
Chapter 4

Movement in space

Our view of the world is structured by time and space and, we believe, this reflects
reality: to interact, entities have to be at the same position at the same time. So
far we concentrated on changes in time, but now we are going to incorporate spatial
position. In the present chapter we only consider independent particles (molecules,
bacteria, . . .) but in the next we shall incorporate interaction.

4.1 Flux

The density of bacteria on an agar plate is, by definition, the number of bacteria
per unit of area. Likewise, the concentration of a chemical substance in solution
is the number of molecules per unit of volume. The density or concentration in a
point is an idealisation, corresponding to the thought experiment of shrinking the
area or volume to zero while focusing our attention on the point. We then write
u = u(t, x) and consider u as a smooth function of time t and position x. Note that
we need to integrate u(t, ·) over space to obtain an amount . If the total number is
conserved, but the individual particles move, u(t, ·) changes with time. How? How
does redistribution over space manifest itself in changes in density/concentration?

Let us first consider a one-dimensional space (one might think of a river) and
deterministic motion with prescribed velocity c = c(x) (one might think of algae
that float with the streaming water). The flux at x is the number of organisms that
pass x, say from left to right, per unit of time. We denote the flux by J = J(t, x).
Clearly

J(t, x) = c(x)u(t, x), (4.1.1)

as is indeed also suggested by the dimensional identity

number

time
=

length

time
· number

length
. (4.1.2)

Equally clearly,

d

dt

∫ b

a
u(t, x) dx = J(t, a)− J(t, b), (4.1.3)

or, in words, if neither creation nor annihilation occurs, then the total number of
organisms between a and b changes only by way of flux in at a and flux out at
b (convince yourself that this terminology is appropriate when a < b and c > 0
or when a > b and c < 0, but should be adjusted otherwise). According to the
fundamental theorem of calculus,

J(t, b)− J(t, a) =

∫ b

a

∂J

∂x
(t, ξ) dξ. (4.1.4)
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Hence, ∫ b

a

(
∂u

∂t
(t, ξ) +

∂J

∂x
(t, ξ)

)
dξ = 0, (4.1.5)

and as this holds for arbitrary a and b, the integrand must be zero (see Lemma
of DuBois-Reymond (Lin and Segel, 1998)), and so in combination with (4.1.1) we
arrive at the conservation law

∂u

∂t
+

∂

∂x
(cu) = 0. (4.1.6)

Two important variations on this theme are

(i) in higher space dimension the flux J is a vector and the conservation law
takes the form

∂u

∂t
+∇ · J = 0, (4.1.7)

with the divergence of the flux ∇ · J defined by

∇ · J =
n∑

i=1

∂Ji
∂xi

(4.1.8)

(more explanation below).
(ii) The motion of pollen that the botanist Brown observed under his

microscope was very irregular. So much so that it became the prototype
for random motion. A phenomenological description takes Fick’s law

J = −d∇u, (4.1.9)

as the constitutive relation that links the flux J to the density u
by requiring that J is proportional to the gradient ∇u, with d a
constant of proportionality called the diffusion constant, since when we
substitute (4.1.9) into (4.1.7) we obtain the diffusion equation

∂u

∂t
= d∆u, (4.1.10)

where ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplacian. Note that d has dimension

(length)2/time.

In the next subsection we shall provide various derivations that yield a quasi-
mechanistic underpinning of Fick’s Law. We conclude this subsection with a few
observations on the notion of flux in higher dimensions.

Consider a point in two-space. If we want to talk about the traffic of particles
in that point, we need to specify a direction. This we do by choosing a unit vector
m. The flux J at the point is a vector such that, whatever choice of m, the number
of particles crossing per unit of time a straight line L perpendicular to m in an
interval of length h centred at the focus point equals

J ·m h+ o(h) as h → 0.

For deterministic motion we have just as in the one-dimensional case that the flux is
the product of the velocity, which is now a vector, and the density (so in particular,
the traffic is maximal in the direction of the velocity and zero in the direction
perpendicular to the velocity).

In the present context, the analogue of the fundamental theorem of calculus is
the Divergence Theorem

∫

Ω
∇ · F dA =

∫

∂Ω
F · nds, (4.1.11)

where n is the outward pointing unit vector (outward normal) perpendicular to the
boundary ∂Ω of the domain Ω.
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Figure 4.1.

In three dimensions, one replaces L by a plane and the interval of length h by
a subset of this plane of area h. The Divergence Theorem now reads

∫

Ω
∇ · F dV =

∫

∂Ω
F · ndS, (4.1.12)

and is usually called Gauss’ Theorem.
Note that if we substitute Fick’s Law (4.1.9) into the identity of the Divergence

or Gauss’ Theorem, we obtain
∫

Ω
∆u =

∫

∂Ω

∂u

∂n
. (4.1.13)

4.2 Various ways to motivate Fick’s Law

Derivation 1 Consider one-dimensional space and suppose that at every point
particles move at speed c, but half of them to the left and half to the right. Consider
a point where the density jumps over a gap of length h from a constant density
uleft to a constant density uright (see Fig. 4.1). In a time interval of length ∆t the
net transport to the right equals

1

2
(uleft − uright)c∆t.

So per unit of time 1
2 (uleft − uright)c is transported, which we write as

uleft − uright

h

1

2
ch.

When we now take the limit h → 0 while assuming that

1

2
hc → d,

we obtain

flux = −d
∂u

∂x
.

