Stochastic analysis, fall 2014, Exercises-2, 17.09.14

1. Consider a standard Brownian motion $\left(B_{t}(\omega): t \geq 0\right)$ and for $n \in \mathbb{N}$.
(a) For any sequence of partition $\left(\Pi^{n}: n \in \mathbb{N}\right)$ with $\Delta\left(\Pi_{n}, t\right):=\sup _{t_{i n}^{n} \in \Pi^{n}} \mid t_{i}^{n}-$ $t_{i-1}^{n} \mid \rightarrow 0$ For $\alpha \in\left[0,1\right.$ define the convex combination $t_{i}^{n}(\alpha):=$ $\alpha t_{i}^{n}+(1-\alpha) t_{i-1}^{n}$.

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(B_{t_{i}^{n} \wedge t}-B_{t_{i}^{n}(\alpha) \wedge t}\right)^{2} \rightarrow \alpha[B, B]_{t}=\alpha t
$$

with convergence in probability.
(b) Use Borel Cantelli lemma to show that we have also P-almost sure convergence when $\sum_{n} \Delta\left(\Pi^{n}, t\right)<\infty$.
(c) Under the same assumptions,
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(B_{t_{i}^{n} \wedge t}-B_{t_{i}^{n}(\alpha) \wedge t}\right)\left(B_{t_{i}^{n}(\alpha) \wedge t}-B_{t_{i-1}^{n} \wedge t}\right) \rightarrow 0 \rightarrow \alpha[B, B]_{t}=\alpha t$
with convergence in probability, and with P-almost sure convergence when $\sum_{n} \Delta\left(\Pi^{n}, t\right)<\infty$. Hint: the Brownian motion has independent increments, $\left(B_{t}-B_{s}\right) \amalg\left(B_{u}-B_{v}\right)$ when $0 \leq s \leq t \leq u \leq v$.
(d) Show that for $F \in C$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \sum_{i=1}^{n} F_{x}\left(B_{t_{i}^{n}(\alpha)}\right)\left(B_{t_{i}^{n} \wedge t}-B_{t_{i-1}^{n} \wedge t}\right) \rightarrow \int_{0}^{t} F_{x}\left(B_{s}\right) d \vec{B}_{s}+\alpha \int_{0}^{t} F_{x x}\left(B_{s}\right) d s \\
& =F\left(B_{t}\right)-F\left(B_{s}\right)+\left(\alpha-\frac{1}{2}\right) \int_{0}^{t} F_{x x}\left(B_{s}\right) d s
\end{aligned}
$$

where $\int_{0}^{t} F_{x}\left(B_{s}\right) d \vec{B}_{s}$ denotes the forward integral and the convergence is in probability when $\Delta\left(\Pi_{n}, t\right) \rightarrow 0$ and P-almost sure when $\sum_{n} \Delta\left(\Pi^{n}, t\right)<\infty$.
2. Let x_{t} a continuous path with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions Π_{n}, and a_{t} a continuous process with finite variation.
Use Ito formula to show the integration by parts formula.

$$
x_{t} a_{t}=x_{0} a_{0}+\int_{0}^{t} a_{t} d x_{t}+\int_{0}^{t} x_{s} d a_{s}
$$

Hint: consider the function $F(x, a)=x a$.
3. Let x_{t} a continuous path with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions Π_{n}, and $z_{0}>0$.
Show that $z_{t}=z_{0} \exp \left(x_{t}-\frac{1}{2}[x, x]_{t}\right)$ satisfies the linear pathwise differential equation

$$
d z_{t}=z_{t} d x_{t}
$$

which is understood in integral sense

$$
z_{t}=z_{0}+\int_{0}^{t} z_{s} \overleftarrow{d x_{t}}
$$

4. What is the quadratic variation of z_{t} ?
5. Show that $z_{t}^{-1}=z_{0}^{-1} \exp \left(-x_{t}+\frac{1}{2}[x, x]_{t}\right)$ satisfies

$$
z_{t}^{-1}=z_{0}^{-1}-\int_{0}^{t} z_{s}^{-1} d x_{s}+\int_{0}^{t} z_{s}^{-1} d[x, x]_{s}
$$

Remarks: note that from the assumptions it follows that z_{t} is bounded away from zero on any compact interval, which means $1 / z_{t}$ is bounded on compacts.
Note that by definition $[-x,-x]_{t}=[x, x]_{t}$.
6. Let a_{t} be a continuous path with finite first variation, and z_{t} as before.

Show that

$$
\xi_{t}=\left(1+\int_{0}^{t} \frac{1}{z_{s}} d a_{s}\right) z_{t}
$$

satisfies the linear inhomogeneous pathwise differential equation

$$
d \xi_{t}=\xi_{t} d x_{t}+d a_{t}, \quad \xi_{0}=z_{0}
$$

7. Let b_{t} a continuous path with finite first variation and x_{t} continuous with quadratic variation $[x, x]_{t}$ among the dyadic sequence of partitions. Show that

$$
\int_{0}^{t} a_{s} d x_{s}=a_{t} x_{t}-a_{0} x_{0}-\int_{0}^{t} x_{s} d a_{s}=\lim _{\Delta(\Pi) \rightarrow 0} \sum_{t_{i} \in \Pi} a_{t_{i}}\left(x_{t_{i+1} \wedge t}-x_{t_{i} \wedge t}\right)
$$

it is well defined independently of the sequence of partitions.
Hint: use Abel discrete integration by parts formula for a partition Π and take limit as $\Delta(\Pi) \rightarrow 0$.
8. Show that $y_{t}=\int_{0}^{t} a_{s} d x_{s}$ has quadratic variation among the dyadic sequence of partitions given by

$$
[y, y]_{t}=\int_{0}^{t} a_{s}^{2} d[x, x]_{s}
$$

Hint:

$$
\left(\int_{t_{i}}^{t_{i+1}} a_{s} d x_{s}\right)^{2}=\left(a_{t_{i}}\left(x_{t_{i+1}}-x_{t_{i}}\right)+\int_{t_{i}}^{t_{i+1}}\left(x_{t_{i+1}}-x_{s}\right) d a_{s}\right)^{2}
$$

develop the squares and take sum over $t_{i} \in \Pi \cap[0, t]$ and let $\Delta(\Pi) \rightarrow 0$.

