Stochastic analysis, fall 2014, Exercises-6, 29.10.2014

Consider a probability space (Ω, \mathcal{F}, P) equipped with the dicrete-time filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$

- 1. In discrete time, show that a \mathbb{F} -predictable (P, \mathbb{F}) -martingale is constant, i,e $M_n(\omega) = M_0(\omega) \ \forall n$.
- 2. A potential $(Z_n : n \in \mathbb{N})$ is a non-negative (P, \mathbb{F}) -supermartingale with

$$\lim_{n \to \infty} E(Z_n) = 0$$

Show that a potential is uniformly integrable.

Note: The potential terminology comes in analogy with physics, where potentials do vanish at infinity. Note that a potential is necessarily uniformly integrable.

3. An (\mathbb{F}, P) -supermartingale $(X_n : n \in \mathbb{N})$ has *Riesz decomposition* if it can be written as

$$X_n = Y_n + Z_n$$

where Y_n is a martingale and Z_n is a potential.

(a) Show that if $\sup_{n \in \mathbb{N}} E_P(X_n^-) < \infty$ then X_n has Riesz decomposition with

$$Y_n = M_n - E(A_\infty | \mathcal{F}_n), \quad Z_n = E(A_\infty | \mathcal{F}_n) - A_n,$$

where $X_n = M_n - A_n$ is the Doob decomposition of X into a martingale part M and a predictable part with A non-decreasing and $A_0 = 0$.

- (b) Show that the Riesz decomposition is unique.
- 4. Show that a martingale $(X_t : t \in \mathbb{N})$ has Krickeberg decomposition

$$X_t = L_t - M_t$$

where L_t and M_t are non-negative (P, \mathbb{F}) -martingales, if and only if

$$\sup_{t\in\mathbb{N}}E_P\big(|X_t|\big)<\infty$$

equivalently

$$\sup_{t\in\mathbb{N}} E_P(X_t^+) < \infty \text{ or } \sup_{t\in\mathbb{N}} E_P(X_t^-) < \infty$$

Hints: You can always assume without loss of generality that $M_0 = 0$, otherwise consider the martingale $(M_t - M_0)$.

For the necessity note that when M has Riesz decomposition, $|M_t| \leq Y_t + M_t.$

For sufficiency show take the decomposition $X_t = X_t^+ - X_t^-$, and show first that $(-X_t^-)$ is a supermartingale and which admits Riesz decomposition

$$(-X_t^-) = Y_t + Z_t$$

where Y_t is a martingale and Z_t is a potential. Show then that X_t has Krickeberg decomposition with

$$L_t = (X_t - Y_t) = X_t^+ + Z_t \ge 0$$
, and $M_t = -Y_t = X_t^- + Z_t \ge 0$.

5. Suppose we have an urn which contains at time t = 0 two balls, one black and one white. At each time $t \in N$ we draw uniformly at random from the urn one ball, and we put it back together with a new ball of the same colour.

We introduce the random variables

$$\begin{split} X_t(\omega) &= \mathbf{1} \{ \text{ the ball drawn at time } t \text{ is black } \} \\ \text{and denote } S_t &= (1 + X_1 + \dots + X_t), \\ M_t &= S_t / (t+2), \text{ the proportion of black balls in the urn.} \\ \text{We use the filtration } \{\mathcal{F}_n\} \text{ with } \mathcal{F}_n &= \sigma \{X_s : s \in \mathbb{N}, s \leq t\}. \end{split}$$

i) Compute the Doob decomposition of (S_t) , $S_t = S_0 + N_t + A_t$, where (N_t) is a martingale and (A_t) is predictable.

ii) Show that (M_t) is a martingale and find the representation of (M_t) as a martingale transform $M_t = (C \cdot N)_t$, where (N_t) is the martingale part of (S_t) and (C_t) is predictable.

iv) Note that the martingale $(M_t)_{t\geq 0}$ is uniformly integrable (Why ?). Show that P a.s. and in L^1 exists $M_{\infty} = \lim_{t\to\infty} M_t$. Compute $E(M_{\infty})$.

v) Show that $P(0 < M_{\infty} < 1) > 0$.

Since $M_{\infty}(\omega) \in [0, 1]$, it is enough to show that $0 < E(M_{\infty}^2) < E(M_{\infty})$ with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M_t^2) , and than take expectations before going to the limit to find the value of $E(M_{\infty}^2)$.

6. Consider an i.i.d. random sequence $(U_t : t \in \mathbb{N})$ with uniform distribution on [0, 1], $P(U_1 \in dx) = \mathbf{1}_{[0,1]}(x)dx$. Note that $E_P(U_t) = 1/2$. Consider also the random variable $-\log(U_1(\omega))$ which is 1-exponential w.r.t. P.

$$P(-\log(U_1) > x) = \begin{cases} \exp(-x) & \operatorname{kun} x \ge 0\\ 1 & \operatorname{kun} x < 0 \end{cases}$$

 $-\log(U_1) \in L^1(P)$ with $E_P(-\log(U_1)) = 1$.

