Stochastic analysis, fall 2014, Exercises-3, 01.10.14

1. Let (1,(¢) : n € N) an othonormal system in L?(]0, 1], dt), with

1
/ nn(s)nm (S)ds = 671,7”
0

for example the Haar system we have used in Paul Lévy’s construction of Brownian motion,
and let (G, (w) : n € N) a sequence of i.i.d. Gaussian random variable with E(G) = 0 and
E(G?) = 1. show that the random functions

> ik(5)Gr(w)

k=1

do not converge in L?(Q x [0,1],dP ® dt). Hint: compute the squared norm
1 N 2
B[S am} o)
0 Yg=1
Solution

Note that by triangle inequality one can show that if the sequence f, € L?(u) for some
measure p and f is its L?(p) limit, then

o fallzagey = 1 llz2gn-
Consider
5 1{éek<w>m<s>}2czs) - ([ 1{kmizlGk<w>cm<w>m<s>ﬁm<s>}ds) -
_ E(kmile(w)Gm(w)émO _
N
= E(%Gi(w)) =N

which diverges as N — oo.
This means that Y, _; 7k (s)Gx(w) does not converge in L*(2 x [0,1],dP @ dt).

2. Let £(w) = (&1(w), ..., &i(w)) € R? a Gaussian random vector with independent and identi-
cally distributed components standard Gaussian components & (w) ~ N (0,1), Ep(&) =0
ja Ep(&r€e) = Ope. Let p = (p1,...,pq) € R? a deterministic vector and A = (A;j:0<i<
j < d) a deterministic d x d matrix.

Let X(w) = (u+ Aé(w) ") € R
(a) Show that EP(X) = ja EP(XZXJ) — EP(XZ)EP(X]) = Eija where ¥ = AAT
(b) Show that the random vector X has density with respect to the Lebesgue measure in

R? given by

px(x) = (2m) " det(2) " exp(— (2~ W= (e~ 1))



in other words, if g : R? — R is

Ep <9<X>> = Ep(g(n+ A7) =

d d
/.../g(/ﬂ+ZA1jyj7-~-aMd+ZA1jyj
R R j=1 Jj=1

/dg(xl,...,md)px(xl,...7xd)dx1...dxd
R

Hint use the change of variables x = 4+ Ay

matrix A is invertible.
Solution:

(a) Componentwise we have

d

1

j=1

exp( y?/?)}dyl coodyg =

. You can assume that m = n and the

Ep(Xi) = Ep (“i + Z‘%‘fj) — i+ Y AyEpé; =
J j

Ep(XiX;) — Ep(Xi)Ep(X;) =

EP(,U'L' + Z Aikﬁk)(ﬂj + Z Ajmgm) — Milby =
j m

= D AuAjmEp(&én) =

k.m

= > AiAjmOim =

= Z A Aji, =
k

= ZAikAij =X
k

(b) Consider

Ep (g(X)) = Ep(g(n+A¢")) = /Rdg

We use the change of variables x = p+ Ay "
Ai_jl. Then we have

Be(9x)) =
con | D 4
Let us concentrate on the exponent:

I A - i AT
ik "
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exp( 95/2)dyi}

, so that the Jacobian matrix is dy;/0z; =

/d | det A~ g (a1, .., 2a)(2m) Y2 x
R

da:d
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where we used that X! = (AAT)"L = (A7)~ 1A = (A7) TA-L
Moreover, note that det = det Adet AT = (det A)? and that det A=! = (det A)~".
So we get

Ep(g(X)) = /dg(ajl,...,xd)px(xl,...,a:d)dxl...da:d.
R

3. Let (X,Y) ~ N(0,X) jointly Gaussian random vectors with X (w) € R™ and Y (w) € R"v,
with means E(X) = ux E(Y) = uy, and covariance

by 3
N a_cr:c gcy)
<Za:y Eyy
Use Bayes formula to compute the conditional densities

pX\Y($|Y =y) and PY|X(Z/\X =)

Solution

We obtain all the identities by using the formula multivariate gaussian formula. Consider
D=%"! X(w) € R",Y(w) € R", n=n, +ny,. X is the covariance matrix of (X,Y).
We define the notation |A| := |det A|, A being a matrix. For the sake of simplicity, let be
ux = py = 0. Later we will consider the general case with non vanishing expectations.

