Stochastic analysis, fall 2014, Exercises-6, 29.10.2014

Consider a probability space (Ω, \mathcal{F}, P) equipped with the dicrete-time filtration $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right)$

1. In discrete time, show that a \mathbb{F}-predictable (P, \mathbb{F})-martingale is constant, i,e $M_{n}(\omega)=M_{0}(\omega) \forall n$.
2. A potential $\left(Z_{n}: n \in \mathbb{N}\right)$ is a non-negative (P, \mathbb{F})-supermartingale with

$$
\lim _{n \rightarrow \infty} E\left(Z_{n}\right)=0
$$

Show that a potential is uniformly integrable.
Note: The potential terminology comes in analogy with physics, where potentials do vanish at infinity. Note that a potential is necessarly uniformly integrable.
3. An (\mathbb{F}, P)-supermartingale $\left(X_{n}: n \in \mathbb{N}\right)$ has Riesz decomposition if it can be written as

$$
X_{n}=Y_{n}+Z_{n}
$$

where Y_{n} is a martingale and Z_{n} is a potential.
(a) Show that if $\sup _{n \in \mathbb{N}} E_{P}\left(X_{n}^{-}\right)<\infty$ then X_{n} has Riesz decomposition with

$$
Y_{n}=M_{n}-E\left(A_{\infty} \mid \mathcal{F}_{n}\right), \quad Z_{n}=E\left(A_{\infty} \mid \mathcal{F}_{n}\right)-A_{n},
$$

where $X_{n}=M_{n}-A_{n}$ is the Doob decomposition of X into a martingale part M and a predictable part with A non-decreasing and $A_{0}=0$.
(b) Show that the Riesz decomposition is unique.
4. Show that a martingale $\left(X_{t}: t \in \mathbb{N}\right)$ has Krickeberg decomposition

$$
X_{t}=L_{t}-M_{t}
$$

where L_{t} and M_{t} are non-negative (P, \mathbb{F})-martingales, if and only if

$$
\sup _{t \in \mathbb{N}} E_{P}\left(\left|X_{t}\right|\right)<\infty
$$

equivalently

$$
\sup _{t \in \mathbb{N}} E_{P}\left(X_{t}^{+}\right)<\infty \text { or } \sup _{t \in \mathbb{N}} E_{P}\left(X_{t}^{-}\right)<\infty
$$

Hints: You can always assume without loss of generality that $M_{0}=0$, otherwise consider the martingale $\left(M_{t}-M_{0}\right)$.
For the necessity note that when M has Riesz decomposition, $\left|M_{t}\right| \leq$ $Y_{t}+M_{t}$.

For sufficency show take the decomposition $X_{t}=X_{t}^{+}-X_{t}^{-}$, and show first that $\left(-X_{t}^{-}\right)$is a a supermartingale and which admits Riesz decomposition

$$
\left(-X_{t}^{-}\right)=Y_{t}+Z_{t}
$$

where Y_{t} is a martingale and Z_{t} is a potential. Show then that X_{t} has Krickeberg decomposition with

$$
L_{t}=\left(X_{t}-Y_{t}\right)=X_{t}^{+}+Z_{t} \geq 0, \quad \text { and } \quad M_{t}=-Y_{t}=X_{t}^{-}+Z_{t} \geq 0
$$

5. Suppose we have an urn which contains at time $t=0$ two balls, one black and one white. At each time $t \in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables
$X_{t}(\omega)=\mathbf{1}\{$ the ball drawn at time t is black $\}$
and denote $S_{t}=\left(1+X_{1}+\cdots+X_{t}\right)$, $M_{t}=S_{t} /(t+2)$, the proportion of black balls in the urn.
We use the filtration $\left\{\mathcal{F}_{n}\right\}$ with $\mathcal{F}_{n}=\sigma\left\{X_{s}: s \in \mathbb{N}, s \leq t\right\}$.
i) Compute the Doob decomposition of $\left(S_{t}\right), S_{t}=S_{0}+N_{t}+A_{t}$, where $\left(N_{t}\right)$ is a martingale and $\left(A_{t}\right)$ is predictable.
ii) Show that $\left(M_{t}\right)$ is a martingale and find the representation of $\left(M_{t}\right)$ as a martingale transform $M_{t}=(C \cdot N)_{t}$, where $\left(N_{t}\right)$ is the martingale part of $\left(S_{t}\right)$ and $\left(C_{t}\right)$ is predictable.
iv) Note that the martingale $\left(M_{t}\right)_{t \geq 0}$ is uniformly integrable (Why ?). Show that P a.s. and in L^{1} exists $M_{\infty}=\lim _{t \rightarrow \infty} M_{t}$. Compute $E\left(M_{\infty}\right)$.
v) Show that $P\left(0<M_{\infty}<1\right)>0$.

