
Chapter 7

Chemotaxis

7.1 Introduction

Organisms often direct their movement by external cues, a process called
taxis. Depending on the cue in question, we may term such directed movement
thermotaxis (warmth), phototaxis (light), chemotaxis (chemical substances), and
so on, and this may be both an attracting or repelling movement. Several kinds
of common bacteria, such as E. coli, Salmonella, or the slime mould Dictyostelium
(Dicty in short) have been shown to form intricate patterns when grown in semi-
solid or liquid media in the laboratory. An example pattern showing spirals of the
chemoattractant cyclic AMP (cAMP) in Dictyostelium is presented in Figure 7.1.

The reason for aggregation or repulsion may be many. Bacteria use scents to
find food; immune cells chemotactically find enemies such as bacteria; insects use
pheromones to find each other, either for reproduction as in moths, or to hunt
collectively, as in army ants; reproduction is also the main drive behind Dicty
aggregation.

Because of the simplicity of this organism, and the richness of its collective
behaviour, Dicty has been used as a model organism for many years, especially to
understand how signal transduction of cAMP induces aggregation and subsequent
development (Othmer and Schaap, 1998).

Aggregation in Dicty is basically done through a feedback loop, in which the
individual cells release cAMP into the environment while reacting to the cAMP
levels they perceive. When general food levels become too low to sustain the slime
mold cells individually, the cells start to produce cAMP in order to aggregate. They
first form centra, which then concentrate to become ‘slugs’. These slugs move about
for a while until a suitable place is found. There, the multicellular slug undergoes
cell differentiation to form a (pre)stalk on which a (pre)spore is formed. The stalk
contains nonreproducing Dicty cells, i.e., there is cooperation among the cells so
that few may reproduce. This is indeed an intricate evolutionary question, and to
find the answer you should read the Selfish Gene and The Extended Phenotype
by Richard Dawkins! The fruiting body on top finally contains spores which are
dispersed by the wind. Some excellent videos of this remarkable progression may
be found on the internet, including those made by the person who started much of
this field, John Bonner, whilst still an undergraduate.

Mathematically, the description of the evolution of concentrations of organisms
in some domain Ω begins with a general conservation law. This states that the
total amount of organisms in Ω at time t + δt must be equal to the total amount
at time t plus the net concentration of particles which either flows out of Ω or is
created inside Ω within the timespan δt. If we denote this net flow out of Ω by a

75



76 Chemotaxis

Figure 7.1. Spiraling waves of cyclic AMP, the chemoattractant
used by colonies of Dictyostelium bacteria

flux J(t, x) then we can write
∫

Ω
u(t+ δt, x)dx =

∫

Ω
u(t, x)dx− δt

∫

∂Ω
J(t, x)dS (7.1.1)

Since this argument holds for any domain Ω, and
∫
∂Ω J(t, x)dS =

∫
Ω ∇ · Jdx, we

have the general evolution equation

ut +∇ · J = 0. (7.1.2)

This flux J may be due to different kinds of motion, such as diffusion or taxis.
We could also easily take creation of particles in Ω into account. If we let f(t, x)
denote the creation of organisms at time t and position x, then the above equation
becomes simply

ut +∇ · J − f = 0

Phenomenologically, we may pose the following equation for organisms whose
movements are described as stochastic random walks with a bias towards chemoat-
tractant concentrations:

ut +∇ · (d∇u− uχ(s)∇s) (7.1.3)

known as a Keller-Segel equation (Keller and Segel, 1971). Here the chemotactic
flux Jc due to attraction by the chemical s is

Jc = uχ(s)∇s

where χ(s) is termed the chemotactic sensitivity. The Keller-Segel equation (7.1.3)
is often coupled to an equation for the chemoattractant s, which usually diffuses
and is produced either by the cells itself or by an external source, e.g.

st = ∆s+ u− s.

Note that we have conveniently scaled the diffusion constant for s to 1 by rescaling
space, the production rate by u to 1 by rescaling u and the degredation rate of s
to 1 by rescaling time. We supply no-flux BCs to the equations for u and S to
complete the Keller-Segel model.

The plan for the rest of the chapter is as follows. First we will study the
initiation of pattern formation for a Keller-Segel model in one spatial dimension,
and briefly discuss whether solutions exist for all time or may blow up in finite
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time. Lastly, we will try to derive macroscopic Keller-Segel-like equations from
microscopic behaviour of the individual cells, such as run-and-tumble movement in
bacteria, signal transduction, and so on.