By Bayes’ formula we have

prv(a) = ) 2Dl (-3 { @Dl }) = pxt@pistole)
where

1
px(z) = (27r)*”“”/2|2m|71/2 exp <2 {mele}>

prix(ole) = 2D oyl BT Texp (3 { (oDl ) = asidaT}) -

(271') v/ |D‘ X |Zaca:| €xp <_2{x(Dzw - ngl)xT) exp (_Q{yDyny + 2yDl—/r$xT}) =
- 1 B _
() /2 IDTx el exp( 5 { D — D2y DD, - 2207} )
1 _ _
X exp (‘2{@ + fDa:yDyyl)Dyy(y + »TDryDyyl)T}>

where in the last line we used the trick of the completion of the square.

Now conditionally on X we treat x as a constant. It follows that the conditional distri-
bution py|x(y|x) is gaussian and the normalization constraint implies that the conditional
covariance matrix is

=D!

ylz yy

P
and conditional mean

E(ylz) = —LL‘DIyDy_yl

Also since this conditional variance does not depend on x we must have

-1 _ -1 T
Syt = Dyy — Duy D, D],



and also

|Dyy| = |D| X |ZM| = |Z:m|/|z|

Note also that by inverting the roles of ¥ and D (D = X~! is also a symmetric non-negative

matrix, which corresponds to a covariance matrix ), we obtain

D}l =%, —Y.,5 8]

yy Sy
|Zyy| = 2| X [Dez| = |Dael/|D|

By changing the roles of  and y we obtain also

Yoly = DI_;,
_ T e
Eyy1 :Dyy_DwyDza;lDﬂfy’

- T y-1
Dy; =Sy — 20y T Say = Syl

zy“rx

Now we use the property of the inverse matrix: since XD = DY = Id
E;—y Sy D:—cry Dyy 0 Id D;:ry Dy, E;—y Sy

S22Dss + BaoyDyy = 1d = DuoTao + Dy %y,
YexDay + XayDyy = 0= Dy ¥y + Dy Sy
S0y Doz + Syy D), 0 =D/ Sop + Dy 51,
SayDay + Syy Dy, = Id = D] S0y + Dy S,

we have

We can use it to obtain a new expression for the conditional expectation:

E(ylr) = _wayngyl = —xDyy (Zyy - E;yza;xlzxy)
= &(=DayDyy + D1y21—y2;aclz$y)

= 2(DyoXay + {Id — Dyy Yoo} S50 Say)
= 2(DyoSay + Epp Say — DoaSay) = 25, Say

By changing the roles of z and y we get also

E(zly) = —yD], Dyt = y=, '],

When X and Y a priori have non zero mean, by using X' = (X —pux) and Y’ = (Y — py)

we obtain

E(X|Y) = px + (Y — py) /%],
E(Y|X) = py + (X — ux) 25150,
It follows also that

Dy = =S, SayDyy = S0 5,51 = -5 5, 31

ylz z|y



and
1
D= D’—Crx Dry) _y-1 aly E»L\yz oy
D D -1y, Z_ »-!
*y vy yla yla

To sum up, we obtained that both pxy (z|Y = y) and py|x (y|X = x) are Gaussian distri-
bution and their explicit formulae read

prv(aly =) = (@020, e~ 3 {lo — Bal)] Das o - Bl )

prixlX =2) = @0 2Dy e (<5l - B Dy by - Blo]})

where E(y|r) and E(z|y) are given by 6 and 7 and D! and Dy_y1 are given by 1 and 5.

