Stochastic analysis, Fall 2014, Exercise 9,3.11.2013

We apply stochastic calculus to the theory of random matrices.
Consider first a $d \times d$ Hermitian matrix $A=A^{*}$ which means $A_{i j}=\bar{A}_{j i}$ where for $\hat{A} \breve{a} \hat{A} \breve{a} \bar{z}$ is the conjugate of $z \in \mathbb{C}$, and $A_{i i} \in \mathbb{R}^{+}$.

The Hermitian matrix has orthonormal eigenvalues

$$
A u_{i}=\lambda_{i} u_{i}
$$

with $\lambda_{i} \in \mathbb{R}^{+}$and $u_{i}^{*} u_{j}=\delta_{i j}$ where $u_{i}^{*} u_{j}=\sum_{k=1}^{d} \bar{u}_{i k} u_{j k}$
Assume now that $A=A(t)$ depending on a time parameter. Then by differentiating w.r.t. t

$$
A(t) u_{i}(t)=\lambda_{i}(t) u_{i}(t)
$$

we obtain

$$
\begin{equation*}
d A(t) u_{i}(t)+A(t) d u_{i}(t)=d \lambda_{i}(t) u_{i}(t)+\lambda_{i}(t) d u_{i}(t) \tag{1}
\end{equation*}
$$

and since

$$
d u_{i}^{*}(t) u_{i}(t)+u_{i}^{*}(t) d u_{i}(t)=0 \Longrightarrow u_{i}^{*}(t) d u_{i}(t)=0
$$

which means $d u_{i}(t)$ is orthogonal to $u_{i}(t)$, which implies by taking inner product of (1) with u_{i}

$$
d \lambda_{i}(t)=u_{i}^{*} d A(t) u_{i} \quad \text { Hadamard first variation formula }
$$

By differentiating twice in the same way we get the formula

$$
d^{2} \lambda_{k}=u_{k}^{*} d^{2} A u_{k}+2 \sum_{j \neq k} \frac{\left|u_{j}^{*} d A u_{k}\right|^{2}}{\lambda_{k}-\lambda_{j}}
$$

We now consider Dyson Brownian motion.
The Gaussian Unitary Ensemble (GUE) of random matrices is the set of Hermitian $d \times d$ matrices with

$$
G_{i j}=\bar{G}_{i j}=X_{i j}+\sqrt{-1} Y_{i j} \quad i \neq j
$$

and $X_{i j}, Y_{i j}$ are i.i.d $\mathcal{N}(0,1 / 2)$ and $G_{i i} \sim \mathcal{N}(0,1)$. so that

$$
p(G)=c(d) \exp \left(-\frac{d}{2} \operatorname{Trace}\left(G^{2}\right)\right)
$$

We consider now a matrix valued Complex Gaussian process, where

$$
G_{i j}(t)=\bar{G}_{i j}(t)=X_{i j}(t)+\sqrt{-1} Y_{i j}(t) \quad i \neq j,
$$

and $\sqrt{2} X_{i j}(t), \sqrt{2} Y_{i j}(t)$ and $G_{i i}$ are independent standard Brownian motions.
Now the ordered eigenvalues of $G(t) \hat{\mathrm{A}} \breve{\mathrm{a}}$
$0 \leq \lambda_{1}(t)<\lambda_{2}(t)<\ldots \lambda_{d}(t)$
form a d-dimensional process $\lambda(t)$ called Dyson Brownian motiom.
Note that

$$
d \lambda(t)=
$$

