## Stochastic analysis, fall 2014, Exercises-3, 01.10.14

1. Let $\left(\dot{\eta}_{n}(t): n \in \mathbb{N}\right)$ an othonormal system in $L^{2}([0,1], d t)$, with

$$
\int_{0}^{1} \dot{\eta}_{n}(s) \dot{\eta}_{m}(s) d s=\delta_{n, m}
$$

for example the Haar system we have used in Paul Lévy's construction of Brownian motion, and let $\left(G_{n}(\omega): n \in \mathbb{N}\right)$ a sequence of i.i.d. Gaussian random variable with $E(G)=0$ and $E\left(G^{2}\right)=1$. show that the random functions

$$
\sum_{k=1}^{n} \dot{\eta}_{k}(s) G_{k}(\omega)
$$

do not converge in $L^{2}(\Omega \times[0,1], d P \otimes d t)$. Hint: compute the squared norm

$$
E\left(\int_{0}^{1}\left\{\sum_{k=1}^{N} G_{k}(\omega) \dot{\eta}_{k}(s)\right\}^{2} d s\right)
$$

## Solution

Note that by triangle inequality one can show that if the sequence $f_{n} \in L^{2}(\mu)$ for some measure $\mu$ and $f$ is its $L^{2}(\mu)$ limit, then

$$
\lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{L^{2}(\mu)}=\|f\|_{L^{2}(\mu)}
$$

Consider

$$
\begin{aligned}
E\left(\int_{0}^{1}\left\{\sum_{k=1}^{N} G_{k}(\omega) \dot{\eta}_{k}(s)\right\}^{2} d s\right) & =E\left(\int_{0}^{1}\left\{\sum_{k, m=1}^{N} G_{k}(\omega) G_{m}(\omega) \dot{\eta}_{k}(s) \dot{\eta}_{m}(s)\right\} d s\right)= \\
& =E\left(\sum_{k, m=1}^{N} G_{k}(\omega) G_{m}(\omega) \delta_{m k}\right)= \\
& =E\left(\sum_{k=1}^{N} G_{k}^{2}(\omega)\right)=N
\end{aligned}
$$

which diverges as $N \rightarrow \infty$.
This means that $\sum_{k=1}^{n} \dot{\eta}_{k}(s) G_{k}(\omega)$ does not converge in $L^{2}(\Omega \times[0,1], d P \otimes d t)$.
2. Let $\xi(\omega)=\left(\xi_{1}(\omega), \ldots, \xi_{d}(\omega)\right) \in \mathbb{R}^{d}$ a Gaussian random vector with independent and identically distributed components standard Gaussian components $\xi_{k}(\omega) \sim \mathcal{N}(0,1), E_{P}\left(\xi_{k}\right)=0$ ja $E_{P}\left(\xi_{k} \xi_{\ell}\right)=\delta_{k \ell}$. Let $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right) \in \mathbb{R}^{d}$ a deterministic vector and $A=\left(A_{i j}: 0 \leq i \leq\right.$ $j \leq d)$ a deterministic $d \times d$ matrix.
Let $X(\omega)=\left(\mu+A \xi(\omega)^{\top}\right) \in \mathbb{R}^{d}$.
(a) Show that $E_{P}(X)=\mu$ ja $E_{P}\left(X_{i} X_{j}\right)-E_{P}\left(X_{i}\right) E_{P}\left(X_{j}\right)=\Sigma_{i j}$, where $\Sigma=A A^{\top}$.
(b) Show that the random vector $X$ has density with respect to the Lebesgue measure in $\mathbb{R}^{d}$ given by

$$
p_{X}(x)=(2 \pi)^{-d / 2} \operatorname{det}(\Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)^{\top}\right)
$$

in other words, if $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is

$$
\begin{aligned}
& E_{P}(g(X))=E_{P}\left(g\left(\mu+A \xi^{\top}\right)\right)= \\
& \int_{\mathbb{R}} \ldots \int_{\mathbb{R}} g\left(\mu_{1}+\sum_{j=1}^{d} A_{1 j} y_{j}, \ldots, \mu_{d}+\sum_{j=1}^{d} A_{1 j} y_{j}\right) \prod_{j=1}^{d}\left\{\frac{1}{\sqrt{2 \pi}} \exp \left(-y_{j}^{2} / 2\right)\right\} d y_{1} \ldots d y_{d}= \\
& \int_{\mathbb{R}^{d}} g\left(x_{1}, \ldots, x_{d}\right) p_{X}\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
\end{aligned}
$$

Hint use the change of variables $x=\mu+A y^{\top}$. You can assume that $m=n$ and the matrix $A$ is invertible.