7.2 Initiation of pattern formation

Let us focus on the following set of equations on a domain [0, L], with no-flux
BCs,

∂u

∂t
= d

∂2u

∂x2
− χ

∂u

∂x

∂s

∂x
− χu

∂2s

∂x2
, (7.2.1)

∂s

∂t
=
∂2s

∂x2
+ u− s. (7.2.2)

The last term in the u equation is due to cross diffusion. Note that there is
conservation of mass for u, since d

dt

∫
u dx = 0.

There exists a uniform steady state u = ū, s = s̄, as long as ū = s̄, and we can
thus treat ū as a parameter. Introducing u = ū + U and s = s̄ + S. Linearizing
around (ū, s̄) gives

∂U

∂t
= d

∂2U

∂x2
− χū

∂2S

∂x2
, (7.2.3)

∂S

∂t
=
∂2S

∂x2
+ U − S. (7.2.4)

Making the usual separation of variables Ansatz
(

U
S

)
(t, x) = eλt cosµx

(
U0

S0

)

gives

λU0 = µ2dU0 + χūµ2S0,

λS0 = −µ2S0 + U0 − S0,

which in matrix form reads(
λ+ µ2d −χūµ2

−1 λ+ µ2 + 1

)(
U0

S0

)
=

(
0
0

)
.

The condition for a nontrivial solution is thus given by requiring that this matrix
has determinant zero, i.e.,

(λ+ µ2d)(λ+ µ2 + 1)− χūµ2 = 0,

which is written more transparently as

λ2 + (µ2(d+ 1) + 1)λ+ µ2(d(µ2 + 1)− χū) = 0.

Denoting the first and zeroth order coefficients of this polynomial in λ by B and
C, we know that

λ± =
−B ±

√
B2 − 4C

2
.

Observe that if ℑλ ̸= 0 then ℜλ < 0, and that if ℑλ = 0 then λ− < 0 and λ+ > 0
if and only if C < 0.

We conclude that the uniform steady state is unstable iff

C < 0 ⇐⇒ d(µ2 + 1) < χū. (7.2.5)

We may offer directly the following biological interpretation of this inequality.
Instability, and thus the initiation of pattern formation, is promoted by a high
initial concentration of cells, a high chemotactic sensitivity χ, or a low random
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motility d. Additionally, we do well to remember that several quantities were hidden
inside the nondimensional equations by the rescaling of variables we had assumed.
Making these explicit again revels that a high rate of cAMP production and low
degredation rate of cAMP also promote pattern formation. Finally, we focus on the
spatial mode µ = kπ/L of the perturbation we have analyzed. Inequality (7.2.5)
is more easily satisfied for small µ, i.e. for long waves, or equivalently, on large
intervals [0, L].

Overall, we may conclude that the feedback loop of involving signal production
and moving towards stronger signals may lead to growing peaks provided the
“equalizing” influence of diffusion is not too strong.

Finally we make some remarks on the asymptotic behaviour for large t. If the
spatial dimension is 1, then solutions stay bounded. (Note that

∫
u dx remains

constant, so there is never blow up in the L1-norm. Also
∫
S →

∫
u as t → ∞.)

If the spatial dimension is two, then if
∫
u is large enough, a Dirac may form in

finite time. If the spatial dimension is 3, then Dirac’s may form in infinite time.
Keller-Segel chemotaxis in the plane may thus account for aggregation in one spot.
(There are are some ways to extend the model in order to capture the subsequent
movement of Dirac’s.)

The literature on Keller-Segel-like models has grown enormously since the early
1970s. The interested reader may consult (Horstmann, 2003) or (Perthame, 2007).

7.3 Derivation of chemotaxis models

One of the main obstacles to use (7.1.3) directly is that one has to specify χ(S).
There is no general theory which allows us to translate the bacteria’s perception
of the chemoattractant and their subsequent change of behaviour (moving towards
higher chemoattractant concentrations) to a macroscopic chemotactic sensitivity
function.

In this section we will show how one can obtain Keller-Segel equations, or other
evolution equations for chemotactic bacteria, using the dynamics at a mesoscopic
scale as starting point. The main point is that it is often easier to describe dynamics
on a level at which pattern is not observed, and then lift these equations to the level
at which it is observed. In the current context, it is easy to specify how individual
particles change their direction due to external cues or random motion. This gives
us evolution equations for a density u(t, x, v), say, which thus depends on velocities
v. The mathematical goal is then to derive an evolution equation for a function
n, say, which does not depend on v anymore, but only on time and space (which
is the quantity one observes when one describes the bacterial patterns such as in
Figure 7.1).

