Stochastic analysis, fall 2014, Exercises-3, 01.10.14

1. Let $(\dot{\eta}_n(t): n \in \mathbb{N})$ an othonormal system in $L^2([0,1], dt)$, with

$$\int_0^1 \dot{\eta}_n(s) \dot{\eta}_m(s) ds = \delta_{n,m}$$

for example the Haar system we have used in Paul Lévy's construction of Brownian motion, and let $(G_n(\omega) : n \in \mathbb{N})$ a sequence of i.i.d. Gaussian random variable with E(G) = 0 and $E(G^2) = 1$. show that the random functions

$$\sum_{k=1}^{n} \dot{\eta}_k(s) G_k(\omega)$$

do not converge in $L^2(\Omega \times [0,1], dP \otimes dt)$. Hint: compute the squared norm

$$E\left(\int_0^t \left\{\sum_{k=1}^N G_d(\omega)\dot{\eta}_k(s)\right\}^2 ds\right)$$

2. Let $\xi(\omega) = (\xi_1(\omega), \dots, \xi_d(\omega)) \in \mathbb{R}^d$ a Gaussian random vector with independetn and identically distributed components standard Gaussian components $\xi_k(\omega) \sim \mathcal{N}(0,1)$, $E_P(\xi_k) = 0$ ja $E_P(\xi_k\xi_\ell) = \delta_{k\ell}$. Let $\mu = (\mu_1, ; \mu_d) \in \mathbb{R}^d$ a deterministic vector ja $A = (A_{ij} : 0 \leq i \leq j \leq d)$ a deterministic $d \times d$ matrix.

Let $X(\omega) = (\mu + A\xi(\omega)^{\top}) \in \mathbb{R}^d$.

,

- (a) Show that $E_P(X) = \mu$ ja $E_P(X_i X_j) E_P(X_i) E_P(X_j) = \Sigma_{ij}$, jossa $\Sigma = AA^{\top}$.
- (b) Show that the random vector X has density with respect to the Lebesgue measure in \mathbb{R}^d given by

$$p_X(x) = (2\pi)^{-d/2} \det(\Sigma)^{-1/2} \exp\left(-\frac{1}{2}(x-\mu)\Sigma^{-1}(x-\mu)^{\top}\right)$$

in other words, if $g: \mathbb{R}^d \to \mathbb{R}$ is

$$E_P\left(g(X)\right) = E_P\left(g(\mu + A\xi^{\top})\right) = \int_{\mathbb{R}} \dots \int_{\mathbb{R}} g\left(\mu_1 + \sum_{j=1}^d A_{1j}y_j, \dots, \mu_d + \sum_{j=1}^d A_{1j}y_j\right) \prod_{j=1}^d \left\{\frac{1}{\sqrt{2\pi}} \exp(-y_j^2/2)\right\} dy_1 \dots dy_d = \int_{\mathbb{R}^d} g(x_1, \dots, x_d) p_X(x_1, \dots, x_d) dx_1 \dots dx_d$$

Hint use the change of variables $x = \mu + Ay^{\top}$. You can assume that m = n and the matrix A is invertible.

3. Let $(X, Y) \sim \mathcal{N}(0, \Sigma)$ jointly Gaussian random vectors with $X(\omega) \in \mathbb{R}^{n_x}$ and $Y(\omega) \in \mathbb{R}^{n_y}$, with means $E(X) = \mu_X E(Y) = \mu_Y$, and covariance

$$\Sigma = \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{xy}^\top & \Sigma_{yy} \end{pmatrix}$$

Use Bayes formula to compute the conditional densities

$$p_{X|Y}(x|Y=y)$$
 ja $p_{Y|X}(y|X=x)$

4. Consider a random variable $Y(\omega) \in L^2(\Omega, \mathcal{F}, P)$. Consider the linear subspace spanned by the random variable $Y(\omega)$.

 $\operatorname{LinearSpan}(Y)\{b + aY(\omega) : a, b \in \mathbb{R}\}\$

- $\subset L^{2}(\Omega, \sigma(Y), P) = \{g(Y(\omega)) : g(y) \text{ Borel measurable } \} \cap L^{2}(\Omega, \mathcal{F}, P)$
- (a) Show that LinearSpan(Y) is a closed subspace of $L^2(\Omega, \mathcal{F}, P)$.
- (b) Let X a random variable in $L^2(\Omega, \mathcal{F}, P)$. Compute the orthogonal projection of X on LinearSpan(Y).

Hint: you can assume that E(X) = 0 and E(Y) = 0.

5. Consider a jointly Gaussian pair of random variables (X, Y), with means E(X) = 0 and E(Y) = 0, and covariance

$$\Sigma = \begin{pmatrix} \Sigma_{XX} & \Sigma_{XY} \\ \Sigma_{XY}^\top & \Sigma_{YY} \end{pmatrix}$$

(a) Compute the orthogonal projection of X on LinearSpan(Y) a and show that it coincides with on $E(X|Y)(\omega)$.

Hint: compute the orthogonal projection by minimizing w.r.t. a, b

$$E((b+aY-X)^2)$$

(b) Compute the conditional variance of X given Y, defined as

$$\operatorname{Cov}(X|Y)(\omega) = E(X^2|Y)(\omega) - E(X|Y)(\omega)^2$$

6. Let 0 < s < t < u, and $(B_r : r \ge 0)$ a standard Brownian motion with $B_0 = 0$.

Compute the conditional distribution of B_u conditionally on $\sigma(B_s, B_u)$.

- 7. A *d*-dimensional Brownian motion is an \mathbb{R}^d -valued stochastic process $B_t = (B_t^{(1)}, \ldots, B_t^{(d)}), t \geq 0$, where the components $B_t^{(k)}$ are independent \mathbb{R} -valued standard Brownian motions.
 - (a) Let Q be an orthogonal $d \times d$ -matrix, which means $QQ^{\top} = Q^{\top}Q = Id$, (equivalently $Q^{-1} = Q^{\top}$). Show that $(QB_t : t \ge 0)$ is a *d*-dimensional Brownian motion.
 - (b) For a matrix $A \in n \times d$, let $X_t = (AB_t) \in \mathbb{R}^n$. Show that $(X_t : t \ge 0)$ is a Gaussian process (all finite dimensional distributions are jointly Gaussian), with independent jointly Gaussian increments, i.e. for $0 \le s \le t$, $(X_t X_s) \perp \mathcal{F}_s^X = \sigma(X_r : r \le s)$.
 - (c) compute the covariance $E(X_t^{(i)}X_s^{(j)})$. Compute the stochastic cross variations

$$[X^{(i)}, X^{(j)}]_t = \lim_{n \to \infty} \sum_{t_k^n \in \Pi^n} \left(X_{t_k^n \wedge t}^{(i)} - X_{t_{k-1}^n \wedge t}^{(i)} \right) \left(X_{t_k^n \wedge t}^{(j)} - X_{t_{k-1}^n \wedge t}^{(j)} \right)$$

for any sequence of partitions (Π^n) with $\Delta(\Pi^n, t) \to 0$, where we take limit in probability and the limit does not depend on the particular sequence (Π^n) , and we have also *P*-almost sure convergence when $\sum_{n\in\mathbb{N}}\Delta(\Pi^n, t) < \infty$.