Stochastic analysis, Fall 2014, Exercises-5, 15.10.2014

1. Let $\tau(\omega) \in \mathbb{N}$ be a stopping time w.r.t. $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{N}\right)$. Show that

$$
\mathcal{F}_{\tau}=\left\{A \in \mathcal{F}: A \cap\{\tau \leq t\} \in \mathcal{F}_{t} \forall t \in \mathbb{N}\right\}
$$

is a σ-algebra.
2. We continue with the random walk. We have

$$
M_{t}(\omega)=\sum_{s=1}^{t} X_{s}(\omega)
$$

is a binary random walk where $t \in \mathbb{N}$ and $\left(X_{s}: s \in \mathbb{N}\right)$ are i.i.d. random variables with

$$
P\left(X_{s}= \pm 1\right)=P\left(X_{s}= \pm 1 \mid \mathcal{F}_{s-1}\right)=1 / 2
$$

X_{s} is \mathcal{F}_{s} measurable and P-independent from \mathcal{F}_{s-1}.
Recall that $\left(M_{t}\right)_{t \in \mathbb{N}}$ and $\left(M_{t}^{2}-t\right)_{t \in \mathbb{N}}$ are \mathbb{F}-martingales.

- Consider the stopping time $\tau=\tau_{K}=\inf \left\{t: M_{t} \geq K\right\}$ for $K \in \mathbb{N}$. Show that $P(\tau<\infty)=1$.
Hint: the stopped martingale $\left(M_{t \wedge \tau}: t \in \mathbb{N}\right)$ is a sub-martingale bounded from above
(equivalently $\left(-M_{t \wedge \tau}\right)$ is a supermartingale bounded from below).
Apply Doob forward convegence theorem,
- Show that P almost surely $M_{\tau}(\omega)=K$
- Show that $\left(M_{t \wedge \tau}(\omega): t \in \mathbb{N}\right)$ is not uniformly integrable.

Hint: otherwise we could interchange the expectation and the limit for $t \rightarrow \infty$ operations.

- Show that $E(\tau)=+\infty$

Hint: prove it by contradiction, using

$$
\left|M_{t \wedge \tau}(\omega)\right| \leq t \wedge \tau(\omega) \leq \tau(\omega) \quad \forall t \in \mathbb{N}
$$

Resume : a gambler plays a fair coin-toss game with unit stakes, playing from time 0 until the stopping time $\tau_{K}(\omega)$, when he quits the game a profit $K>0$. With probability one $\tau_{K}(\omega)<\infty$, the gambler always makes a profit K which is arbitrarilty large.
This free-lunch paradox is explained as follows:
The gambler's strategy, to play until $\tau_{K}(\omega)$ requires an infinite amount of capital, because $\forall M \in \mathbb{N} P\left(\tau_{-M}>\tau_{K}\right)>0$, for any finite amount of capital there is a positive probability to lose everything before τ_{K}.
And even with an infinite amount of capital at disposal, altough $\tau_{K}(\omega)$ is P a.s. finite, the expected time for winning K is $E\left(\tau_{K}\right)=\infty$.
3. A three-player ruin problem: Initially, three players have respectively $a, b, c \in \mathbb{N}$ units of capital. Games are independent and each game consists of choosing two players at random and transferring one unit from the first-chosen to the second-chosen player. Once a player is ruined, he is ineligible for further play.

Let τ_{1} be the number of games required for one player to be ruined, and let τ_{2} be the number of games required for two players to be ruined.

Let $\left(X_{t}, Y_{t}, Z_{t}\right)$ be the numbers of units possessed by the three players after the t-game, and

$$
\begin{aligned}
& M_{t}:=X_{t} Y_{t} Z_{t}+\frac{(a+b+c) t}{3} \quad \text { and } \\
& N_{t}:=X_{t} Y_{t}+X_{t} Z_{t}+Y_{t} Z_{t}+t
\end{aligned}
$$

- Show that the stopped processes $\left(M_{t \wedge \tau_{1}}: t \in \mathbb{N}\right)$ and $\left(N_{t \wedge \tau_{2}}: t \in \mathbb{N}\right)$ are non-negative \mathbb{F}-martingales where $\mathcal{F}_{t}=\sigma\left(X_{s}, Y_{s}, Z_{s}, s \leq t\right)$.
- Use Doob martingale convergence theorem and Fatou lemma to show that $E\left(\tau_{k}\right)<\infty$, for $k=1,2$
- Knowing that $E\left(\tau_{k}\right)<\infty$,
show that $\left(M_{t \wedge \tau_{1}}: t \in \mathbb{N}\right)$ and $\left(N_{t \wedge \tau_{2}}: t \in \mathbb{N}\right)$ are uniformly integrable.
- Use uniform integrability of the stopped martingales $\left(M_{t \wedge \tau_{1}}: t \in \mathbb{N}\right)$ and $\left(N_{t \wedge \tau_{2}}: t \in \mathbb{N}\right)$ to compute $E\left(\tau_{k}\right)$ for $k=1,2$.

4. A generalization of a game by Jacob Bernoulli. In this game a fair die is rolled, and if the result is Z_{1}, then Z_{1} dice are rolled. If the total of the Z_{1} dice is Z_{2}, then Z_{2} dice are rolled. If the total of the Z_{2} dice is Z_{3}, then Z_{3} dice are rolled, and so on. Let $Z_{0} \equiv 1$.
Find a positive constant α such that

$$
M_{t}(\omega)=Z_{t}(\omega) \alpha^{t} \quad t \in \mathbb{N}
$$

is a \mathbb{F}-martingale where $\mathcal{F}_{t}=\sigma\left(Z_{0}, Z_{1}, \ldots, Z_{t}\right)$.
Hint: compute $E\left(Z_{t+1} \mid \mathcal{F}_{t}\right)$
What does Doob's martingale convergence theorem tell us about this?
5. - If $\left(M_{t}(\omega): t \in \mathbb{N}\right)$ is a \mathbb{F}-martingale and $f(x)$ is convex such that $E\left(\left|f\left(X_{t}\right)\right|\right)<\infty \forall t \in \mathbb{N}$, show that $\left(f\left(M_{t}(\omega)\right): t \in \mathbb{N}\right)$ is an \mathbb{F} submartingale.

- If $\left(M_{t}(\omega): t \in \mathbb{N}\right)$ is a \mathbb{F}-submartingale and $f(x)$ is convex nondecreasing such that $E\left(\left|f\left(X_{t}\right)\right|\right)<\infty \forall t \in \mathbb{N}$, show that $\left(f\left(M_{t}(\omega)\right)\right.$: $t \in \mathbb{N}$) is an \mathbb{F}-submartingale.
Hint: use Jensen inequality for conditional expectation.