## Solution:

(a) Componentwise we have

$$
\begin{aligned}
E_{P}\left(X_{i}\right)=E_{P}\left(\mu_{i}\right. & \left.+\sum_{j} A_{i j} \xi_{j}\right)=\mu_{i}+\sum_{j} A_{i j} E_{P} \xi_{j}=\mu_{i} \\
E_{P}\left(X_{i} X_{j}\right)-E_{P}\left(X_{i}\right) E_{P}\left(X_{j}\right) & =E_{P}\left(\mu_{i}+\sum_{j} A_{i k} \xi_{k}\right)\left(\mu_{j}+\sum_{m} A_{j m} \xi_{m}\right)-\mu_{i} \mu_{j}= \\
& =\sum_{k, m} A_{i k} A_{j m} E_{P}\left(\xi_{k} \xi_{m}\right)= \\
& =\sum_{k, m} A_{i k} A_{j m} \delta_{k m}= \\
& =\sum_{k} A_{i k} A_{j k}= \\
& =\sum_{k} A_{i k} A_{k j}^{\top}=\Sigma_{i j}
\end{aligned}
$$

(b) Consider

$$
E_{P}(g(X))=E_{P}\left(g\left(\mu+A \xi^{\top}\right)\right)=\int_{\mathbb{R}^{d}} g\left(\mu_{1}+\sum_{j=1}^{d} A_{1 j} y_{j}, \ldots\right) \prod_{j=1}^{d}\left\{\frac{1}{\sqrt{2 \pi}} \exp \left(-y_{j}^{2} / 2\right) d y_{i}\right\}
$$

We use the change of variables $x=\mu+A y^{\top}$, so that the Jacobian matrix is $\partial y_{i} / \partial x_{j}=$ $A_{i j}^{-1}$. Then we have

$$
\begin{aligned}
E_{P}(g(X))= & \int_{\mathbb{R}^{d}}\left|\operatorname{det} A^{-1}\right| g\left(x_{1}, \ldots, x_{d}\right)(2 \pi)^{-d / 2} \times \\
& \times \exp \left(-\frac{1}{2} \sum_{j}\left(\sum_{k} A_{j k}^{-1}\left(x_{k}-\mu_{k}\right)\right)\left(\sum_{m} A_{j m}^{-1}\left(x_{m}-\mu_{m}\right)\right)\right) d x_{1} \cdots d x_{d}
\end{aligned}
$$

Let us concentrate on the exponent:

$$
\begin{aligned}
-\frac{1}{2} \sum_{j}\left(\sum_{k} A_{j k}^{-1}\left(x_{k}-\mu_{k}\right)\right)\left(\sum_{m} A_{j m}^{-1}\left(x_{m}-\mu_{m}\right)\right) & =-\frac{1}{2} \sum_{k, m}\left(x_{k}-\mu_{k}\right) \sum_{j}\left(A_{k j}^{-1}\right)^{\top} A_{j m}^{-1}\left(x_{m}-\mu_{m}\right)= \\
& =-\frac{1}{2} \sum_{k, m}\left(x_{k}-\mu_{k}\right) \Sigma_{k m}^{-1}\left(x_{m}-\mu_{m}\right)= \\
& =-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)^{\top}
\end{aligned}
$$

where we used that $\Sigma^{-1}=\left(A A^{\top}\right)^{-1}=\left(A^{\top}\right)^{-1} A^{-1}=\left(A^{-1}\right)^{\top} A^{-1}$.
Moreover, note that $\operatorname{det} \Sigma=\operatorname{det} A \operatorname{det} A^{\top}=(\operatorname{det} A)^{2}$ and that $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$.
So we get

$$
E_{P}(g(X))=\int_{\mathbb{R}^{d}} g\left(x_{1}, \ldots, x_{d}\right) p_{X}\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
$$

3. Let $(X, Y) \sim \mathcal{N}(0, \Sigma)$ jointly Gaussian random vectors with $X(\omega) \in \mathbb{R}^{n_{x}}$ and $Y(\omega) \in R^{n_{y}}$, with means $E(X)=\mu_{X} E(Y)=\mu_{Y}$, and covariance

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{x y}^{\top} & \Sigma_{y y}
\end{array}\right)
$$

Use Bayes formula to compute the conditional densities

$$
p_{X \mid Y}(x \mid Y=y) \quad \text { and } \quad p_{Y \mid X}(y \mid X=x)
$$