The simplest example in which we can derive a parabolic equation from a
mesoscopic one is in one space dimension. Let particles move according to a so-
called velocity-jump process. In this process, the particles move at a certain speed
(here assumed to be a constant s), and reorient at random instants in time according
to a Poisson process with intensity λ. In one space dimension, the particles can
only move in two directions. Let u±(t, x) be the density of particles at (t, x) and
moving to the right (+) or left (-) respectively. Then u± satisfy the hyperbolic
equations

∂u+

∂t
+ s

∂u+

∂x
= −λu+ + λu− (7.3.1)

∂u−

∂t
− s

∂u−

∂x
= −λu− + λu+ (7.3.2)
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The density of particles at (t, x), u(t, x), is the sum of u+(t, x) and u−(t, x), and
the particle flux j equals s(u+ − u−). These satisfy

∂u

∂t
+
∂j

∂x
= 0 (7.3.3)

∂j

∂t
+ 2λj = −s2

∂u

∂x
(7.3.4)

Differentiating the first of these equations with respect to t and the second to x
and combining both equations leads to the telegraph equation

∂2u

∂t2
+ 2λ

∂u

∂t
= s2

∂2u

∂x2

The diffusion equation follows formally in the limit λ→ ∞, s → ∞, while keeping

s2

λ
=: d (7.3.5)

constant.
To understand pattern formation in bacteria or other chemotactic organisms

such as ants, we need to derive continuum models in higher dimensions. Now
particles can travel in an infinity of directions, and we denote by p(t, x, v) the density
of particles at time t and position x ∈ Rn moving in the direction v ∈ V := sSn−1

(still with constant speed s). This density now satisfies the transport equation

∂u

∂t
+∇ · (vu) = −λu+ λ

∫

V
T (v, v′)u(t, x, v′)dv′

which resembles the Boltzmann equation, but it is linear in u rather than quadratic.
It is nothing but a conservation equation like (7.1.2), but now over the domain
Rn × V rather than a domain Ω ⊂ Rn. Within the current context, T (v, v′) is a
turning kernel, and signifies the probability of changing direction from v′ to v if
a switch is made, which happens with probability λ. It has a number of obvious
properties. Most importantly, T ≥ 0 and

∫

V
T (v, v′)dv′ = 1

The main goal here is to find an evolution equation for n(t, x) :=
∫
u(t, x, v)dv such

as a diffusion equation or a Keller-Segel equation. The method makes crucial use of
a small parameter which has to be identified in the mesoscopic model. Within the
current context, this parameter, ε, is usually the ratio sL/T , where L is a typical
length scale of the pattern and T a measure of the typical time scale. The method
now consists of three steps

(1) introduce a scaling which reflects the type of model you want to find using
a small parameter

(2) write u as an asymptotic expansion in this small parameter
(3) find out what equations the different parts of this expansion have to satisfy

in order for the problem to be solvable. In many cases, these solvability
conditions give rise to the evolution equations you are after

In our case, we will study a parabolic scaling, i.e., ξ = εx and τ = ε2t. Hyperbolic
scalings are also often useful, and give rise to chemotaxis models with quite different
properties. The rescaled transport equation now becomes

ε2
∂u

∂τ
+ ε∇ξ · (vu) = −λu+ λ

∫

V
T (v, v′)u(τ, ξ, v′)dv′ (7.3.6)
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The second step is two write u as an asymptotic expansion

u(τ, ξ, v) =
k∑

i=0

εiui(τ, ξ, v) +O(εk+1) (7.3.7)

Let us denote

Lφ(v) = −λφ(v) + λ

∫

V
T (v, v′)φ(τ, ξ, v′)dv′

for functions φ ∈ L2(V ). Note that the natural choice of function space here would
be L1(V ), but choosing L2 makes the exposition more straightforward, since the
dual of L2 is again L2.

Plugging this expansion (7.3.7) into (7.3.6) and grouping the terms in the
resulting equation by orders of ε, we find

O(ε0) : Lu0 = 0 (7.3.8)

O(ε1) : Lu1 = v ·∇u0 (7.3.9)

O(ε2) : Lu2 =
∂u0

∂t
+ v ·∇u1 (7.3.10)

...

