
Chapter 5

Linear diffusion

5.1 The fundamental solution

The aim of this section is to derive the fundamental solution to the diffusion
equation

∂u

∂t
= d

∂2u

∂x2
, x ∈ R, t ≥ 0, (5.1.1)

subject to far out boundary conditions

u(t,±∞) = 0, t ≥ 0, (5.1.2)

using dimensional analysis. This technique often reveals the basic structure of
solutions to partial differential equations, by simply asking which (combination) of
the variables actually determine the dependent variable we want to study.

Let us model the concentration of some species living on the real line, dispersing
according to (5.1.1). Assume that at time t = 0, all individuals are in one particular
location x = 0. Since the number of individuals remains constant in time, we know
that for each t > 0, ∫ ∞

−∞
u(t, x)dx = 1. (5.1.3)

(Exploiting the linearity of the diffusion equation, we have just taken the liberty of
scaling u such that (5.1.3) holds.) A solution u is now completely determined by
all other quantities involved, so we are looking for a function f such that

u = f(t, x, d). (5.1.4)

We have already seen in Section 4.3 that (5.1.1) is invariant under the scaling
t∗ = ε2t, x∗ = εx. This suggests that we could write f as a function of x/

√
t.

However, x2/t is not dimensionless, and we therefore cannot expect solutions to be
dependent on x/

√
t only. Observe, however, from (5.1.1) that the diffusion constant

d has dimension (length)2/time. So the combination x/
√
dt is dimensionless.

On the other hand, u has dimension 1/length, so we at least need f to be of the
form wφ(x/

√
dt) for some function w with dimension 1/length and a dimension-less

function φ. The conservation equation (5.1.3) now yields

1 =

∫ ∞

−∞
u(t, x)dx

=

∫ ∞

−∞
wφ

(
x√
dt

)
dx

=

∫ ∞

−∞
w
√
dtφ(ξ)dξ,
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ul0(t)

x/l0(t)

Figure 5.1. In the right time-dependent variables (x/l0(t) and
ul0(t) the fundamental solution of the diffusion equation has a
unique profile for all time.

where ξ = x/
√
dt. So w = 1/

√
dt seems the obvious candidate to make all

dimensions fit. In all, we look for a u of the form

u =
1√
dt
φ

(
x√
dt

)
.

This strategy of finding the structure of solutions by considering dimensions is
applicable much more generally (Barenblatt, 1996).

Note that if we define the time-dependent length scale l0(t) :=
√
dt, then

u =
1

l0(t)
φ

(
x

l0(t)

)
,

so if we plot ul0(t) versus x/l0(t), we find one curve for all time. See Figure 5.1. This
shows that this solution possesses the property of self-similarity : when scaling both
the spatial variable and the (population) density in an appropriate time-dependent
manner, nothing changes at all. In fact one can also find the form of the solution
by, from the very beginning, searching for a solution such that

u(t, x) = λαu(λt,λβx) for all λ > 0,

and constants α and β to be chosen suitably. The choice λ = t−1 then reveals that
we are looking for a function of one variable.

The great advantage of having to find φ(ξ) instead of f(t, x, d) is that the
(partial differential) diffusion equation (5.1.1) reduces to an ordinary differential
equation in which, moreover, neither the independent nor the dependent variable
carries a physical dimension.

Exercise 5.1.1. Show that, in the new variable ξ, (5.1.1) becomes

d2φ

dξ2
+
ξ

2

dφ

dξ
+
φ

2
= 0. (5.1.5)

Integrating once, we find that

dφ

dξ
+
ξ

2
φ = constant. (5.1.6)

Since u is symmetric with respect to reflection in 0, φ should be symmetric around
ξ = 0, and therefore dφ

dξ = 0 at ξ = 0. The constant on the right hand side is

therefore zero. Using for instance integrating factors to solve (5.1.6), we conclude
that

φ(ξ) = Ae−ξ2/4, (5.1.7)

for some constant A.
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Using the well-known integral identity
∫

R
e−ξ2dξ =

√
π.

we finally arrive at a solution of the diffusion equation, which we denote by Φ and
which is explicitly given by the formula

Φ =
1

2
√
πdt

e−
x2

4dt .