## Solution

We obtain all the identities by using the formula multivariate gaussian formula. Consider $D=\Sigma^{-1}, X(\omega) \in R^{n_{x}}, Y(\omega) \in R^{n_{y}}, n=n_{x}+n_{y} . \Sigma$ is the covariance matrix of $(X, Y)$.
We define the notation $|A|:=|\operatorname{det} A|, A$ being a matrix. For the sake of simplicity, let be $\mu_{X}=\mu_{Y}=0$. Later we will consider the general case with non vanishing expectations.
By Bayes' formula we have

$$
p_{X Y}(x, y)=(2 \pi)^{-n / 2} \sqrt{|D|} \exp \left(-\frac{1}{2}\left\{(x, y) D(x, y)^{\top}\right\}\right)=p_{X}(x) p_{Y \mid X}(y \mid x)
$$

where

$$
\begin{aligned}
& p_{X}(x)=(2 \pi)^{-n_{x} / 2}\left|\Sigma_{x x}\right|^{-1 / 2} \exp \left(-\frac{1}{2}\left\{x \Sigma_{x x}^{-1} x^{\top}\right\}\right) \\
& p_{Y \mid X}(y \mid x)=\frac{p_{X Y}(x, y)}{p_{X}(x)}=(2 \pi)^{-n_{y} / 2} \sqrt{|D| \times\left|\Sigma_{x x}\right|} \exp \left(-\frac{1}{2}\left\{(x, y) D(x, y)^{\top}-x \Sigma_{x x}^{-1} x^{\top}\right\}\right)= \\
& (2 \pi)^{-n_{y} / 2} \sqrt{|D| \times\left|\Sigma_{x x}\right|} \exp \left(-\frac{1}{2}\left\{x\left(D_{x x}-\Sigma_{x x}^{-1}\right) x^{\top}\right) \exp \left(-\frac{1}{2}\left\{y D_{y y} y^{\top}+2 y D_{y x}^{\top} x^{\top}\right\}\right)=\right. \\
& (2 \pi)^{-n_{y} / 2} \sqrt{|D| \times\left|\Sigma_{x x}\right|} \exp \left(-\frac{1}{2}\left\{x\left(D_{x x}-D_{x y} D_{y y}^{-1} D_{x y}^{\top}-\Sigma_{x x}^{-1}\right) x^{\top}\right\}\right) \\
& \times \exp \left(-\frac{1}{2}\left\{\left(y+x D_{x y} D_{y y}^{-1}\right) D_{y y}\left(y+x D_{x y} D_{y y}^{-1}\right)^{\top}\right\}\right)
\end{aligned}
$$

where in the last line we used the trick of the completion of the square.
Now conditionally on $X$ we treat $x$ as a constant. It follows that the conditional distribution $p_{Y \mid X}(y \mid x)$ is gaussian and the normalization constraint implies that the conditional covariance matrix is

$$
\Sigma_{y \mid x}=D_{y y}^{-1}
$$

and conditional mean

$$
E(y \mid x)=-x D_{x y} D_{y y}^{-1}
$$

Also since this conditional variance does not depend on $x$ we must have

$$
\Sigma_{x x}^{-1}=D_{x x}-D_{x y} D_{y y}^{-1} D_{x y}^{\top}
$$

and also

$$
\left|D_{y y}\right|=|D| \times\left|\Sigma_{x x}\right|=\left|\Sigma_{x x}\right| /|\Sigma|
$$

Note also that by inverting the roles of $\Sigma$ and $D\left(D=\Sigma^{-1}\right.$ is also a symmetric non-negative matrix, which corresponds to a covariance matrix ), we obtain

$$
\begin{align*}
& D_{x x}^{-1}=\Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{x y}^{\top},  \tag{1}\\
& \left|\Sigma_{y y}\right|=|\Sigma| \times\left|D_{x x}\right|=\left|D_{x x}\right| /|D| \tag{2}
\end{align*}
$$

By changing the roles of $x$ and $y$ we obtain also

$$
\begin{align*}
& \Sigma_{x \mid y}=D_{x x}^{-1}  \tag{3}\\
& \Sigma_{y y}^{-1}=D_{y y}-D_{x y}^{\top} D_{x x}^{-1} D_{x y},  \tag{4}\\
& D_{y y}^{-1}=\Sigma_{y y}-\Sigma_{x y}^{\top} \Sigma_{x x}^{-1} \Sigma_{x y}=\Sigma_{y \mid x} \tag{5}
\end{align*}
$$

