Stochastic analysis, fall 2014, Exercises-3, 01.10.14

1. Let $\left(\dot{\eta}_{n}(t): n \in \mathbb{N}\right)$ an othonormal system in $L^{2}([0,1], d t)$, with

$$
\int_{0}^{1} \dot{\eta}_{n}(s) \dot{\eta}_{m}(s) d s=\delta_{n, m}
$$

for example the Haar system we have used in Paul Lévy's construction of Brownian motion, and let $\left(G_{n}(\omega): n \in \mathbb{N}\right)$ a sequence of i.i.d. Gaussian random variable with $E(G)=0$ and $E\left(G^{2}\right)=1$. show that the random functions

$$
\sum_{k=1}^{n} \dot{\eta}_{k}(s) G_{k}(\omega)
$$

do not converge in $L^{2}(\Omega \times[0,1], d P \otimes d t)$. Hint: compute the squared norm

$$
E\left(\int_{0}^{t}\left\{\sum_{k=1}^{N} G_{d}(\omega) \dot{\eta}_{k}(s)\right\}^{2} d s\right)
$$

2. Let $\xi(\omega)=\left(\xi_{1}(\omega), \ldots, \xi_{d}(\omega)\right) \in \mathbb{R}^{d}$ a Gaussian random vector with independetn and identically distributed components standard Gaussian components $\xi_{k}(\omega) \sim \mathcal{N}(0,1), E_{P}\left(\xi_{k}\right)=0$ ja $E_{P}\left(\xi_{k} \xi_{\ell}\right)=\delta_{k \ell}$. Let $\mu=$ $\left(\mu_{1}, ; \mu_{d}\right) \in \mathbb{R}^{d}$ a deterministic vector ja $A=\left(A_{i j}: 0 \leq i \leq j \leq d\right)$ a deterministic $d \times d$ matrix.
Let $X(\omega)=\left(\mu+A \xi(\omega)^{\top}\right) \in \mathbb{R}^{d}$.
(a) Show that $E_{P}(X)=\mu$ ja $E_{P}\left(X_{i} X_{j}\right)-E_{P}\left(X_{i}\right) E_{P}\left(X_{j}\right)=\Sigma_{i j}$, jossa $\Sigma=A A^{\top}$.
(b) Show that the random vector X has density with respect to the Lebesgue measure in \mathbb{R}^{d} given by

$$
p_{X}(x)=(2 \pi)^{-d / 2} \operatorname{det}(\Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(x-\mu) \Sigma^{-1}(x-\mu)^{\top}\right)
$$

in other words, if $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is

$$
\begin{aligned}
& E_{P}(g(X))=E_{P}\left(g\left(\mu+A \xi^{\top}\right)\right)= \\
& \int_{\mathbb{R}} \ldots \int_{\mathbb{R}} g\left(\mu_{1}+\sum_{j=1}^{d} A_{1 j} y_{j}, \ldots, \mu_{d}+\sum_{j=1}^{d} A_{1 j} y_{j}\right) \prod_{j=1}^{d}\left\{\frac{1}{\sqrt{2 \pi}} \exp \left(-y_{j}^{2} / 2\right)\right\} d y_{1} \ldots d y_{d}= \\
& \int_{\mathbb{R}^{d}} g\left(x_{1}, \ldots, x_{d}\right) p_{X}\left(x_{1}, \ldots, x_{d}\right) d x_{1} \ldots d x_{d}
\end{aligned}
$$

Hint use the change of variables $x=\mu+A y^{\top}$. You can assume that $m=n$ and the matrix A is invertible.
3. Let $(X, Y) \sim \mathcal{N}(0, \Sigma)$ jointly Gaussian random vectors with $X(\omega) \in \mathbb{R}^{n_{x}}$ and $Y(\omega) \in R^{n_{y}}$, with means $E(X)=\mu_{X} E(Y)=\mu_{Y}$, and covariance

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{x y}^{\top} & \Sigma_{y y}
\end{array}\right)
$$

Use Bayes formula to compute the conditional densities

$$
p_{X \mid Y}(x \mid Y=y) \quad \text { ja } \quad p_{Y \mid X}(y \mid X=x)
$$

4. Consider a random variable $Y(\omega) \in L^{2}(\Omega, \mathcal{F}, P)$. Consider the linear subspace spanned by the random variable $Y(\omega)$.

