Stochastic analysis, fall 2014, Exercises-6, 29.10.2014
Consider a probability space (€, F, P) equipped with the dicrete-time filtra-
tion F=(F, :te€N)

1. In discrete time, show that a F-predictable (P, F)-martingale is constant,
i,e M, (w) = My(w) Vn.

2. A potential (Z, : n € N) is a non-negative (P, F)-supermartingale with

lim E(Z,) =0

n—00

Show that a potential is uniformly integrable.

Note: The potential terminology comes in analogy with physics, where po-
tentials do vanish at infinity. Note that a potential is necessarly uniformly
integrable.

3. An (F, P)-supermartingale (X,, : n € N) has Riesz decomposition if it can
be written as

where Y,, is a martingale and Z,, is a potential.

(a) Show that if sup,,cy Ep(X,;) < oo then X,, has Riesz decomposition
with

Y, =M, — E(Acxc|Frn), Zn=E(Ax|Fn)— An,

where X,, = M, — A,, is the Doob decomposition of X into a mar-
tingale part M and a predictable part with A non-decreasing and
A() =0.

(b) Show that the Riesz decomposition is unique.
4. Show that a martingale (X : ¢ € N) has Krickeberg decomposition
Xy =L — M,
where L; and M; are non-negative (P,F)-martingales , if and only if

sup Ep (| X:]) < o0
teN

equivalently

supEp(X;r) < 00 or supEp(Xt_) < o0
teN teN

Hints: You can always assume without loss of generality that My = 0,
otherwise consider the martingale (M; — My).

For the necessity note that when M has Riesz decomposition, |M;| <
Y + M,.



For sufficency show take the decomposition X; = X;" — X, , and show first
that (—X, ) is a a supermartingale and which admits Riesz decomposition

(—X{):Y}—i—Zt

where Y; is a martingale and Z; is a potential. Show then that X; has
Krickeberg decomposition with

Lt:(Xt—}/;g):Xj—FZtZO, and Mt:—Yi:X;+ZtZO

. Suppose we have an urn which contains at time ¢ = 0 two balls, one black
and one white. At each time ¢ € N we draw uniformly at random from
the urn one ball, and we put it back together with a new ball of the same
colour.

We introduce the random variables

X¢(w) = 1{ the ball drawn at time ¢ is black }

and denote Sy = (1 4+ X1 +--- + Xy),

M, = Si/(t + 2), the proportion of black balls in the urn.
We use the filtration {F,} with 7, = c{X;: s €N, s < t}.

i) Compute the Doob decomposition of (S¢), S; = So + N + As, where
(Ny) is a martingale and (A;) is predictable.

ii) Show that (M;) is a martingale and find the representation of (M;) as
a martingale transform M; = (C - N);, where (N;) is the martingale part
of (St) and (C}) is predictable.

iv) Note that the martingale (M;);>o is uniformly integrable (Why 7).
Show that P a.s. and in L' exists My, = lim;_, M; . Compute E(M,,).

v) Show that P(0 < Mo, <1)>0.

Since Mo, (w) € [0,1], it is enough to show that 0 < E(M2) < E(M)
with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M?), and
than take expectations before going to the limit to find the value of

. Consider an i.i.d. random sequence (U; : ¢t € N) with uniform distribution
on [0,1], P(Uy € dx) = 1jg 3j(z)dx. Note that Ep(Us) = 1/2.

Consider also the random variable —log(Us(w)) which is l-exponential
wr.t. P.

exp(—z kun z >0
P(log(U1)>x){1p( : kunxzo

—log(Uy) € L' (P) with Ep(—log(Uy)) = 1.



(a) Let Zy =1, and

Show that (Z;) is a martingale in the filtration F = (F; : ¢ € N), with
Fi= J(Zl,Z27"'7Zt) = O—(UlaUQ?"'aUt)'

(b) Show that Ep(Z;) = 1.
(¢) Show that the limit Z (w) = limy_,o Z;(w) exists P almost surely.
(d) Show that

Zoo(w) =0 P-as.
Hint Compute first the P-a.s. limit
.1
tll)nolo 7 log(Z:(w))
(remember Kolmogorov’s strong law of large numbers!).

(e) Show that the martingale (Z;(w) : t € N) is not uniformly integrable.

(f) Show that log(Z:(w)) is a supermartingale, does it satisfy the as-
sumptions of Doob’s martingale convergence theorem ?

(g) At every time t € N, define the probability measure
Qt(A) = EP(Zt]-A) VAGJ:t

on the probability space (2, F).
Show that the random variables (Uy, ..., U;) are i.i.d. also under @,
compute their probability density under Q.

7. (Paley’s and Littlewood’s maximal function) Consider a function in f(z) €
LY (R4, B(RY), dz).

Define the o-algebra
Fro=0{Qn.= (227" (2 +1)27%], 2 €2} CBRY), keZ

and the two sided filtration F = (Fj, : k € Z) where the dyadic cubes
(Qk.» : z € Z¢9) form a partition of R?, and the functions

felw) = 1z € Q) f(y)dy

€74 ‘Qk,3| Qk,z

where for k € Z, |Qy..| = 27%? is the Lebesgue measure of the d-dimensional
dyadic cube

(a) Show that fi(x) is an F-martingale w.r.t. Lebesgue measure. Note
that the definition of conditional expectation martingales extends di-
rectly to the case where we integrate with respect to o-finite positive
measures, where the martingale property in this case means

/Rd f(@)gr(z)dr = /Rd F(@)gn(z)da



Vk € Z and gi(z) bounded and Fj-measurable.

To work with a probability measure, we could take instead with
f(x) € L'([0,1]%, B([0,1]), dx).

Show that

lim fp(z) =0, VzeR?
k——o0
but
/ fr(x)dx = / f(z)dx  which can be # 0
R4 R

In particular this means that the Doob’s martingale backward con-
vergence theorem does NOT extend to the case of o-finite measures.

Show that limg_, 1« fx(7) = f(x) almost everywhere and in L*.

Define the maximal function

fP (@) = sup fi(z)

kEZ

Use the martingale maximal inequalities to show that for 1 < p < oo

| fP(z) | LRy <

p p
1 iIEIIZ) Il fr e @ay< o1 I f Il e way
and

cP(|f7 ()] > ¢) < Sup I fe Ml @y <Il £ e ey