Now we use the property of the inverse matrix: since $\Sigma D=D \Sigma=I d$

$$
\left(\begin{array}{cc}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{x y}^{\top} & \Sigma_{y y}
\end{array}\right)\left(\begin{array}{cc}
D_{x x} & D_{x y} \\
D_{x y}^{\top} & D_{y y}
\end{array}\right)=\left(\begin{array}{cc}
I d & 0 \\
0 & I d
\end{array}\right)=\left(\begin{array}{cc}
D_{x x} & D_{x y} \\
D_{x y}^{\top} & D_{y y}
\end{array}\right)\left(\begin{array}{cc}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{x y}^{\top} & \Sigma_{y y}
\end{array}\right)
$$

we have

$$
\begin{aligned}
& \Sigma_{x x} D_{x x}+\Sigma_{x y} D_{x y}^{\top}=I d=D_{x x} \Sigma_{x x}+D_{x y} \Sigma_{x y}^{\top} \\
& \Sigma_{x x} D_{x y}+\Sigma_{x y} D_{y y}=0=D_{x x} \Sigma_{x y}+D_{x y} \Sigma_{y y} \\
& \Sigma_{x y}^{\top} D_{x x}+\Sigma_{y y} D_{x y}^{\top} 0=D_{x y}^{\top} \Sigma_{x x}+D_{y y} \Sigma_{x y}^{\top} \\
& \Sigma_{x y}^{\top} D_{x y}+\Sigma_{y y} D_{y y}^{\top}=I d=D_{x y}^{\top} \Sigma_{x y}+D_{y y} \Sigma_{y y}^{\top}
\end{aligned}
$$

We can use it to obtain a new expression for the conditional expectation:

$$
\begin{aligned}
& E(y \mid x)=-x D_{x y} D_{y y}^{-1}=-x D_{x y}\left(\Sigma_{y y}-\Sigma_{x y}^{\top} \Sigma_{x x}^{-1} \Sigma_{x y}\right) \\
& =x\left(-D_{x y} \Sigma_{y y}+D_{x y} \Sigma_{x y}^{\top} \Sigma_{x x}^{-1} \Sigma_{x y}\right) \\
& =x\left(D_{x x} \Sigma_{x y}+\left\{I d-D_{x x} \Sigma_{x x}\right\} \Sigma_{x x}^{-1} \Sigma_{x y}\right) \\
& =x\left(D_{x x} \Sigma_{x y}+\Sigma_{x x}^{-1} \Sigma_{x y}-D_{x x} \Sigma_{x y}\right)=x \Sigma_{x x}^{-1} \Sigma_{x y}
\end{aligned}
$$

By changing the roles of $x$ and $y$ we get also

$$
E(x \mid y)=-y D_{x y}^{\top} D_{x x}^{-1}=y \Sigma_{y y}^{-1} \Sigma_{x y}^{\top}
$$

When $X$ and $Y$ a priori have non zero mean, by using $X^{\prime}=\left(X-\mu_{X}\right)$ and $Y^{\prime}=\left(Y-\mu_{Y}\right)$ we obtain

$$
\begin{align*}
& E(X \mid Y)=\mu_{X}+\left(Y-\mu_{Y}\right) \Sigma_{y y}^{-1} \Sigma_{x y}^{\top}  \tag{6}\\
& E(Y \mid X)=\mu_{Y}+\left(X-\mu_{X}\right) \Sigma_{x x}^{-1} \Sigma_{x y} \tag{7}
\end{align*}
$$

It follows also that

$$
D_{x y}=-\Sigma_{x x}^{-1} \Sigma_{x y} D_{y y}=-\Sigma_{x x}^{-1} \Sigma_{x y} \Sigma_{y \mid x}^{-1}=-\Sigma_{x \mid y}^{-1} \Sigma_{x y} \Sigma_{y y}^{-1}
$$

and

$$
D=\left(\begin{array}{cc}
D_{x x} & D_{x y} \\
D_{x y}^{\top} & D_{y y}
\end{array}\right)=\Sigma^{-1}=\left(\begin{array}{cc}
\Sigma_{x \mid y}^{-1} & -\Sigma_{x \mid y}^{-1} \Sigma_{x y} \Sigma_{y y}^{-1} \\
-\Sigma_{x x}^{-1} \Sigma_{x y} \Sigma_{y \mid x}^{-1} & \Sigma_{y \mid x}^{-1}
\end{array}\right)
$$

