Stochastic analysis, Fall 2014, Exercises-1, 10.09.2014

1. Let $(x_t : t \in \mathbb{N})$, $(y_t : t \in N)$. Check Abel discrete integration by parts formula:

$$x_t y_t = x_0 y_0 + \sum_{s=1}^t y_{s-1} \Delta x_s + \sum_{s=1}^t x_{s-1} \Delta y_s + [x, y]_t$$

where

$$\Delta x_{t} = x_{t} - x_{t-1}, \quad , \Delta y_{t} = y_{t} - y_{t-1}, \quad , [x, y]_{t} = \sum_{s=1}^{t} \Delta x_{s} \Delta y_{s}$$

2. Let $x: \mathbb{R}^+ \to \mathbb{R}$ a function. Its total variation (or first-variation) is defined as

$$v_t(x) = \sup_{\Pi} \sum_{t_i \in \Pi} \left| x_{t_i \wedge t} - x_{t_{i-1} \wedge t} \right| \tag{1}$$

where the supremum is over all finite partitions

$$\Pi = \{ 0 \le t_0 < t_1 < \dots < t_n \}$$

 $t \wedge s = \min\{s, t\}.$

Assume that $s \to x_t$ is right continuous with left limits at all points $s \in [0, t]$. We say that x_s is cadlag from the french Continue a Droite, avec Limite A Gauche.

We decompose $x_s = x_s^c + \sum_{r \leq s} \Delta x_r$ where the path x_s^c is continuous and there are at most countably many jumps, since $\forall n$ the set

$$\{s \in [0, t] : |\Delta x_s| > 1/n\}$$
(2)

is finite, otherwise there would be an accumulation point, and the function x_s would not have left or right limit at that point.

We can show that

$$v_t(x) = v_t(x^c) + \sum_{r \le t} |\Delta x_r|$$
(3)

Show that

$$v_t(x) = \lim_{\Delta(\Pi) \to 0} \sum_{t_i \in \Pi} \left| x_{t_i \wedge t} - x_{t_{i-1} \wedge t} \right|$$

where $\Delta(\Pi) = \max\{|t_i - t_{i-1}| : t_i \in \Pi\}$ and Π is a finite partition. This means that the limits exists for any sequence of partitions (Π_n) with $\Delta(\Pi_n) \to 0$ and the limiting value does not depende on the sequence.

Hint: by triangular inequality, when we refine the partition by adding a point the approximation on the right hand side of (1) does not decrease.

Show the results first for a continuous path (which will be absolutely continuous on the compact interval) .

Assume $v_T(x) < \infty$, for some $T \in (0, \infty]$. For $t \in [0, T]$, let

$$x_t^{\oplus} = \frac{v_t(x) + x_t - x_0}{2}, \quad x_t^{\ominus} = \frac{v_t(x) - x_t + x_0}{2}$$

Show that x^\oplus_t and x^\ominus_t are non-decreasing satisfying $x^\oplus_0=x^\ominus_0=0$ and

$$x_t = x_0 + x_t^{\oplus} - x_t^{\ominus}, \quad v_t(x) = x_t^{\oplus} + x_t^{\ominus}$$

$$\tag{4}$$

Show that if

$$x_t = x_0 + y_t^{\oplus} - y_t^{\ominus} \tag{5}$$

with y^\oplus_t and y^\ominus_t non-decreasing satisfying $y^\oplus_0=y^\ominus_0=0,$ then

$$v_t \le y_t^{\oplus} + y_t^{\ominus}$$

Show that the decomposition (4) is minimal among the decompositions (5), meaning that

$$a_t := y_t^{\oplus} - x_t^{\oplus} = y_t^{\ominus} - x_t^{\ominus}$$

is non-decreasing.

3. Assume that x_t is continuous a path with quadratic variation $[x]_t$ among the sequence of partitions $(\Pi_n)_{n \in \mathbb{N}}$, and let a_t a continuous function with finite first variation on compact intervals, that is $v_t(a) < \infty$. Let F(x, a)a $C^{2,1}$ function, with continuous partial derivatives $F_a(x, a), F_x(x, a)$ and $F_{xx}(x, a)$.

