Partial Differential Equations II

HW 1

Return to Jussi by Monday, September 22nd

1. Let $u(x)=|x|^{1 / 2},|x| \leq 1$. For which $\gamma, 0<\gamma \leq 1$, do we have $u \in C^{0, \gamma}((-1,1))$?
2. Show, that $C^{0, \gamma}(U)$ is a Banach-space with respect to norm $\|\cdot\|_{C^{0, \gamma}(U)}$. Here, as usual, $0<\gamma \leq 1$, and $U \subset \mathbb{R}^{n}$ is open.
3. Prove in detail that a weak derivative is unique.
4. Assmue $0<\beta<\gamma \leq 1$. Prove the so called interpolation inequality

$$
\|u\|_{C^{0, \gamma}(U)} \leq\|u\|_{C^{0, \beta}(U)}^{\frac{1-\gamma}{1-\beta}}\|u\|_{C^{0,1}(U)}^{\frac{\gamma-\beta}{1-\beta}} .
$$

Before trying the next questions, read pages 240-260 in Evans. Do not worry too much about all the details in the proofs, we will worry about those in the lectures. However, try to form a general picture of the material covered.
5. Explain why Theorem 2 of subsection 5.3.1 is more useful than Theorem 1.
6. What does straightening the boundary mean? Starting from the definition of a C^{1}-domain, try to describe in detail why this works.