We call Φ the fundamental solution. Note that Φ > 0 for arbitrary x, no matter
how small we choose t > 0. This is yet another manifestation of the infinite speed of
propagation that is embodied in the diffusion equation. Also note that Φ is a Gauss
distribution with mean zero and variance 2dt. In particular, Φ is astronomically
small for large |x|. So it is not so clear how we should interpret the positivity of Φ.
We return to the question of the speed of propagation in Section 5.3 below. Finally
note that the variance goes to zero for t ↓ 0. So the distribution at t = 0 corresponds
to a unit (recall (5.1.3)) mass concentrated at x = 0. In the mathematically precise
sense of distributions, u(t, .) converges to the Dirac delta for t ↓ 0.

The reason Φ is called the fundamental solution is that by linearity of the
diffusion equation we may apply superposition: given initial data u(0, x) = u0(x),
the solution of the diffusion problem can be expressed as a convolution of the initial
data and the fundamental solution:

u(t, x) =

∫ ∞

−∞
Φ(t, x− y)u0(y)dy.

This section is greatly inspired by (Barenblatt, 1996, Section 2.1).

5.2 Separation of variables and spectral theory

If du
dt = ru we know that u grows exponentially when r > 0, while it decays

exponentially if r < 0. Now suppose that, additionally, u diffuses in a spatial
domain. Is the conclusion still true? Does u develop any spatial pattern? What is
the influence of boundary conditions? For simplicity we restrict our attention to a
one-dimensional spatial domain. To begin with we provide the diffusion equation

∂u

∂t
= d

∂2u

∂x2
+ ru (5.2.1)

with so-called no-flux boundary conditions

∂u

∂x
(t, 0) = 0 =

∂u

∂x
(t, L) (5.2.2)

at the endpoints x = 0 and x = L of the interval we consider.

Exercise 5.2.1. Explain why we can, without any loss of generality, either
take d = 1 or L = 1. Also explain why, for r > 0, it is no loss of generality to take
r = 1.

We choose to take d = 1, but to keep r as it is (so we scale the spatial variable
but we do not scale time).

Exercise 5.2.2. Show that, in order for

u(t, x) = a(t)φ(x)

to be a solution, we must necessarily have that, for some λ,

a(t) = constant · eλt,
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and

φ′′(x) = (λ− r)φ(x) (5.2.3)

φ′(0) = 0 = φ′(L). (5.2.4)

Exercise 5.2.3. Show that

(i) both φ(x) = cosµx and φ(x) = sinµx satisfy the differential equation φ′′ = (λ−r)φ,
provided λ− r = −µ2.

(ii) only φ(x) = cosµx satisfies, in addition, the left boundary condition φ′(0) = 0.
(iii) in order for φ(x) = cosµx to also satisfy the right boundary condition φ′(L) = 0,

we should have

µ =
kπ

L
for some integer k ≥ 0.

(iv) finally, verify that (5.2.3)–(5.2.4) does not have a solution if λ− r > 0.

Exercise 5.2.4.

(i) Verify that, while making the preceding two exercises, you have deduced that the
following statement is true: for k = 0, 1, 2, . . .,

u(t, x) = erte−(
kπ
L )2t cos

(
kπ

L
x

)
(5.2.5)

is a solution of (5.2.1)—(5.2.2).
(ii) A very simple argument shows that of all these solutions the one with k = 0 has

the fastest growth (or the least decay, when r < 0) for t → ∞. Formulate this
argument.

(iii) An even simpler argument shows that the solution with k = 0 is “flat”, i.e., has no
spatial structure. Provide also this argument.

The spatial solutions found in (5.2.5) can be used as building blocks for a
representation of the general solution. By “general solution” we mean that we add
to (5.2.1)—(5.2.2) an initial condition

u(0, x) = u0(x), (5.2.6)

where u0 is a rather arbitrary function defined on [0, L]. Suppose that we can find
coefficients {bk}∞k=0 such that

u0(x) =
∞∑

k=0

bk cos

(
kπ

L
x

)
. (5.2.7)

Then, by the superposition principle, which holds since (5.2.1)—(5.2.2) is a linear
problem, and (5.2.5) we have

u(t, x) = ert
∞∑

k=0

bke
−( kπ

L )2t cos

(
kπ

L
x

)
. (5.2.8)

The justification of (5.2.7) is the subject of Fourier analysis.

