OPERATOR ALGEBRAS-A TOOLKIT
 EXERCISE SHEET 4

DR. KAY SCHWIEGER, DR. STEFAN WAGNER

1. Unitary Elements as Exponentials

(1) Show that for every self-adjoint h the element $u:=e^{i h}$ is unitary.
(2) Show the almost converse: Every unitary element u is of the form $u=e^{i h}$ for some self-adjoint element h if $\sigma(u)$ is not the full circle. What happens if $\sigma(u)$ is the full circle?

2. Properties of Functional Calculus

Let \mathcal{A} be a unital C^{*}-algebra and $x \in \mathcal{A}$. Let $f: \sigma(x) \rightarrow \mathbb{C}$ and $g: \mathbb{C} \rightarrow \mathbb{C}$ be continuous functions. Show the following:
(1) For a polynomial function $p(z)=\sum_{n} c_{n} z^{n}: \quad p(x)=\sum_{n} c_{n} x^{n}$.
(2) $\sigma(f(x))=f(\sigma(x))$.
(3) $\|f(x)\|=\sup _{\lambda \in \sigma(x)}|f(\lambda)|$.
(4) $g(f(x))=(g \circ f)(x)$.

The rest of this exercise is optional: Let $f_{n}, f:[a, b] \rightarrow \mathbb{R}$ be continuous and $x_{n}, x \in \mathcal{A}$ be self-adjoint elements with spectrum in $[a, b]$.
(5) Show the implication

$$
f_{n} \rightarrow f \text { uniformly, } x_{n} \rightarrow x \quad \Longrightarrow \quad f_{n}\left(x_{n}\right) \rightarrow f(x)
$$

Hint: Use the Stone-Weierstrass Theorem. Maybe try it first for the special cases $f_{n}=f$ or $x_{n}=x$.

3. Polar Decomposition

(1) Show that every invertible element x is of the form $x=u h$ with a unitary element u and a positive element h in the C^{*}-algebra.
This decomposition (and variants) are called polar decomposition.
(2) Show that the elements u and h are unique.
(3) Compute the polar decomposition explicitly for

$$
x=\left(\begin{array}{cc}
0 & -2 \\
1 & 0
\end{array}\right) .
$$

(4) Do we also have $x=h u$ in general?

4. Counterexamples for Positivity

4.1. Multiplication is Not Positive.

(1) Show that for commuting elements x, y we have the implication

$$
x, y \geq 0 \quad \Longrightarrow \quad x \cdot y \geq 0
$$

(2) Show that if this implication holds for all elements $x, y \geq 0$ of a C^{*} algebra \mathcal{A}, then \mathcal{A} is commutative.

4.2. Squaring is Not Positive.

(1) Consider the matrices $x=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $y=x+\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Show that $0 \leq x \leq y$ but $x^{2} \not \leq y^{2}$.
(2) Show that if the implication

$$
0 \leq x \leq y \quad \Longrightarrow \quad 0 \leq x^{2} \leq y^{2}
$$

holds for all elements x, y of a C^{*}-algebra \mathcal{A}, then \mathcal{A} is commutative.

5. C^{*}-Algebras of Sequences

We consider the natural numbers \mathbb{N} and write $c_{0}:=\mathcal{C}_{0}(\mathbb{N})$.
(1) Convince yourself that c_{0} is the space of all sequences converging to zero.
(2) This part is optional and you may skip it: Find an closed *-ideal of c_{0} that is not maximal. Characterize all closed ${ }^{*}$-ideals of c_{0}.
(3) What is the unitalization of c_{0} ? Write it as a space of sequences and make the character φ with $\operatorname{ker} \varphi=c_{0}$ explicit.
(4) Show that the set of all bounded sequences

$$
\ell^{\infty}:=\left\{x=\left(x_{n}\right)_{n \in \mathbb{N}}: \sup _{n \in \mathbb{N}}\left|x_{n}\right|<\infty\right\}
$$

equipped with the norm $\|x\|:=\sup _{n}\left|x_{n}\right|$ is a C^{*}-algebra.
(5) Show that ℓ^{∞} contains c_{0} as an ideal but not as a maximal idea.

The rest of this exercise is optional (but interesting):
(6) Since ℓ^{∞} is commutative we have $\ell^{\infty}=\mathcal{C}(X)$ for some compact space X. Show that \mathbb{N} is a subset of X.
(7) Show that \mathbb{N} is dense in X.
(8) Show that this space X is totally disconnected.

The space X is called the Stone-Cech compactification, usually denoted by $\beta \mathbb{N}$. It is in fact the largest compact space into which \mathbb{N} can be densely embedded.

