace of L2(Ω,F , P ).

(b) Let X a random variable in L2(Ω,F , P ). Compute the orthogonal projection of X on
LinearSpan(Y ).

Hint: you can assume that E(X) = 0 and E(Y ) = 0.

Solution

(a) Consider a sequence Zn ∈ LinearSpan(Y ) and its limit Z ∈ L2(Ω,F , P ). Note that in
fact LinearSpan(Y ) = Span{1, Y } = Span{1, Y/E(Y 2)}, so the orthonormal projec-
tion of Z on LinearSpan(Y ) is simply

ΠLinearSpan(Y )(Z) = E(Z) + E(ZY )Y/E(Y 2) ∈ LinearSpan(Y )

Now consider di L2-distance between Zn and ΠLinearSpan(Y )(Z):

E(Zn −ΠLinearSpan(Y )(Z))2 = E

(
Zn − E(Z)− E(ZY )

E(Y 2)
Y

)2

=

= E

(
E(Zn) +

E(ZnY )

E(Y 2)
Y − E(Z)− E(ZY )

E(Y 2)
Y

)2

= E

[
E(Zn − Z) + Y

E((Zn − Z)Y )

E(Y 2)

]2

= (E(Zn − Z))2 +
(E((Zn − Z)Y ))2

E(Y 2)

≤ 2E(Zn − Z)2 → 0

where we used the Schwartz inequality.
Thus, we have shown that Zn → ΠLinearSpan(Y )(Z) and, since the limit is unique, we
have necessarily that Z = ΠLinearSpan(Y )(Z) ∈ LinearSpan(Y ).

(b) The orthogonal projection of X is

ΠLinearSpan(Y )(X) = E(X) +
E(XY )

E(Y 2)
Y =

E(XY )

E(Y 2)
Y
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5. Consider a jointly Gaussian pair of random variables (X,Y ), with means E(X) = 0 and
E(Y ) = 0, and covariance

Σ =

(
ΣXX ΣXY
ΣY X ΣY Y

)
(a) Compute the orthogonal projection of X on LinearSpan(Y ) and show that it coincides

with on E(X|Y )(ω).

Hint: compute the orthogonal projection by minimizing w.r.t. a, b

E
(
(b+ aY −X)2

)
(b) Compute the conditional variance of X given Y , defined as

Cov(X|Y )(ω) = E(X2|Y )(ω)− E(X|Y )(ω)2

Solution

(a) By exercise 3 we now that E(X|Y ) = Y ΣXY Σ−1
Y Y (note that in this case ΣXY and ΣY Y

are just numbers and ΣXY = ΣY X).
On the other hand we compute the orthogonal projection of X by minimizing with
respect to a, b

E
(
(b+ aY −X)2

)
= b2 + a2E(Y 2) + E(X2)− 2aE(XY )

We look for the stationary points:

∂bE
(
(b+ aY −X)2

)
= 2b = 0

∂bE
(
(b+ aY −X)2

)
= 2aE(Y 2)− 2E(XY ) = 0

then, we get that the stationary point is b = 0 and a = E(XY )/E(Y 2) = ΣXY /ΣY Y .
A simple calculation shows that the Hessian matrix at the stationary point is H =
diag(2, 2E(Y 2)) which is positive definite, so our stationary point is a minimum point.
This means that

ΠLinearSpan(Y )(X) = Y ΣXY Σ−1
Y Y = E(X|Y ).

(b) Again by exercise 3 we readily get that

Cov(X|Y )(ω) = E(X2|Y )(ω)− E(X|Y )(ω)2 = ΣXX − ΣXY Σ−1
Y Y ΣY X

6. Let 0 < s < t < u, and (Br : r ≥ 0) a standard Brownian motion with B0 = 0. Compute
the conditional distribution of Bu conditionally on σ(Bs, Bu).

Solution
Let be X = Bt and Y = (Bs Bt)

>. Of course we have EX = 0 and EY = (0 0)>. Then
we have

ΣXX = t

ΣXY = (E(BtBs) E(BtBu) = (s t)

ΣY Y =

(
E(BsBs) E(BsBu)
E(BuBs) E(BuBu)

)
=

(
s s
s u

)

Now, by using the result in exercise 3, we obtain that the distribution of the random variable
(Bt|Bs = b1, Bu = b2) is Gaussian with expectation value

µ = ΣXY Σ−1
Y Y Y =

u− t
u− s

b1 +
t− s
u− s

b1

and variance

Σ = ΣXX + ΣXY Σ−1
Y Y ΣY X =

(u− t)(t− s)
u− s
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7. A d-dimensional Brownian motion is an Rd-valued stochastic process Bt = (B
(1)
t , . . . , B

(d)
t ),

t ≥ 0, where the components B
(k)
t are independent R-valued standard Brownian motions.

