OPERATOR ALGEBRAS-A TOOLKIT EXERCISE SHEET 4

DR. KAY SCHWIEGER, DR. STEFAN WAGNER

1. UNITARY ELEMENTS AS EXPONENTIALS

- (1) Show that for every self-adjoint h the element $u := e^{ih}$ is unitary.
- (2) Show the almost converse: Every unitary element u is of the form $u = e^{ih}$ for some self-adjoint element h if $\sigma(u)$ is not the full circle. What happens if $\sigma(u)$ is the full circle?

2. PROPERTIES OF FUNCTIONAL CALCULUS

Let \mathcal{A} be a unital C^{*}-algebra and $x \in \mathcal{A}$. Let $f : \sigma(x) \to \mathbb{C}$ and $g : \mathbb{C} \to \mathbb{C}$ be continuous functions. Show the following:

- (1) For a polynomial function $p(z) = \sum_{n} c_n z^n$: $p(x) = \sum_{n} c_n x^n$.
- (2) $\sigma(f(x)) = f(\sigma(x)).$
- (3) $||f(x)|| = \sup_{\lambda \in \sigma(x)} |f(\lambda)|.$
- (4) $g(f(x)) = (g \circ f)(x).$

The rest of this exercise is optional: Let $f_n, f : [a, b] \to \mathbb{R}$ be continuous and $x_n, x \in \mathcal{A}$ be self-adjoint elements with spectrum in [a, b].

(5) Show the implication

$$f_n \to f$$
 uniformly, $x_n \to x \implies f_n(x_n) \to f(x)$

Hint: Use the Stone-Weierstrass Theorem. Maybe try it first for the special cases $f_n = f$ or $x_n = x$.

3. Polar Decomposition

(1) Show that every invertible element x is of the form x = uh with a unitary element u and a positive element h in the C*-algebra.

This decomposition (and variants) are called *polar decomposition*.

- (2) Show that the elements u and h are unique.
- (3) Compute the polar decomposition explicitly for

$$x = \begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}.$$

(4) Do we also have x = hu in general?

4. Counterexamples for Positivity

4.1. Multiplication is Not Positive.

(1) Show that for commuting elements x, y we have the implication

$$y \ge 0 \qquad \Longrightarrow \qquad x \cdot y \ge 0.$$

(2) Show that if this implication holds for all elements $x, y \ge 0$ of a C^{*}-algebra \mathcal{A} , then \mathcal{A} is commutative.

4.2. Squaring is Not Positive.

- (1) Consider the matrices $x = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $y = x + \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.
- Show that $0 \le x \le y$ but $x^2 \le y^2$.

x.

(2) Show that if the implication

$$0 \le x \le y \qquad \Longrightarrow \qquad 0 \le x^2 \le y^2$$

holds for all elements x, y of a C^{*}-algebra \mathcal{A} , then \mathcal{A} is commutative.

5. C*-Algebras of Sequences

We consider the natural numbers \mathbb{N} and write $c_0 := \mathcal{C}_0(\mathbb{N})$.

- (1) Convince yourself that c_0 is the space of all sequences converging to zero.
- (2) This part is optional and you may skip it: Find an closed *-ideal of c_0 that is not maximal. Characterize all closed *-ideals of c_0 .
- (3) What is the unitalization of c_0 ? Write it as a space of sequences and make the character φ with ker $\varphi = c_0$ explicit.
- (4) Show that the set of all bounded sequences

$$\ell^{\infty} := \left\{ x = (x_n)_{n \in \mathbb{N}} : \sup_{n \in \mathbb{N}} |x_n| < \infty \right\}$$

equipped with the norm $||x|| := \sup_n |x_n|$ is a C^{*}-algebra.

(5) Show that ℓ^{∞} contains c_0 as an ideal but not as a maximal idea.

The rest of this exercise is optional (but interesting):

- (6) Since ℓ^{∞} is commutative we have $\ell^{\infty} = \mathcal{C}(X)$ for some compact space X. Show that \mathbb{N} is a subset of X.
- (7) Show that \mathbb{N} is dense in X.
- (8) Show that this space X is totally disconnected.

The space X is called the *Stone-Ĉech compactification*, usually denoted by $\beta \mathbb{N}$. It is in fact the largest compact space into which \mathbb{N} can be densely embedded.