Exercise 5.2.5.

(i) In the above introduction of Section 5.2 we formulated three questions. Provide
answers to the first two of these.

(ii) Alternatively to the no-flux boundary conditions (5.2.2), we can consider the
situation in which the concentration is held zero at the boundary (imagine a big
monster at the boundary that eats everything that gets there):

u(t, 0) = 0 = u(t, L). (5.2.9)
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It follows that now

u(t, x) = ert
∞∑

k=1

ake
−( kπ

L )2t sin

(
kπ

L
x

)
. (5.2.10)

Answer the first two questions in the introduction of this section for this situation.
Hint: note that the term with k = 0 is now missing, as sin 0 = 0.

(iii) Give a (partial) answer to the third question in the introduction.

Exercise 5.2.6. Consider a rectangular domain Ω with sides of length L1 and
L2. Determine the eigenvalues and eigenvectors of the diffusion problem with no-
flux boundary conditions. Conclude that the modes are naturally numbered by a
pair of integers. If one orders the eigenvalues according to µk1,k2 , one obtains an
ordering of these pairs. Investigate the influence of the ratio L1/L2 on this ordering
of pairs.

5.2.1 A digression on general theory

For general bounded open subsets Ω of Rn, the eigenfunctions of the Laplace
operator provided with zero Dirichlet boundary conditions form an orthonormal
basis for L2(Ω), i.e., every element f of L2(Ω) can be written as

f =
∞∑

i=1

⟨f, vi⟩vi,

with ∆vi = λivi for i = 1, 2, . . . The eigenvalues λi are real and negative and λi →
−∞ as i → ∞. The eigenvalue λ1 is simple and the corresponding eigenfunction
v1 is positive (if we make the right choice; note that −v1 is also an eigenfunction,
so “is of one sign” is a slightly more accurate formulation). In fact, this positivity
characterizes v1: if λi ̸= λ1 then vi cannot be chosen to be positive!

A cautionary note: often results are states for −∆ and then the eigenvalues are
positive and converge to +∞ for i → ∞.

One can prove this result by first showing that a Green’s function exists, and
next using this function to convert the boundary value problem for the differential
equation into an integral equation. Then general spectral theory of compact
self-adjoint operators can be used. The positivity follows via the Krein-Rutman
theorem, which is the infinite-dimensional version of Perron-Frobenius.

The idea of a principal eigenvalue with corresponding positive eigenfunction
extends to operators of the form Lu = ∆u + ru where r is a function of x, rather
than a scalar. To determine the sign of the principle eigenvalue (in order to decide
about growth or decline) is a nontrivial task.

In the case of a one-dimensional spatial variable, this is part of the so-called
Sturm-Liouville theory. The no-flux boundary condition is treated just as easily as
the zero Dirichlet case (just compare the Exercises 5.2.4 and 5.2.5).

For higher dimensional Ω, one needs a bit of regularity of ∂Ω when dealing with
no-flux boundary conditions. It is remarkably hard to find a precisely formulated
result for the case of a no-flux boundary condition in the literature. After extensive
searching we found Chapter 11, §A in Smoller (1983).

Finally, note that there also exist variational characterizations of the eigen-
values and eigenfunctions and these are particularly useful for dealing with the
principal eigenvalue.

5.3 The asymptotic speed of propagation

This exercise is, in a way, a continuation of the preceding one. But now we
consider a biological population living in a very large domain. In fact, the domain
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is so large that we use the plane R2 as an idealised mathematical description. So
consider

∂u

∂t
= d∆u+ ru, r > 0, (5.3.1)

where ∆u = ∂2u
∂x2

1
+ ∂2u

∂x2
2
and x = (x1, x2) ∈ R2. There are many situations in which

one wants to know how fast the area occupied by the population expands. We shall
derive the answer in two quite different ways. The first consists of analysing the
fundamental solution

u(t, x) =
1

4πdt
ert−

|x|2
4dt , where |x|2 = x2

1 + x2
2. (5.3.2)

describing the effect of a release at t = 0 at x = 0. The second relies on a search
for travelling plane wave solutions, i.e., solutions of the form

u(t, x) = w(x · ν − ct), (5.3.3)

where w : R → R defines the profile, the unit vector ν ∈ R2 the direction and the
real number c the speed.