O(εi) : Lui =
∂ui−2

∂t
+ v ·∇(ui−1) 3 ≤ i ≤ k (7.3.11)

The properties of T imply that 0 is a simple eigenvalue of Lu = −λu +
λ
∫
V T (., v′)u(v′)dv′ with eigenfunction u ≡ 1. We can hence conclude that, since

Lu0 = 0, u0 does not depend on v! This means that u0 only depends on τ and ξ and
is the dependent variable for which we are trying to derive an evolution equation.

Were L invertible, we could simply proceed by first setting

u1 = L−1(v ·∇u0)

and then

u2 = L−1 ∂u0

∂t
+ v ·∇(L−1(v ·∇u0))

and so on. But L is singular, and is only invertible on the orthogonal complement in
L2(V ) of the eigenspace at eigenvalue 0, ⟨1⟩⊥. This is nothing but those functions
φ ∈ L2 such that ∫

V
φ(v)dv = 0

Hence, to be able to express u1 in u0, we have to make sure that the right hand
side of (7.3.9) satisfies this orthogonality condition, which reads

∫

V
(v ·∇u0)dv = 0. (7.3.12)

Then u1 = F(v · ∇u0), where F is the pseudoinverse of L (i.e., the inverse of L
where it is well-defined).

To solve (7.3.10) we similarly have to require that
∫

V

∂u0

∂t
+ v ·∇u1dv = 0

Using u1 = F(v ·∇u0) this becomes
∫

V

∂u0

∂t
+ v ·∇(F(v ·∇u0))dv = 0
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Since u0 is independent of v, the integrand vanishes, and we find the desired
evolution equation for u0,

∂u0

∂t
+ v ·∇(F(v ·∇u0)) = 0 (7.3.13)

which can be written in the more familiar form

∂u0

∂t
−∇ · (d∇u0) = 0 (7.3.14)

where

d = − 1

|Sn−1|

∫

V
vFvdv

Fortunately, in many cases this pseudoinverse F can be computed explicitly. In the
simplest case, when T (v, v′) = 1/|Sn−1| and V = sSn−1, we find

d =
s2

λn

This is a straighforward generalisation of the diffusion constant (7.3.5) we found in
the one-dimensional telegraph equation.

This technique of scaling, substituting an asymptotic expansion and finding an
evolution equation as a solvability condition, is a very general one and occurs in
many applied mathematics problems. Let us here extend this idea to incorporate
sensing of a chemoattractant, with a Keller-Segel model as the final result.

The main ingredient we need to add to include chemotaxis is to change the
turning kernel T . We suppose that this is now a function of an external signal
S(t, x). Intuitively, if a bacterium senses the signal it should swim in the direction
of highest concentration. The probability of choosing a new direction should thus
depend on the concentration around the position x, in other words on ∇S. We will
make this assumption at the very end.

We continue the above technique at the rescaled transport equation, which now
reads

ε2
∂u

∂τ
+ ε∇ξ · (vu) = −λu+ λ

∫

V
T (v, v′, S)u(τ, ξ, v′)dv′

Next to the asymptotic expansion (7.3.7) of u, we also introduce an expansion for
T . Let us assume that the influence of S only occurs in the order ε term:

T (v, v′, S) = T0(v, v
′) + εT1(v, v

′, S) (7.3.15)

Substituting this gives

ε2
∂u

∂τ
+ ε∇ξ · (vu) = L0u+ ελ

∫

V
T1(v, v

′, S)u(τ, ξ, v′)dv′

where

L0u = −λu+ λ

∫

V
T0(., v

′)u(v′)dv′

We continue by substituting the expansion for u. The ui again satisfy a coupled set
of equations analogous to (7.3.8)–(7.3.11), which can only be solved under certain
solvability conditions. The lowest order contribution u0 is still independent of v,
and the solvability condition for u0 at order ε2 is now
∫

V

(
∂u0

∂t
+ (v ·∇)F0(v ·∇u0)− λ(v ·∇)F0

(∫

V
T1(v, v

′)dv′u0

))
dv

− λ0

∫

V

∫

V
T1(v, v

′, S)u1(v
′)dv′dv = 0 (7.3.16)
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Figure 7.2. Typical dynamics of the internal excitation variable
y1 as the bacterium passes a sudden increase of chemoattractant.
Note that the bacterium is first more excitable, but that this
excitability slowly decreases back to a rest state. Adapted
from Erban and Othmer (2004).