Since $M_{\infty}(\omega) \in[0,1]$, it is enough to show that $0<E\left(M_{\infty}^{2}\right)<E\left(M_{\infty}\right)$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale $\left(M_{t}^{2}\right)$, and than take expectations before going to the limit to find the value of $E\left(M_{\infty}^{2}\right)$.
6. Consider an i.i.d. random sequence $\left(U_{t}: t \in \mathbb{N}\right)$ with uniform distribution on $[0,1], P\left(U_{1} \in d x\right)=\mathbf{1}_{[0,1]}(x) d x$. Note that $E_{P}\left(U_{t}\right)=1 / 2$.
Consider also the random variable $-\log \left(U_{1}(\omega)\right)$ which is 1-exponential w.r.t. P.

$$
\begin{gathered}
P\left(-\log \left(U_{1}\right)>x\right)= \begin{cases}\exp (-x) & \text { kun } x \geq 0 \\
1 & \text { kun } x<0\end{cases} \\
-\log \left(U_{1}\right) \in L^{1}(P) \text { with } E_{P}\left(-\log \left(U_{1}\right)\right)=1
\end{gathered}
$$

(a) Let $Z_{0}=1$, and

$$
Z_{t}(\omega)=2^{t} \prod_{s=1}^{t} U_{s}(\omega)
$$

Show that $\left(Z_{t}\right)$ is a martingale in the filtration $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right)$, with $\mathcal{F}_{t}=\sigma\left(Z_{1}, Z_{2}, \ldots, Z_{t}\right)=\sigma\left(U_{1}, U_{2}, \ldots, U_{t}\right)$.
(b) Show that $E_{P}\left(Z_{t}\right)=1$.
(c) Show that the limit $Z_{\infty}(\omega)=\lim _{t \rightarrow \infty} Z_{t}(\omega)$ exists P almost surely.
(d) Show that

$$
Z_{\infty}(\omega)=0 \quad P \text {-a.s. }
$$

Hint Compute first the P-a.s. limit

$$
\lim _{t \rightarrow \infty} \frac{1}{t} \log \left(Z_{t}(\omega)\right)
$$

(remember Kolmogorov's strong law of large numbers!).
(e) Show that the martingale $\left(Z_{t}(\omega): t \in \mathbb{N}\right)$ is not uniformly integrable.
(f) Show that $\log \left(Z_{t}(\omega)\right)$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem?
(g) At every time $t \in \mathbb{N}$, define the probability measure

$$
Q_{t}(A):=E_{P}\left(Z_{t} \mathbf{1}_{A}\right) \quad \forall A \in \mathcal{F}_{t}
$$

on the probability space (Ω, \mathcal{F}).
Show that the random variables $\left(U_{1}, \ldots, U_{t}\right)$ are i.i.d. also under Q_{t}, compute their probability density under Q_{t}.
7. (Paley's and Littlewood's maximal function) Consider a function in $f(x) \in$ $L^{1}\left(\mathbb{R}^{d}, \mathcal{B}\left(\mathbb{R}^{d}\right), d x\right)$.
Define the σ-algebra

$$
\mathcal{F}_{k}=\sigma\left\{Q_{k, z}=\left(z 2^{-k},(z+1) 2^{-k}\right], z \in \mathbb{Z}^{d}\right\} \subseteq \mathcal{B}\left(\mathbb{R}^{d}\right), \quad k \in \mathbb{Z}
$$

and the two sided filtration $\mathbb{F}=\left(\mathcal{F}_{k}: k \in \mathbb{Z}\right)$ where the dyadic cubes $\left(Q_{k, z}: z \in \mathbb{Z}^{d}\right)$ form a partition of \mathbb{R}^{d}, and the functions

$$
f_{k}(x)=\sum_{z \in \mathbb{Z}^{d}} \mathbf{1}\left(x \in Q_{k, z}\right) \frac{1}{\left|Q_{k, z}\right|} \int_{Q_{k, z}} f(y) d y
$$

where for $k \in \mathbb{Z},\left|Q_{k, z}\right|=2^{-k d}$ is the Lebesgue measure of the d-dimensional dyadic cube
(a) Show that $f_{k}(x)$ is an \mathbb{F}-martingale w.r.t. Lebesgue measure. Note that the definition of conditional expectation martingales extends directly to the case where we integrate with respect to σ-finite positive measures, where the martingale property in this case means

$$
\int_{\mathbb{R}^{d}} f(x) g_{k}(x) d x=\int_{\mathbb{R}^{d}} f(x) g_{k}(x) d x
$$

$\forall k \in \mathbb{Z}$ and $g_{k}(x)$ bounded and \mathcal{F}_{k}-measurable.
To work with a probability measure, we could take instead with $f(x) \in L^{1}\left([0,1]^{d}, \mathcal{B}\left([0,1]^{d}\right), d x\right)$.
(b) Show that

$$
\lim _{k \rightarrow-\infty} f_{k}(x)=0, \quad \forall x \in \mathbb{R}^{d}
$$

but

$$
\int_{\mathbb{R}^{d}} f_{k}(x) d x=\int_{\mathbb{R}} f(x) d x \quad \text { which can be } \neq 0
$$

In particular this means that the Doob's martingale backward convergence theorem does NOT extend to the case of σ-finite measures.
(c) Show that $\lim _{k \rightarrow+\infty} f_{k}(x)=f(x)$ almost everywhere and in L^{1}.
(d) Define the maximal function

$$
f^{\square}(x):=\sup _{k \in \mathbb{Z}} f_{k}(x)
$$

Use the martingale maximal inequalities to show that for $1<p<\infty$

$$
\left\|f^{\square}(x)\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq \frac{p}{p-1} \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{L^{p}\left(\mathbb{R}^{d}\right)} \leq \frac{p}{p-1}\|f\|_{L^{p}\left(\mathbb{R}^{d}\right)}
$$

and

$$
c P\left(\left|f^{\square}(x)\right|>c\right) \leq \sup _{k \in \mathbb{Z}}\left\|f_{k}\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} \leq\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}
$$

