
Stochastic analysis, spring 2014, Exercises-4, 8.10.2014

1. Let τ1(ω) and τ2(ω) stopping times with respect to the filtration F = (Ft :
t ∈ T ) taking values in T . Here T could be either R+ or N.

Use the definition of stopping time to show that σ(ω) = min(τ1(ω), τ2(ω))
is a F-stopping time.

2. Let (Mt(ω))t∈T a martingale with respect to the filtration F = (Ft) with
M0(ω) = 0. Here T could be either R+ or N.
Define the family of random times τx : x ∈ R

τx(ω) =

{
inf{s :Ms ≥ x} for x ≥ 0
inf{s :Ms ≤ x} for x < 0

Show that τx is a stopping time.

3. Consider a symmetric random walk in discrete time,

Mn = X1 + · · ·+Xn

where (Xk : k ∈ N) are independent and identically distributed Bernoulli
random variables with P (Xn = 1) = P (Xn = −1) = 1/2.

(a) Compute P (Mn = k) for n, k ∈ N.
(b) For x ∈ R, use Stirling approximation of the factorial of a large n ∈ N

n! ∼ exp(−n)nn
√
2πn

to approximate

P
(
M2n = 2bxc

)
(c) Consider the filtration generated by the random walk F =

(
FXn ),

with FXn = σ(Xk : 0 ≤ k ≤ n). Show that

Mn, (M2
n − n), and exp

(
−θMn) cosh(θ)

−n

are (P,F)-martingales, where cosh(x) =
(
ex + e−x)/2.

(d) Prove the Markov property

P
(
Mn = k

∣∣Fn−1)(ω) = P
(
Mn

∣∣Mn−1
)
(ω) = P

(
Xn = k − `

)∣∣∣∣
`=Mn−1(ω)

and, for 0 ≤ m ≤ n

P
(
Mn = k

∣∣Fm)(ω) = P
(
Mn

∣∣Mm

)
(ω) = P

(
Mn−m = k − `

)∣∣∣∣
`=Mm(ω)

Hint: use the definition and properties of the conditional expectation.
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(e) In discrete time, let τ be a stopping time with respect to the filtration
F , then the stopped σ-algebra Fτ is defined as

Fτ =
{
A ∈ F : ∀t ∈ N, A ∩ {τ ≤ t} ∈ Ft

}
Show that τ itself is Fτ -measurable. Hint (use the definition of stop-
ping time).

(f) Show the strong Markov property of the random walk:

M̃n := (Mτ+n −Mτ )

is a symmetric random walk independent from the stopped σ-algebra
Fτ . Hint:

A =
⋃
k∈N

A ∩ {τ = k}

and A is Fτ -measurable if and only if ∀k, A∩ {τ = k} is Fk measur-
able. Use the definition of conditional expectation w.r.t. Fτ .

(g) Consider the stopping time σ(ω) = min(τa, τb) where a < 0 < b ∈ N,
and the stopped martingales (Mt∧σ)t∈N and (M2

t∧σ − t ∧ σ)t∈N.
Show that Doob’s martingale convergence theorem applies and

lim
t→∞

Mt∧σ(ω) =Mσ(ω)

exists P -almost surely.

(h) Consider now (M2
t∧σ − t ∧ σ). Use the martingale property together

with the reverse Fatou lemma to show that E(σ) <∞ which implies
P (σ <∞) = 1.

(i) For a < 0 < b ∈ N, compute P (τa < τb).
Hint: a martingale has constant expectation EP (Mt) = EP (M0).
This holds also for the stopped martingale Mτ

t =Mt∧τ .

4. Let Mt(ω) = Bt(ω), t ∈ R+, a Brownian motion which is assumed to be
F-adapted, and such that for all 0 < s < t the increment (Bt − Bs) is
P -independent from the σ-algebra Fs.
Note this since by assumption the Brownian motion is F-adapted, it follows
that FBt = σ(Bs : 0 ≤ s ≤ t) ⊆ Ft, which could be strictly bigger.

We have seen in the lectures that

Bt, Mt = (B2
t − t) and Zt = exp(aBt − a2t/2)

are (P,F)-martingales.

(a) Let σ(ω) = min(τa(ω), τb(ω)), for a < 0 < b ∈ R. We will see in the
lectures that the Doob martingale convergence theorem applies also
to continuous martingales in continuous time. By following the same
line of proof as in the random walk case check that P

(
σ <∞

)
= 1.
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(b) Let a < 0 < b ∈ R. Compute P
(
τa < τb

)
.

Hints: When M is either a Brownian motion or a random walk,
the stopped process Mt∧σ(ω) is a uniformly bounded martingale. To
compute P (τa < τb), use first the martingale property

E(Mt∧σ) = E(M0) = 0,

then for t→∞ use the bounded convergence theorem.

(c) Use Doob martingale convergence theorem to show that Z∞ = limt→∞ Zt(ω)
exists P almost surely.

(d) Show that Z∞(ω) = 0 P -a.s.
Hint: Use the strong law of large numbers to show that

lim
t→∞

log(Zt)/t = −1/2, P a.s.
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