Exercise 5.3.1. With u given by (5.3.2), for fixed x we have limt→∞ u(t, x) =
∞, while for fixed t we have lim|x|→∞ u(t, x) = 0. To find out where, roughly, the
transition from 0 to ∞ is located, we can consider limt→∞ u(t, x) under various
assumptions about how fast |x(t)| → ∞ as t → ∞.

(i) Show that this limit equals zero if |x(t)|2 > (4dr + ε)t2 for some ε > 0.
(ii) Show that, on the other hand, this limit equals ∞ if |x(t)|2 < (4dr − ε)t2 for some

ε > 0.
(iii) Give arguments in favour of the assertion: “the population expands with speed

2
√
dr”.

(iv) Substitute (5.3.3) into (5.3.1) and derive an equation for w in which c figures as an
additional (to d and r) parameter. Why did the ν drop out?

(v) Try for w an exponential function. Express the exponent in terms of c, r and d.
(vi) The biological interpretation requires w to be positive. This condition leads to a

lower bound for the wave speed c. Which bound is this?
(vii) Comparing answers to (iii) and (vi), you find that the minimal speed of plane wave

solutions coincides with the population expansion speed as derived from (5.3.2).
Can you give an intuitive argument why this is to be expected? Hint: think in
terms of fireworks that are ignited by fuses that we make as long or short as we
want but that can also, via connections, be ignited by nearest neighbours.

(viii) Consider the plane wave solution with minimal speed. Check that at a fixed position
the population grows like e2rt, whereas a uniform (i.e., position independent)
population grows as ert. Can you explain where the difference stems from?

ζ

y

Figure 5.2.

We conclude this section with a more general look at the speed of propagation,
without using the travelling wave Ansatz. Let us try to zoom in at the transition
region by choosing a fixed direction ζ of unit length, and write x = α(t)ζ + y, with
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ζ · y = 0, where α is a “local” one- dimensional coordinate corresponding to the ζ
direction (Figure 5.2). With these assumptions, |x|2 = α2 + |y|2, and hence

u(t, x) =
1

4πdt
e
rt
(
1− α2

4rdt2

)

e−
|y|2
4dt .

For y in a bounded set, the last factor converges to 1 uniformly as t → ∞. We
would like to know at what speed α(t) has to progress such that the limit will be

different from both zero and infinity. Call this limit ψ. Put 1
4πdte

rt
(
1− α2

4rdt2

)

= ψ.
Then solving for α2, we find

α2 = 4drt2
(
1− log 4πdt

rt
− logψ

rt

)
,

and hence

α = 2
√
drt−

√
d

r
(log(4πdt)− log(ψ)) +O

(
log2(t)

t

)
.

We write this as α = m(t) + θ + O
(

log2(t)
t

)
, with θ = −

√
d
k log(ψ). The new

function m(t) satisfies the differential equation

ṁ(t) = 2
√
dr −

√
d

r

1

t
.

Thus we see that the speed at which α needs to proceed converges algebraically to

2
√
dr. Note that θ = −

√
d
r log(ψ) ⇐⇒ ψ = e−θ

√
r
d .

Since ζ is arbitrary, we conclude that the fundamental solution u decomposes
into plane waves travelling in all directions with speed 2

√
dr, and that these waves

describe the transition from inside the critically growing ball (ψ → ∞, θ → −∞),
to outside (ψ → 0, θ → ∞).

Travelling waves derive from the combination of a homogeneous medium and
time translation invariance. The waves (in particular, their speeds) are independent
of the direction ζ since the medium is isotropic.

On finite but large domains we still can use self-similar solutions (here travelling
waves) to describe the intermediate asymptotics when the details of the initial
condition do not matter anymore while boundary conditions do not yet influence the
dynamics in a substantial way. For “self-similar”, see Grindrod, box E (Grindrod,
1991), but also the book by Barenblatt devoted to self-similarity and intermediate
asymptotics (Barenblatt, 1996). For each c the equation is invariant with respect
to a group of transformations

T c
ε =

⎧
⎨

⎩

x → x+ εc,
t → t+ ε,
u → u.

Hence, given a solution we can generate other (possibly, but not necessarily,
different) solutions by applying T c

ε . A similarity solution is one for which the
group orbit T c

εu consists of only one point.
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