To sum up, we obtained that both $p_{X \mid Y}(x \mid Y=y)$ and $p_{Y \mid X}(y \mid X=x)$ are Gaussian distribution and their explicit formulae read

$$
\begin{aligned}
& p_{X \mid Y}(x \mid Y=y)=(2 \pi)^{-n_{x} / 2}\left|D_{x x}\right|^{1 / 2} \exp \left(-\frac{1}{2}\left\{[x-E(x \mid y)] D_{x x}[x-E(x \mid y)]^{\top}\right\}\right) \\
& p_{Y \mid X}(y \mid X=x)=(2 \pi)^{-n_{y} / 2}\left|D_{y y}\right|^{1 / 2} \exp \left(-\frac{1}{2}\left\{[y-E(y \mid x)] D_{y y}[y-E(y \mid x)]^{\top}\right\}\right)
\end{aligned}
$$

where $E(y \mid x)$ and $E(x \mid y)$ are given by 6 and 7 and $D_{x x}^{-1}$ and $D_{y y}^{-1}$ are given by 1 and 5 .
4. Consider a random variable $Y(\omega) \in L^{2}(\Omega, \mathcal{F}, P)$. Consider the linear subspace spanned by the random variable $Y(\omega)$.

$$
\begin{aligned}
& \text { LinearSpan }(Y)\{b+a Y(\omega): a, b \in \mathbb{R}\} \\
& \subset L^{2}(\Omega, \sigma(Y), P)=\{g(Y(\omega)): g(y) \text { Borel measurable }\} \cap L^{2}(\Omega, \mathcal{F}, P)
\end{aligned}
$$

(a) Show that LinearSpan $(Y)$ is a closed subspace of $L^{2}(\Omega, \mathcal{F}, P)$.
(b) Let $X$ a random variable in $L^{2}(\Omega, \mathcal{F}, P)$. Compute the orthogonal projection of $X$ on LinearSpan $(Y)$.
Hint: you can assume that $E(X)=0$ and $E(Y)=0$.

## Solution

(a) Consider a sequence $Z_{n} \in \operatorname{LinearSpan}(Y)$ and its limit $Z \in L^{2}(\Omega, \mathcal{F}, P)$. Note that in fact $\operatorname{LinearSpan}(Y)=\operatorname{Span}\{1, Y\}=\operatorname{Span}\left\{1, Y / E\left(Y^{2}\right)\right\}$, so the orthonormal projection of $Z$ on Linear $\operatorname{Span}(Y)$ is simply

$$
\Pi_{\text {LinearSpan }(Y)}(Z)=E(Z)+E(Z Y) Y / E\left(Y^{2}\right) \in \operatorname{LinearSpan}(Y)
$$

Now consider di $L^{2}$-distance between $Z_{n}$ and $\Pi_{\text {LinearSpan }(Y)}(Z)$ :

$$
\begin{aligned}
E\left(Z_{n}-\Pi_{\text {LinearSpan }(Y)}(Z)\right)^{2} & =E\left(Z_{n}-E(Z)-\frac{E(Z Y)}{E\left(Y^{2}\right)} Y\right)^{2}= \\
& =E\left(E\left(Z_{n}\right)+\frac{E\left(Z_{n} Y\right)}{E\left(Y^{2}\right)} Y-E(Z)-\frac{E(Z Y)}{E\left(Y^{2}\right)} Y\right)^{2} \\
& =E\left[E\left(Z_{n}-Z\right)+Y \frac{E\left(\left(Z_{n}-Z\right) Y\right)}{E\left(Y^{2}\right)}\right]^{2} \\
& =\left(E\left(Z_{n}-Z\right)\right)^{2}+\frac{\left(E\left(\left(Z_{n}-Z\right) Y\right)\right)^{2}}{E\left(Y^{2}\right)} \\
& \leq 2 E\left(Z_{n}-Z\right)^{2} \rightarrow 0
\end{aligned}
$$

where we used the Schwartz inequality.
Thus, we have shown that $Z_{n} \rightarrow \Pi_{\text {LinearSpan }(Y)}(Z)$ and, since the limit is unique, we have necessarily that $Z=\Pi_{\text {LinearSpan }(Y)}(Z) \in \operatorname{LinearSpan}(Y)$.
(b) The orthogonal projection of $X$ is

$$
\Pi_{\text {LinearSpan }(Y)}(X)=E(X)+\frac{E(X Y)}{E\left(Y^{2}\right)} Y=\frac{E(X Y)}{E\left(Y^{2}\right)} Y
$$

5. Consider a jointly Gaussian pair of random variables $(X, Y)$, with means $E(X)=0$ and $E(Y)=0$, and covariance

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{X X} & \Sigma_{X Y} \\
\Sigma_{Y X} & \Sigma_{Y Y}
\end{array}\right)
$$