LinearSpan $(Y)\{b+a Y(\omega): a, b \in \mathbb{R}\}$
$\subset L^{2}(\Omega, \sigma(Y), P)=\{g(Y(\omega)): g(y)$ Borel measurable $\} \cap L^{2}(\Omega, \mathcal{F}, P)$
(a) Show that $\operatorname{Linear} \operatorname{Span}(Y)$ is a closed subspace of $L^{2}(\Omega, \mathcal{F}, P)$.
(b) Let X a random variable in $L^{2}(\Omega, \mathcal{F}, P)$. Compute the orthogonal projection of X on LinearSpan (Y).
Hint: you can assume that $E(X)=0$ and $E(Y)=0$.
5. Consider a jointly Gaussian pair of random variables (X, Y), with means $E(X)=0$ and $E(Y)=0$, and covariance

$$
\Sigma=\left(\begin{array}{ll}
\Sigma_{X X} & \Sigma_{X Y} \\
\Sigma_{X Y}^{\top} & \Sigma_{Y Y}
\end{array}\right)
$$

(a) Compute the orthogonal projection of X on $\operatorname{LinearSpan}(Y)$ a and show that it coincides with on $E(X \mid Y)(\omega)$.
Hint: compute the orthogonal projection by minimizing w.r.t. a, b

$$
E\left((b+a Y-X)^{2}\right)
$$

(b) Compute the conditional variance of X given Y, defined as

$$
\operatorname{Cov}(X \mid Y)(\omega)=E\left(X^{2} \mid Y\right)(\omega)-E(X \mid Y)(\omega)^{2}
$$

6. Let $0<s<t<u$, and ($B_{r}: r \geq 0$) a standard Brownian motion with $B_{0}=0$.
Compute the conditional distribution of B_{u} conditionally on $\sigma\left(B_{s}, B_{u}\right)$.
7. A d-dimensional Brownian motion is an \mathbb{R}^{d}-valued stochastic process $B_{t}=$ $\left(B_{t}^{(1)}, \ldots, B_{t}^{(d)}\right), t \geq 0$, where the components $B_{t}^{(k)}$ are independent \mathbb{R} valued standard Brownian motions.
(a) Let Q be an orthogonal $d \times d$-matrix, which means $Q Q^{\top}=Q^{\top} Q=$ $I d$, (equivalently $\left.Q^{-1}=Q^{\top}\right)$. Show that $\left(Q B_{t}: t \geq 0\right)$ is a d dimensional Brownian motion.
(b) For a matrix $A \in n \times d$, let $X_{t}=\left(A B_{t}\right) \in \mathbb{R}^{n}$. Show that $\left(X_{t}: t \geq 0\right)$ is a Gaussian process (all finite dimensionaldistributions are jointly Gaussian), with independent jointly Gaussian increments, i.e. for $0 \leq s \leq t,\left(X_{t}-X_{s}\right) \Perp \mathcal{F}_{s}^{X}=\sigma\left(X_{r}: r \leq s\right)$.
(c) compute the covariance $E\left(X_{t}^{(i)} X_{s}^{(j)}\right)$. Compute the stochastic cross variations

$$
\left[X^{(i)}, X^{(j)}\right]_{t}=\lim _{n \rightarrow \infty} \sum_{t_{k}^{n} \in \Pi^{n}}\left(X_{t_{k}^{n} \wedge t}^{(i)}-X_{t_{k-1}^{n} \wedge t}^{(i)}\right)\left(X_{t_{k}^{n} \wedge t}^{(j)}-X_{t_{k-1}^{n} \wedge t}^{(j)}\right)
$$

for any sequence of partitions $\left(\Pi^{n}\right)$ with $\Delta\left(\Pi^{n}, t\right) \rightarrow 0$, where we take limit in probability and the limit does not depend on the particular sequence $\left(\Pi^{n}\right)$, and we have also P-almost sure convergence when $\sum_{n \in \mathbb{N}} \Delta\left(\Pi^{n}, t\right)<\infty$.