Here F0 is the pseudoinverse of L0. If we define

vc = − λ

|Sn−1|

∫

V

∫

V
vF0T1(v, v

′, S)dv′dv

as the chemotactic velocity, then u0 satisfies an equation which starts to resemble
a Keller-Segel equation

∂p0
∂τ

= ∇ · (d∇u0 − vcu0)

If we moreover make the same simplifying assumptions as before, T0 = 1/|Sn−1|,
then

d =
s2

λn
, vc =

1

|Sn−1|

∫

V

∫

V
vT1(v, v

′, S)dvdv′

Finally, to obtain the classical Keller-Segel model, we make the additional
assumption that T1 depends linearly on ∇S to which we hinted at the beginning of
this derivation. Then vc is of the form χ(S)∇S, with

χ(S) =
λk(S)

|Sn−1|d

Note, however, that we are effectively not very much further. Rather than having
to choose an arbitrary function χ(S), we now have to choose an equally arbitrary
k(S).

There are many variations and extensions on this theme. We may also introduce
dependence of the turning rate λ on the chemoattractant, and again find that the
this dependence has to be of order ε to give us a Keller-Segel equation. Starting
either with a turning kernel T or a turning rate λ in which this S-dependence
is already present in the O(1) term (T0 or λ0) does not result in a Keller-Segel
equation, but reduces the evolution equation to simple diffusion.

One of the most exciting extensions in this field has been the additional
modelling of the signal transduction pathways by which bacteria sense the
chemoattractant. Rather than modelling directly how the turning angle depends
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on S (which resulted in our having to choose k(S) in the chemotactic sensitivity
χ(S)), we let it depend on some internal state of the bacterium. This pathway
is known to be very complex indeed, and mathematical models of its reaction
dynamics often contain 30 or more dependent variables. Fortunately, it has
been shown convincingly that this system may be approximated well using two
phenomenologically chosen variables, a fast excitation variable y1 changing at time
scale τe, and a slow adaptation variable y2 varying at time scale τa. See Figure 7.2
for the kind of dynamics this creates. These two ingredients of excitation and
adaptation are very commonly found in many sensory systems following an external
concentration. We now introduce an internal state y = (y1, y2) for each individual
particle, evolving according to

dy

dt
= h(y, S) (7.3.17)

or more specifically,

τe
dy1
dt

= g(S(x))− (y1 + y2) (7.3.18)

τa
dy2
dt

= g(S(x))− y2 (7.3.19)

We may resort to the conservation equation (7.1.2) again, but now the flux is not
in space or in velocity space, but in internal state space. The evolution of particle
densities and their internal states can be given by

∂u

∂t
+∇y · (hu) = 0

So rather than treating y as an dependent variable, we can treat it as an independent
variable. This is entirely analogous to the situation in which dx/dt = v and u solves
ut +∇ · (vu) = 0.

Putting this new ingredient into the transport equation is straighforward. Now
u(t, x, y, v) satisfies

∂u

∂t
+∇x · (vu) +∇y · (hu) = −λ(y)u+ λ(y)

∫

V
T (v, v′, y)u(t, x, v′, y)dv′ (7.3.20)

The three-step technique works also for this more elaborate example. Assuming
that the turning rate depends linearly on the excitation variable (which detects the
signal and thus influences when to change direction) we write λ(y) = λ0 − by1 for
λ0 > 0, b > 0. A macroscopic evolution equation for U(x, t) =

∫ ∫
u(t, x, y, v)dydv,

can now be derived, and is indeed a classical Keller-Segel equation for large times

∂U

∂t
= ∇ ·

( s2

λ0
∇U −

[ bs2τag′(S(x))

λ0(1 + 2λ0τa)(1 + 2λ0τe)

]
U∇S

)
. (7.3.21)

Not only have we understood under what circumstances mesoscopic dynamics give
rise to Keller-Segel equations, we have also obtained insight how the parameters
specifying the individual bacteria’s behaviour influence the diffusion or aggregation
parts of the final macroscopic equation (7.3.21).

This is but one way to derive Keller-Segel models from lower-level dynamics.
One may also start from a stochastic description, see e.g. Stroock (1974); Stevens
(1995). For more information and much detail on recent developments on velocity-
jump processes and their relation to chemotaxis models, see Alt (1980); Othmer
et al. (1988); Othmer and Hillen (2002); Erban and Othmer (2004, 2007); Xue and
Othmer (2009). The analysis of the resulting chemotaxis models has become a
large field. The interested reader may consult Horstmann Horstmann (2003) for a
detailed review of many mathematical aspects of chemotaxis.
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