(a) Compute the orthogonal projection of $X$ on $\operatorname{LinearSpan}(Y)$ and show that it coincides with on $E(X \mid Y)(\omega)$.
Hint: compute the orthogonal projection by minimizing w.r.t. $a, b$

$$
E\left((b+a Y-X)^{2}\right)
$$

(b) Compute the conditional variance of $X$ given $Y$, defined as

$$
\operatorname{Cov}(X \mid Y)(\omega)=E\left(X^{2} \mid Y\right)(\omega)-E(X \mid Y)(\omega)^{2}
$$

## Solution

(a) By exercise 3 we now that $E(X \mid Y)=Y \Sigma_{X Y} \Sigma_{Y Y}^{-1}$ (note that in this case $\Sigma_{X Y}$ and $\Sigma_{Y Y}$ are just numbers and $\left.\Sigma_{X Y}=\Sigma_{Y X}\right)$.
On the other hand we compute the orthogonal projection of $X$ by minimizing with respect to $a, b$

$$
E\left((b+a Y-X)^{2}\right)=b^{2}+a^{2} E\left(Y^{2}\right)+E\left(X^{2}\right)-2 a E(X Y)
$$

We look for the stationary points:

$$
\begin{aligned}
\partial_{b} E\left((b+a Y-X)^{2}\right) & =2 b=0 \\
\partial_{b} E\left((b+a Y-X)^{2}\right) & =2 a E\left(Y^{2}\right)-2 E(X Y)=0
\end{aligned}
$$

then, we get that the stationary point is $b=0$ and $a=E(X Y) / E\left(Y^{2}\right)=\Sigma_{X Y} / \Sigma_{Y Y}$. A simple calculation shows that the Hessian matrix at the stationary point is $H=$ $\operatorname{diag}\left(2,2 E\left(Y^{2}\right)\right)$ which is positive definite, so our stationary point is a minimum point. This means that

$$
\Pi_{\text {LinearSpan }(Y)}(X)=Y \Sigma_{X Y} \Sigma_{Y Y}^{-1}=E(X \mid Y)
$$

(b) Again by exercise 3 we readily get that

$$
\operatorname{Cov}(X \mid Y)(\omega)=E\left(X^{2} \mid Y\right)(\omega)-E(X \mid Y)(\omega)^{2}=\Sigma_{X X}-\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X}
$$

6. Let $0<s<t<u$, and ( $B_{r}: r \geq 0$ ) a standard Brownian motion with $B_{0}=0$. Compute the conditional distribution of $B_{u}$ conditionally on $\sigma\left(B_{s}, B_{u}\right)$.

## Solution

Let be $X=B_{t}$ and $Y=\left(\begin{array}{ll}B_{s} & B_{t}\end{array}\right)^{\top}$. Of course we have $E X=0$ and $E Y=\left(\begin{array}{ll}0 & 0\end{array}\right)^{\top}$. Then we have

$$
\begin{aligned}
\Sigma_{X X} & =t \\
\Sigma_{X Y} & =\left(E\left(B_{t} B_{s}\right) E\left(B_{t} B_{u}\right)=\left(\begin{array}{ll}
s & t
\end{array}\right)\right. \\
\Sigma_{Y Y} & =\left(\begin{array}{ll}
E\left(B_{s} B_{s}\right) & E\left(B_{s} B_{u}\right) \\
E\left(B_{u} B_{s}\right) & E\left(B_{u} B_{u}\right)
\end{array}\right)=\left(\begin{array}{ll}
s & s \\
s & u
\end{array}\right)
\end{aligned}
$$

Now, by using the result in exercise 3, we obtain that the distribution of the random variable $\left(B_{t} \mid B_{s}=b_{1}, B_{u}=b_{2}\right)$ is Gaussian with expectation value

$$
\mu=\Sigma_{X Y} \Sigma_{Y Y}^{-1} Y=\frac{u-t}{u-s} b_{1}+\frac{t-s}{u-s} b_{1}
$$

and variance

$$
\Sigma=\Sigma_{X X}+\Sigma_{X Y} \Sigma_{Y Y}^{-1} \Sigma_{Y X}=\frac{(u-t)(t-s)}{u-s}
$$