(a) Let $Z_0 = 1$, and

$$Z_t(\omega) = 2^t \prod_{s=1}^t U_s(\omega)$$

Show that (Z_t) is a martingale in the filtration $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{N})$, with $\mathcal{F}_t = \sigma(Z_1, Z_2, \dots, Z_t) = \sigma(U_1, U_2, \dots, U_t)$.

- (b) Show that $E_P(Z_t) = 1$.
- (c) Show that the limit $Z_{\infty}(\omega) = \lim_{t \to \infty} Z_t(\omega)$ exists P almost surely.
- (d) Show that

$$Z_{\infty}(\omega) = 0$$
 P-a.s.

Hint Compute first the *P*-a.s. limit

$$\lim_{t \to \infty} \frac{1}{t} \log(Z_t(\omega))$$

(remember Kolmogorov's strong law of large numbers!).

- (e) Show that the martingale $(Z_t(\omega) : t \in \mathbb{N})$ is not uniformly integrable.
- (f) Show that $\log(Z_t(\omega))$ is a supermartingale, does it satisfy the assumptions of Doob's martingale convergence theorem ?
- (g) At every time $t \in \mathbb{N}$, define the probability measure

$$Q_t(A) := E_P(Z_t \mathbf{1}_A) \qquad \forall A \in \mathcal{F}_t$$

on the probability space (Ω, \mathcal{F}) .

Show that the random variables (U_1, \ldots, U_t) are i.i.d. also under Q_t , compute their probability density under Q_t .

7. (Paley's and Littlewood's maximal function) Consider a function in $f(x) \in L^1(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), dx)$.

Define the σ -algebra

$$\mathcal{F}_k = \sigma \left\{ Q_{k,z} = \left(z 2^{-k}, (z+1) 2^{-k} \right], \ z \in \mathbb{Z}^d \right\} \subseteq \mathcal{B}(\mathbb{R}^d), \quad k \in \mathbb{Z}$$

and the two sided filtration $\mathbb{F} = (\mathcal{F}_k : k \in \mathbb{Z})$ where the dyadic cubes $(Q_{k,z} : z \in \mathbb{Z}^d)$ form a partition of \mathbb{R}^d , and the functions

$$f_k(x) = \sum_{z \in \mathbb{Z}^d} \mathbf{1}(x \in Q_{k,z}) \frac{1}{|Q_{k,z}|} \int_{Q_{k,z}} f(y) dy$$

where for $k \in \mathbb{Z}$, $|Q_{k,z}| = 2^{-kd}$ is the Lebesgue measure of the *d*-dimensional dyadic cube

(a) Show that $f_k(x)$ is an F-martingale w.r.t. Lebesgue measure. Note that the definition of conditional expectation martingales extends directly to the case where we integrate with respect to σ -finite positive measures, where the martingale property in this case means

$$\int_{\mathbb{R}^d} f(x)g_k(x)dx = \int_{\mathbb{R}^d} f(x)g_k(x)dx$$

 $\forall k \in \mathbb{Z} \text{ and } g_k(x) \text{ bounded and } \mathcal{F}_k\text{-measurable.}$

To work with a probability measure, we could take instead with $f(x) \in L^1([0,1]^d, \mathcal{B}([0,1]^d), dx).$

(b) Show that

$$\lim_{k \to -\infty} f_k(x) = 0, \quad \forall x \in \mathbb{R}^d,$$

 but

$$\int_{\mathbb{R}^d} f_k(x) dx = \int_{\mathbb{R}} f(x) dx \quad \text{which can be } \neq 0$$

In particular this means that the Doob's martingale backward convergence theorem does NOT extend to the case of σ -finite measures.

- (c) Show that $\lim_{k\to+\infty} f_k(x) = f(x)$ almost everywhere and in L^1 .
- (d) Define the maximal function

$$f^{\square}(x) := \sup_{k \in \mathbb{Z}} f_k(x)$$

Use the martingale maximal inequalities to show that for 1

$$\| f^{\Box}(x) \|_{L^{p}(\mathbb{R}^{d})} \leq \frac{p}{p-1} \sup_{k \in \mathbb{Z}} \| f_{k} \|_{L^{p}(\mathbb{R}^{d})} \leq \frac{p}{p-1} \| f \|_{L^{p}(\mathbb{R}^{d})}$$

and

$$cP(|f^{\Box}(x)| > c) \le \sup_{k \in \mathbb{Z}} || f_k ||_{L^1(\mathbb{R}^d)} \le || f ||_{L^1(\mathbb{R}^d)}$$