. Consider a random variable Y (w) € L?(Q2, F, P). Consider the linear subspace spanned by
the random variable Y (w).

LinearSpan(Y){b+ aY (w) : a,b € R}
C L*(2,0(Y),P) = {g(Y(w)) : g(y) Borel measurable } N L*(Q, F, P)

(a) Show that LinearSpan(Y) is a closed subspace of L?(Q, F, P).

(b) Let X a random variable in L?(€2, F, P). Compute the orthogonal projection of X on
Linear Span(Y').
Hint: you can assume that E(X) =0 and E(Y) =0.

Solution

(a) Consider a sequence Z,, € LinearSpan(Y) and its limit Z € L%(§), F, P). Note that in
fact LinearSpan(Y) = Span{1,Y} = Span{l,Y/E(Y?)}, so the orthonormal projec-
tion of Z on LinearSpan(Y') is simply

HLineaT'Span(Y)(Z) = E(Z) + E(ZY)Y/E(YQ) € LinearSpan(Y)

Now consider di L?-distance between Z,, and Hrinearspan(yv)(Z):

E(Zn = Uincarspan(v)(2))* = E (Z” - 82) - E1;((ZY}2/)) Y>2 B
_ B (E Z”?Y - E(2) - EE((f};)) Y>2
-~ sfpz, - 2y ey B2
= (BE(Z,-2))*+ (E((Zg(;?y»?
< 2B(Z,—Z)2—0

where we used the Schwartz inequality.
Thus, we have shown that Z, — Hpinearspan(y)(Z) and, since the limit is unique, we
have necessarily that Z = Il ppcarSpan(y)(Z) € LinearSpan(Y').

(b) The orthogonal projection of X is

E(XY)., E(XY)

B T By Y

HLinearSpan(Y) (X) = E<X) +




5. Consider a jointly Gaussian pair of random variables (X,Y’), with means F(X) = 0 and

E(Y) =0, and covariance
5 (EXX EXY>
Yyx Xyy

(a) Compute the orthogonal projection of X on LinearSpan(Y') and show that it coincides
with on E(X|Y)(w).
Hint: compute the orthogonal projection by minimizing w.r.t. a,b

E((b+aY — X)?)
(b) Compute the conditional variance of X given Y, defined as
Cov(X[Y)(w) = B(X2Y)(w) - E(X|Y)(w)?
Solution

(a) By exercise 3 we now that F(X|Y) = YEXyZ;,%/ (note that in this case ¥ xy and Xyy
are just numbers and X xy = Xy x).
On the other hand we compute the orthogonal projection of X by minimizing with
respect to a,b

E((b+aY — X)?) =b*+a®E(Y?) + E(X?) — 2aE(XY)
We look for the stationary points:
WE((b+aY — X)?) 2b=0
WBE((b+aY —X)?) = 2aE(Y?)—2B(XY)=0
then, we get that the stationary point is b = 0 and a = E(XY)/E(Y?) = Yxv/Syy.
A simple calculation shows that the Hessian matrix at the stationary point is H =

diag(2,2E(Y?)) which is positive definite, so our stationary point is a minimum point.
This means that

Lincarspan(v)(X) = YExy Sy = B(X]Y).
(b) Again by exercise 3 we readily get that
Cov(X|Y)(w) = B(X?Y)(w) — E(X|Y)(w)* = Sxx — ExvSyy- Sy x
6. Let 0 < s <t < wu, and (B, : 7 > 0) a standard Brownian motion with By = 0. Compute

the conditional distribution of B, conditionally on o(Bs, By,).