7. A $d$-dimensional Brownian motion is an $\mathbb{R}^{d}$-valued stochastic process $B_{t}=\left(B_{t}^{(1)}, \ldots, B_{t}^{(d)}\right)$, $t \geq 0$, where the components $B_{t}^{(k)}$ are independent $\mathbb{R}$-valued standard Brownian motions.
(a) Let $Q$ be an orthogonal $d \times d$-matrix, which means $Q Q^{\top}=Q^{\top} Q=I d$, (equivalently $Q^{-1}=Q^{\top}$ ). Show that $\left(Q B_{t}: t \geq 0\right)$ is a $d$-dimensional Brownian motion.
(b) For a matrix $A \in d \times d$, let $X_{t}=\left(A B_{t}\right) \in \mathbb{R}^{n}$. Show that $\left(X_{t}: t \geq 0\right)$ is a Gaussian process (all finite dimensional distributions are jointly Gaussian), with independent jointly Gaussian increments, i.e. for $0 \leq s \leq t,\left(X_{t}-X_{s}\right) \Perp \mathcal{F}_{s}^{X}=\sigma\left(X_{r}: r \leq s\right)$.
(c) compute the covariance $E\left(X_{t}^{(i)} X_{s}^{(j)}\right)$. Compute the stochastic cross variations

$$
\left[X^{(i)}, X^{(j)}\right]_{t}=\lim _{n \rightarrow \infty} \sum_{t_{k}^{n} \in \Pi^{n}}\left(X_{t_{k}^{n} \wedge t}^{(i)}-X_{t_{k-1}^{n} \wedge t}^{(i)}\right)\left(X_{t_{k}^{n} \wedge t}^{(j)}-X_{t_{k-1}^{n} \wedge t}^{(j)}\right)
$$

for any sequence of partitions $\left(\Pi^{n}\right)$ with $\Delta\left(\Pi^{n}, t\right) \rightarrow 0$, where we take limit in probability and the limit does not depend on the particular sequence $\left(\Pi^{n}\right)$, and we have also $P$-almost sure convergence when $\sum_{n \in \mathbb{N}} \Delta\left(\Pi^{n}, t\right)<\infty$.

## Solution

(a) First, note that $W_{t}^{(j)}:=\sum_{k} Q_{j k} B_{t}^{(k)}$ is still Gaussian with vanishing mean since is a linear combination of Gaussian random variables with vanishing mean and is independent from $W_{s}^{\left(j^{\prime}\right)}$ for $j \neq j^{\prime}$ since

$$
\begin{aligned}
E\left(W_{t}^{(j)} W_{s}^{\left(j^{\prime}\right)}\right) & =E\left(\sum_{k, k^{\prime}} Q_{j k} Q_{j^{\prime} k^{\prime}} B_{t}^{(k)} B_{s}^{\left(k^{\prime}\right)}\right)= \\
& =\sum_{k, k^{\prime}} Q_{j k} Q_{j^{\prime} k^{\prime}} E\left(B_{t}^{(k)} B_{s}^{\left(k^{\prime}\right)}\right)= \\
& =(t \wedge s) \sum_{k, k^{\prime}} Q_{j k} Q_{j^{\prime} k^{\prime}} \delta_{k, k^{\prime}}=(t \wedge s) \delta_{j j^{\prime}}
\end{aligned}
$$

The last equation means also that $E\left(W_{j}(t) W_{j}(s)\right)=t \wedge s$ as we expect.
Of course $W_{t}^{(j)}$ is also continuous almost surely as linear combination of almost surely continuous processes.
Now we need to show the independence of the increments: in fact, let $1<t_{2}<t_{3}<t_{4}$ and consider

$$
E\left(W_{j}\left(t_{4}\right)-W_{j}\left(t_{3}\right)\right)\left(W_{j}\left(t_{2}\right)-W_{j}\left(t_{1}\right)\right)=\left(t_{4} \wedge t_{3}\right)-\left(t_{3} \wedge t_{2}\right)-\left(t_{4} \wedge t_{1}\right)+\left(t_{3} \wedge t_{1}\right)=0
$$

(b) We can see that each component $X_{t}^{(i)}$ is a Gaussian process by looking at the distribution of the vector $\left(X_{t_{1}}^{\left(j_{1}\right)}, \ldots, X_{t_{n}}^{\left(j_{n}\right)}\right)$ where $n \in \mathbb{N}$ is arbitrary. In particular we want to show that this distribution is jointly Gaussian.
Consider the characteristic function

$$
\begin{aligned}
E\left(\exp \left\{i \sum_{k=1}^{n} \lambda_{k} X_{t_{k}}^{\left(j_{k}\right)}\right\}\right) & =E\left(\exp \left\{i \sum_{k=1}^{n} \lambda_{k} \sum_{m=1}^{d} A_{j_{k} m} B_{t_{k}}^{(m)}\right\}\right)= \\
& =\prod_{m=1}^{d} E\left(\exp \left\{i \sum_{k=1}^{n} \lambda_{k} A_{j_{k} m} B_{t_{k}}^{(m)}\right\}\right)
\end{aligned}
$$