(a) Let Q be an orthogonal d× d-matrix , which means QQ> = Q>Q = Id, (equivalently
Q−1 = Q>). Show that (QBt : t ≥ 0) is a d-dimensional Brownian motion.

(b) For a matrix A ∈ d × d, let Xt = (ABt) ∈ Rn. Show that (Xt : t ≥ 0) is a Gaussian
process (all finite dimensional distributions are jointly Gaussian), with independent
jointly Gaussian increments, i.e. for 0 ≤ s ≤ t, (Xt −Xs) ⊥⊥ FXs = σ(Xr : r ≤ s).

(c) compute the covariance E(X
(i)
t X

(j)
s ). Compute the stochastic cross variations

[X(i), X(j)]t = lim
n→∞

∑
tnk∈Πn

(
X

(i)
tnk∧t
−X(i)

tnk−1∧t
)(
X

(j)
tnk∧t
−X(j)

tnk−1∧t
)

for any sequence of partitions (Πn) with ∆(Πn, t) → 0, where we take limit in proba-
bility and the limit does not depend on the particular sequence (Πn), and we have also
P -almost sure convergence when

∑
n∈N

∆(Πn, t) <∞.

Solution

(a) First, note that W
(j)
t :=

∑
kQjkB

(k)
t is still Gaussian with vanishing mean since is a lin-

ear combination of Gaussian random variables with vanishing mean and is independent

from W
(j′)
s for j 6= j′ since

E(W
(j)
t W (j′)

s ) = E

∑
k,k′

QjkQj′k′B
(k)
t B(k′)

s

 =

=
∑
k,k′

QjkQj′k′E
(
B

(k)
t B(k′)

s

)
=

= (t ∧ s)
∑
k,k′

QjkQj′k′δk,k′ = (t ∧ s)δjj′

The last equation means also that E(Wj(t)Wj(s)) = t ∧ s as we expect.

Of course W
(j)
t is also continuous almost surely as linear combination of almost surely

continuous processes.
Now we need to show the independence of the increments: in fact, let 1 < t2 < t3 < t4
and consider

E(Wj(t4)−Wj(t3))(Wj(t2)−Wj(t1)) = (t4 ∧ t3)− (t3 ∧ t2)− (t4 ∧ t1) + (t3 ∧ t1) = 0

(b) We can see that each component X
(i)
t is a Gaussian process by looking at the distribu-

tion of the vector (X
(j1)
t1 , . . . , X

(jn)
tn ) where n ∈ N is arbitrary. In particular we want to

show that this distribution is jointly Gaussian.
Consider the characteristic function

E

(
exp

{
i

n∑
k=1

λkX
(jk)
tk

})
= E

(
exp

{
i

n∑
k=1

λk

d∑
m=1

AjkmB
(m)
tk

})
=

=

d∏
m=1

E

(
exp

{
i

n∑
k=1

λkAjkmB
(m)
tk

})
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Now we can define θk,m := λkAjkm so that

E

(
exp

{
i

n∑
k=1

λkX
(jk)
tk

})
=

d∏
m=1

E

(
exp

{
i

n∑
k=1

θk,mB
(m)
tk

})
=

=

d∏
m=1

exp

−1

2

n∑
k,k′

θk,mθk′,m(tk ∧ tk′)

 =

= exp

−1

2

n∑
k,k′

d∑
m=1

λkλk′AjkmAjk′m(tk ∧ tk′)

 =

= exp

−1

2

n∑
k,k′

λkλk′Σjkjk′ (tk ∧ tk′)


where Σ = AA> is a d×d matrix. Therefore, we obtained that the process is a Gaussian
process with vanishing expectation and covariance

Cov(Xj1
t1X

j2
t2 ) = Σj1j2(t1 ∧ t2)

Now, in order to show that the increments are independent, for t1 < t2 < t3 < t4, just
consider

E(X
(i)
t4 −X

(i)
t3 )(X

(j)
t2 −X

(j)
t1 ) = Σij [(t4 ∧ t2)− (t3 ∧ t2)− (t4 ∧ t1) + (t3 ∧ t1)] = 0

(c) We have already computed the covariance, so we just need to calculate the stochastic
cross variation:

[X(i), X(j)]t = lim
n→∞

∑
tnk∈Πn

(
X

(i)
tnk∧t
−X(i)

tnk−1∧t
)(
X

(j)
tnk∧t
−X(j)

tnk−1∧t
)

=

= lim
n→∞

∑
tnk∈Πn

∑
m,m′

AimAjm′
(
B

(m)
tnk∧t
−B(m)

tnk−1∧t
)(
B

(m′)
tnk∧t
−B(m′)

tnk−1∧t
)

=

=
∑
m,m′

AimAjm′ lim
n→∞

∑
tnk∈Πn

(
B

(m)
tnk∧t
−B(m)

tnk−1∧t
)(
B

(m′)
tnk∧t
−B(m′)

tnk−1∧t
)

=

=
∑
m,m′

AimAjm′δm,m′t = tΣij
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