
Stochastic analysis, fall 2014, Exercises-6, 29.10.2014
Consider a probability space (Ω,F , P ) equipped with the dicrete-time filtra-

tion F = (Ft : t ∈ N)

1. In discrete time, show that a F-predictable (P,F)-martingale is constant,
i,e Mn(ω) = M0(ω) ∀n.

2. A potential (Zn : n ∈ N) is a non-negative (P,F)-supermartingale with

lim
n→∞

E(Zn) = 0

Show that a potential is uniformly integrable.

Note: The potential terminology comes in analogy with physics, where po-
tentials do vanish at infinity. Note that a potential is necessarly uniformly
integrable.

3. An (F, P )-supermartingale (Xn : n ∈ N) has Riesz decomposition if it can
be written as

Xn = Yn + Zn

where Yn is a martingale and Zn is a potential.

(a) Show that if supn∈NEP

(
X−n ) <∞ then Xn has Riesz decomposition

with

Yn = Mn − E(A∞|Fn), Zn = E(A∞|Fn)−An,

where Xn = Mn − An is the Doob decomposition of X into a mar-
tingale part M and a predictable part with A non-decreasing and
A0 = 0.

(b) Show that the Riesz decomposition is unique.

4. Show that a martingale (Xt : t ∈ N) has Krickeberg decomposition

Xt = Lt −Mt

where Lt and Mt are non-negative (P,F)-martingales , if and only if

sup
t∈N

EP

(
|Xt|

)
<∞

equivalently

sup
t∈N

EP

(
X+

t

)
<∞ or sup

t∈N
EP

(
X−t
)
<∞

Hints: You can always assume without loss of generality that M0 = 0,
otherwise consider the martingale (Mt −M0).

For the necessity note that when M has Riesz decomposition, |Mt| ≤
Yt +Mt.
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For sufficency show take the decomposition Xt = X+
t −X−t , and show first

that (−X−t ) is a a supermartingale and which admits Riesz decomposition

(−X−t ) = Yt + Zt

where Yt is a martingale and Zt is a potential. Show then that Xt has
Krickeberg decomposition with

Lt = (Xt − Yt) = X+
t + Zt ≥ 0, and Mt = −Yt = X−t + Zt ≥ 0.

5. Suppose we have an urn which contains at time t = 0 two balls, one black
and one white. At each time t ∈ N we draw uniformly at random from
the urn one ball, and we put it back together with a new ball of the same
colour.

We introduce the random variables
Xt(ω) = 1

{
the ball drawn at time t is black

}
and denote St = (1 +X1 + · · ·+Xt),
Mt = St/(t+ 2), the proportion of black balls in the urn.
We use the filtration {Fn} with Fn = σ{Xs : s ∈ N, s ≤ t}.

i) Compute the Doob decomposition of (St), St = S0 + Nt + At, where
(Nt) is a martingale and (At) is predictable.

ii) Show that (Mt) is a martingale and find the representation of (Mt) as
a martingale transform Mt = (C ·N)t, where (Nt) is the martingale part
of (St) and (Ct) is predictable.

iv) Note that the martingale (Mt)t≥0 is uniformly integrable (Why ?).
Show that P a.s. and in L1 exists M∞ = limt→∞Mt . Compute E(M∞).

v) Show that P (0 < M∞ < 1) > 0 .

Since M∞(ω) ∈ [0, 1], it is enough to show that 0 < E(M2
∞) < E(M∞)

with strict inequalities.

Hint: compute the Doob decomposition of the submartingale (M2
t ), and

than take expectations before going to the limit to find the value of
E(M2

∞).

6. Consider an i.i.d. random sequence (Ut : t ∈ N) with uniform distribution
on [0, 1], P (U1 ∈ dx) = 1[0,1](x)dx. Note that EP (Ut) = 1/2.
Consider also the random variable − log(U1(ω)) which is 1-exponential
w.r.t. P .

P (− log(U1) > x) =

{
exp(−x) kun x ≥ 0
1 kun x < 0

− log(U1) ∈ L1(P ) with EP (− log(U1)) = 1.
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(a) Let Z0 = 1, and

Zt(ω) = 2t
t∏

s=1

Us(ω)

Show that (Zt) is a martingale in the filtration F = (Ft : t ∈ N), with
Ft = σ(Z1, Z2, . . . , Zt) = σ(U1, U2, . . . , Ut).

(b) Show that EP (Zt) = 1.
(c) Show that the limit Z∞(ω) = limt→∞ Zt(ω) exists P almost surely.
(d) Show that

Z∞(ω) = 0 P -a.s.

Hint Compute first the P -a.s. limit

lim
t→∞

1

t
log(Zt(ω))

(remember Kolmogorov’s strong law of large numbers!).
(e) Show that the martingale (Zt(ω) : t ∈ N) is not uniformly integrable.
(f) Show that log(Zt(ω)) is a supermartingale, does it satisfy the as-

sumptions of Doob’s martingale convergence theorem ?
(g) At every time t ∈ N, define the probability measure

Qt(A) := EP (Zt1A) ∀A ∈ Ft

on the probability space (Ω,F).
Show that the random variables (U1, . . . , Ut) are i.i.d. also under Qt,
compute their probability density under Qt.

7. ( Paley’s and Littlewood’s maximal function) Consider a function in f(x) ∈
L1(Rd,B(Rd), dx).
Define the σ-algebra

Fk = σ
{
Qk,z =

(
z2−k, (z + 1)2−k

]
, z ∈ Zd

}
⊆ B(Rd), k ∈ Z

and the two sided filtration F = (Fk : k ∈ Z) where the dyadic cubes
(Qk,z : z ∈ Zd) form a partition of Rd, and the functions

fk(x) =
∑
z∈Zd

1(x ∈ Qk,z)
1

|Qk,z|

∫
Qk,z

f(y)dy

where for k ∈ Z, |Qk,z| = 2−kd is the Lebesgue measure of the d-dimensional
dyadic cube

(a) Show that fk(x) is an F-martingale w.r.t. Lebesgue measure. Note
that the definition of conditional expectation martingales extends di-
rectly to the case where we integrate with respect to σ-finite positive
measures, where the martingale property in this case means∫

Rd

f(x)gk(x)dx =

∫
Rd

f(x)gk(x)dx
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∀k ∈ Z and gk(x) bounded and Fk-measurable.
To work with a probability measure, we could take instead with
f(x) ∈ L1([0, 1]d,B([0, 1]d), dx).

(b) Show that

lim
k→−∞

fk(x) = 0, ∀x ∈ Rd,

but ∫
Rd

fk(x)dx =

∫
R
f(x)dx which can be 6= 0

In particular this means that the Doob’s martingale backward con-
vergence theorem does NOT extend to the case of σ-finite measures.

(c) Show that limk→+∞ fk(x) = f(x) almost everywhere and in L1.

(d) Define the maximal function

f�(x) := sup
k∈Z

fk(x)

Use the martingale maximal inequalities to show that for 1 < p <∞

‖ f�(x) ‖Lp(Rd)≤
p

p− 1
sup
k∈Z
‖ fk ‖Lp(Rd)≤

p

p− 1
‖ f ‖Lp(Rd)

and

cP (|f�(x)| > c) ≤ sup
k∈Z
‖ fk ‖L1(Rd)≤‖ f ‖L1(Rd)
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