Use Taylor expansion, uniform continuity, and the vague convergence definition of the quadratic variation to show in details the extended Ito-Föllmer formula

$$F(x_t, a_t) - F(x_0, a_0) - \int_0^t F_a(x_s, a_s) da_s - \frac{1}{2} \int_0^t F_{xx}(x_s, a_s) d[x]_s = = \int_0^t F_x(x_s, a_s) d\overleftarrow{x}_s = \lim_{n \to \infty} \sum_{t_i^n \in \Pi_n} F_x(x_{t_i^n}) \left(x_{t_{i+1}^n \wedge t} - x_{t_i^n \wedge t} \right)$$
(6)

where the last equality defines the pathwise integral. Hint: Write the telescopic sum with and use Taylor

$$\begin{split} F(x_{t_{i+1}}, a_{t_{i+1}}) &- F(x_{t_i}, a_{t_i}) = \\ F(x_{t_{i+1}}, a_{t_{i+1}}) &- F(x_{t_{i+1}}, a_{t_i}) + F(x_{t_{i+1}}, a_{t_i}) - F(x_{t_i}, a_{t_i}) = \\ F_a(x_{t_{i+1}}, a_{\tau_i})(a_{t_{i+1}} - a_{t_i}) + F_x(x_{t_i}, a_{t_i})(x_{t_{i+1}} - x_{t_i}) + \frac{1}{2}F_{xx}(x_{t_i}, a_{t_i})(x_{t_{i+1}} - x_{t_i})^2 \\ &+ \frac{1}{2} \big(F_{xx}(x_{\sigma_i}, a_{t_i}) - F_{xx}(x_{t_i}, a_{t_i}) \big) (x_{t_{i+1}} - x_{t_i})^2 \end{split}$$

for some $t_i \leq \tau_i \leq t_{i+1}$, $t_i \leq \sigma_i \leq t_{i+1}$ which exist by the mid-point theorem of elementary analysis.

- 4. Assume that x_t is a continuous path with $x_0 = 0$, and quadratic variation $[x]_t = t$, among the dyadic sequence of partitions $\mathcal{D} = (t_k^n = k2^{-n} : k \in \mathbb{N})_{n \in \mathbb{N}}$, and let $a_t = \exp(t)$. Use the change of variable formula of classical Riemann-Stieltjes integrals and Ito-Föllmer formula (6) to compute the integral representation of
 - $\sin(a_t)$,
 - $\sin(x_t)$,
 - $\sin(a_t x_t)$.
- 5. What is the first variation of $sin(a_t)$?

What is the quadratic variation of $sin(x_t)$?

What is the quadratic variation of $\sin(a_t x_t)$?

Show that $sin(x_t)$ and $sin(a_t x_t)$ have infinite first variation.

- 6. Let $(x_t : t \in \mathbb{R}_+)$ continuous with quadratic variation $[x]_t = [x, x]_t$, ja $t \mapsto a_t \in C^1(\mathbb{R}_+, \mathbb{R}).$
 - (a) Show that a_t has quadratic variation $[a, a]_t = 0$, and the cross variation $[x, a]_t = 0$.
 - (b) Let $y_t = a_t + x_t$, and recall that [y, y] = [a, a] + 2[x, a] + [x, x] = [x, x]. Use Ito formula to compute the pathwise Ito Föllmer integrals
 - i.

$$\int_0^t x_s^n dx_s, \quad n \in \mathbb{N}$$

ii.

$$\int_0^t \exp(\sigma x_s^n) dx_s, \quad n \in \mathbb{N}$$

iii.

$$\int_0^t \sin(\sigma x_s) dx_s,$$

iv.

v.

$$\int_0^t \cos(\sigma x_s) dx_s,$$

$$\int_0^t y_s^n dy_s$$

vi.

$$\int_0^t \exp(\sigma y_s^n) dy_s$$

vii.

$$\int_0^t a_s^n da_s$$

viii.

$$\int_0^t \exp(\sigma a_s^n) da_s$$

ix.

$$\int_0^t \sin(\sigma a_s) da_s,$$

x.

$$\int_0^t \cos(\sigma a_s) da_s,$$

xi.

$$\int_0^t y_s^n dx_s$$

xii.

$$\int_0^t \exp(\sigma y_s^n) dx_s$$

(c) Compute also the quadratic variation of those integrals. Recall that the pathwise integral $t \mapsto \int_0^t y_s dx_s$ when it exists has quadratic variation $\int_0^t y_s^2 d[x, x]_s$.