Now we can define $\theta_{k, m}:=\lambda_{k} A_{j_{k} m}$ so that

$$
\begin{aligned}
E\left(\exp \left\{i \sum_{k=1}^{n} \lambda_{k} X_{t_{k}}^{\left(j_{k}\right)}\right\}\right) & =\prod_{m=1}^{d} E\left(\exp \left\{i \sum_{k=1}^{n} \theta_{k, m} B_{t_{k}}^{(m)}\right\}\right)= \\
& =\prod_{m=1}^{d} \exp \left\{-\frac{1}{2} \sum_{k, k^{\prime}}^{n} \theta_{k, m} \theta_{k^{\prime}, m}\left(t_{k} \wedge t_{k^{\prime}}\right)\right\}= \\
& =\exp \left\{-\frac{1}{2} \sum_{k, k^{\prime}}^{n} \sum_{m=1}^{d} \lambda_{k} \lambda_{k^{\prime}} A_{j_{k} m} A_{j_{k^{\prime}} m}\left(t_{k} \wedge t_{k^{\prime}}\right)\right\}= \\
& =\exp \left\{-\frac{1}{2} \sum_{k, k^{\prime}}^{n} \lambda_{k} \lambda_{k^{\prime}} \Sigma_{j_{k} j_{k^{\prime}}}\left(t_{k} \wedge t_{k^{\prime}}\right)\right\}
\end{aligned}
$$

where $\Sigma=A A^{\top}$ is a $d \times d$ matrix. Therefore, we obtained that the process is a Gaussian process with vanishing expectation and covariance

$$
\operatorname{Cov}\left(X_{t_{1}}^{j_{1}} X_{t_{2}}^{j_{2}}\right)=\Sigma_{j_{1} j_{2}}\left(t_{1} \wedge t_{2}\right)
$$

Now, in order to show that the increments are independent, for $t_{1}<t_{2}<t_{3}<t_{4}$, just consider

$$
E\left(X_{t_{4}}^{(i)}-X_{t_{3}}^{(i)}\right)\left(X_{t_{2}}^{(j)}-X_{t_{1}}^{(j)}\right)=\Sigma_{i j}\left[\left(t_{4} \wedge t_{2}\right)-\left(t_{3} \wedge t_{2}\right)-\left(t_{4} \wedge t_{1}\right)+\left(t_{3} \wedge t_{1}\right)\right]=0
$$

(c) We have already computed the covariance, so we just need to calculate the stochastic cross variation:

$$
\begin{aligned}
{\left[X^{(i)}, X^{(j)}\right]_{t} } & =\lim _{n \rightarrow \infty} \sum_{t_{k}^{n} \in \Pi^{n}}\left(X_{t_{k}^{n} \wedge t}^{(i)}-X_{t_{k-1}^{n} \wedge t}^{(i)}\right)\left(X_{t_{k}^{n} \wedge t}^{(j)}-X_{t_{k-1}^{n} \wedge t}^{(j)}\right)= \\
& =\lim _{n \rightarrow \infty} \sum_{t_{k}^{n} \in \Pi^{n}} \sum_{m, m^{\prime}} A_{i m} A_{j m^{\prime}}\left(B_{t_{k}^{n} \wedge t}^{(m)}-B_{t_{k-1}^{n} \wedge t}^{(m)}\right)\left(B_{t_{k}^{n} \wedge t}^{\left(m^{\prime}\right)}-B_{t_{k-1}^{n} \wedge t}^{\left(m^{\prime}\right)}\right)= \\
& =\sum_{m, m^{\prime}} A_{i m} A_{j m^{\prime}} \lim _{n \rightarrow \infty} \sum_{t_{k}^{n} \in \Pi^{n}}\left(B_{t_{k}^{n} \wedge t}^{(m)}-B_{t_{k-1}^{n} \wedge t}^{(m)}\right)\left(B_{t_{k}^{n} \wedge t}^{\left(m^{\prime}\right)}-B_{t_{k-1}^{n} \wedge t}^{\left(m^{\prime}\right)}\right)= \\
& =\sum_{m, m^{\prime}} A_{i m} A_{j m^{\prime}} \delta_{m, m^{\prime}} t=t \Sigma_{i j}
\end{aligned}
$$