Solution
Let be X = B; and Y = (B, B;)". Of course we have EX = 0 and EY = (0 0)". Then

we have

YXxx =t
Yxy = (E(B:Bs) E(B:B,)=(st)

_ E(B;B,) E(B;B.) (s s
Yyy = ( E(B,Bs) E(B,B.,) ) B ( s u )

Now, by using the result in exercise 3, we obtain that the distribution of the random variable
(B:|Bs = b1, By, = b2) is Gaussian with expectation value

t—s
by
-5

b1+

-1
and variance

(u—1t)(t—s)

Y =Yxx +EZxvEyySyx = Py



7. A d-dimensional Brownian motion is an R¢-valued stochastic process B; = (Bt(l), e Bgd)),
t > 0, where the components Bt(k) are independent R-valued standard Brownian motions.

(a) Let @ be an orthogonal d x d-matrix , which means QQ " = QT Q = Id, (equivalently
1 =QT"). Show that (QB; :t > 0) is a d-dimensional Brownian motion.

(b) For a matrix A € d x d, let Xy = (AB;) € R™. Show that (X; : t > 0) is a Gaussian
process (all finite dimensional distributions are jointly Gaussian), with independent
jointly Gaussian increments, i.e. for 0 < s <t, (X; — X,) 1LL FX =o(X, : 7 < s).

(c) compute the covariance E (Xt(i)ng )). Compute the stochastic cross variations

(X @, XD, = Jim_ ZH (X{ne = X5 A (X =X 0
tpeln

for any sequence of partitions (II") with A(II",¢) — 0, where we take limit in proba-
bility and the limit does not depend on the particular sequence (II"), and we have also

P-almost sure convergence when Y A(II",t) < oco.
neN

Solution

(a) First, note that Wt(j )= >k ijng) is still Gaussian with vanishing mean since is a lin-
ear combination of Gaussian random variables with vanishing mean and is independent
from WY for j # j' since

EWOwWE) = B3 QuQuBr BE)
Kk’

= > QuQywE (Bt(k)ng/)> =

kK’

= (tA8)Y QinQykOw = (tA3)dj5

Kk’

The last equation means also that E(W;(¢t)W;(s)) =t A s as we expect.

Of course Wt(J ) is also continuous almost surely as linear combination of almost surely
continuous processes.

Now we need to show the independence of the increments: in fact, let 1 <ty < t3 < t4
and consider

E(W;(ta) — W;(t3))(Wj(ta) — Wi(t1)) = (ta A t3) — (t3 A t2) = (ta At1) + (E3 At1) =0

(b) We can see that each component Xt(l) is a Gaussian process by looking at the distribu-
tion of the vector (Xt(fl)7 . ,Xt(i")) where n € N is arbitrary. In particular we want to
show that this distribution is jointly Gaussian.

Consider the characteristic function

n n d
E (exp {ZZ)\kXt(Z")}> = F (exp {zZAk Z Ajkth(;”)}> =
k=1 k=1

m=1
d n
= H FE <exp {iZ)\kAjkth(:l)}>
m=1 k=1



Now we can define 0, p, := Ay Aj,m so that

d n
(exp{ Z/\ X(]k)}) = H FE (exp {iZQkJnB)g:L)}) =
m=1 k=1

d

= Hexp _*Zekmgk’ tk/\tk/) =
k,k’
1 n d
= o] =53 D AN A A Ate) =

1 n
= exp _iz)‘kAk’Ejkjk/(tk /\tk/)
k'

where ¥ = AAT is a d x d matrix. Therefore, we obtained that the process is a Gaussian
process with vanishing expectation and covariance

COU(thll thj) Ejija (t1 A t2)

Now, in order to show that the increments are independent, for t; < to < t3 < t4, just
consider

B(XD — XX — XDy = S5 [(ba A ta) — (b Ata) — (ta A1) + (b3 At1)] = 0

We have already computed the covariance, so we just need to calculate the stochastic
cross variation:

[X(i)aX(j)]t = nhf;o Z t”At tfl) At) (ng)/\t_ngilAt) =
t’neHn

= dm Y Ay (B — BEY ) (B - Bﬁg’ijM):

tpell™ m,m’
m,m’ H”
= Z AimAjm’ém,m’t = tzlj