The key point of this very debatable “derivation” is that it clearly shows that in
the limit we should have c → ∞. So, in a sense, we consider particles that move
infinitely fast but never can make up their mind about the direction in which they
go.

Derivation 2 Imagine a particle moving on a one-dimensional lattice that we
represent by Z. We take time discrete and at every time step the particle moves to
the left with probability 1

2 and to the right with probability 1
2 . If the particle is at

position zero at time zero then the probability pi(n) that it is at position i at time
n is given explicitly by

pi(n) =

{ ( n
1
2 (n+i)

) (
1
2

)n
for n+i even and − n ≤ i ≤ n,

0 otherwise.
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(Indeed, if the particle makes k steps to the right then it makes n− k steps to the
left, and to end up at i we should have k − (n− k) = i. Hence k = 1

2 (n+ i). The
probability that k out of n steps are to the right equals

(n
k

)
( 12 )

k( 12 )
n−k =

(n
k

)
( 12 )

n.)
If we now take i = x

λ and n = t
τ , let both λ and τ approach zero but in such

a way that λ2/2τ converges to d, then the binomial distribution converges to the
normal distribution (see e.g. Section 7.3 in (Chung, 1974), or better still, verify this
yourself)

p(t, x) =
1

2
√
πdt

e−
x2

4dt .

This, as we shall see later on, is the fundamental solution of the one-dimensional
diffusion equation. Note that one can interpret λ/τ as the speed and that this
speed grows beyond any bound.

Alternatively, we can shorten the distance between the lattice points as well as
the time intervals between steps. Then, by performing a formal Taylor expansion
for p we derive the diffusion equation directly from the random walk assumptions
by taking a limit. The next derivation is essentially of this type, but considers right
away both space and time as continuous variables.

Note once again that for independently moving particles we need not make a
distinction between the density of many particles and the probability density for
one particle.

Derivation 3 We postulate that

u(t+ τ, x) =

∫ ∞

−∞
u(t, x− y)

1

ε
φ
(y
ε

)
dy (4.2.1)

for a function φ satisfying φ ≥ 0,
∫∞
−∞ φ(y) dy = 1, and φ(−y) = φ(y). Then,

in particular,
∫∞
−∞ yφ(y) dy = 0. The identity (4.2.1) states that between times t

and t + τ particles are moved over a distance y with probability density 1
εφ
(y
ε

)

and the symmetry guarantees that there is no preferred direction. A formal Taylor
expansion yields

u(t+ τ, x) = u(t, x) + τ
∂u

∂t
(t, x) + · · · , (4.2.2)

u(t, x− y) = u(t, x)− y
∂u

∂x
(t, x) +

1

2
y2
∂2u

∂x2
(t, x) + · · · . (4.2.3)

Substituting these expressions in (4.2.1) we find

τ
∂u

∂t
(t, x) =

1

2

∫ ∞

−∞
y2

1

ε
φ
(y
ε

)
ydy

∂2u

∂x2
(t, x) + · · · , (4.2.4)

=
ε2

2

∫ ∞

−∞
z2φ(z)dz

∂2u

∂x2
(t, x) + · · · (4.2.5)

If we now let both τ and ε converge to zero but in such a manner that

ε2

2τ

∫ ∞

−∞
z2φ(z) dz → d,

we arrive at
∂u

∂t
= d

∂2u

∂x2
. (4.2.6)

Exercise 4.2.1. Let u(t, x) satisfy (4.2.6). Show that u as a function of t
decreases where u as a function of x has a maximum, and that u as a function of
t increases where u as a function of x has a minimum. Conclude that the diffusion
equation has an equalising effect. Do you agree that this is already embodied in
Fick’s Law?
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Figure 4.2.

4.3 Transport by diffusion

The two observations

(1) dim d = (length)2

time ,
(2) the diffusion equation (4.2.6) is invariant under a scaling

t∗ = ε2t, x∗ = εx,

both motivate the following statements:

• the average distance over which diffusion transports particles in a given
time interval of length t is proportional to

√
dt

• the average time it takes to diffuse over a distance h is proportional to
h2/d.

Please contrast Figure 4.2 with the deterministic straight line distance =
velocity · time. It appears that the efficiency of diffusion as a transport mechanism
depends very much on the distance to be travelled! We need the circulatory blood
system for active transport of, among other things, oxygen. But the very last bit
of transport to the muscle tissue is by diffusion! See (Vogel, 1988, Chapter 8) for
some general considerations.

4.4 How to measure the diffusion coefficient

A capillary tube is inserted into a suspension of bacteria of known concentration
(see Fig. 4.3). After a prescribed period of time, the tube is extracted and the
number of bacteria that have entered is counted. Assume that the bacteria can
be described in terms of a concentration u, that they move randomly, that the
concentration at the mouth of the tube is always a constant, u0 say, that there are no
bacteria in the tube at the beginning of the experiment, and that the concentration
in the tube varies only in the length direction and not in the radial direction. A
mathematical formulation of these assumptions reads

∂u

∂t
= d

∂2u

∂x2
0 < x < ∞, t > 0 (4.4.1)

u(t, 0) = u0 t > 0 (4.4.2)

u(0, x) = 0 x > 0, (4.4.3)

where x measures the distance down the (infinitely long, by debatable assumption)
tube.

Exercise 4.4.1. Derive the expression

d =
πN2

4u2
0A

2T
(4.4.4)
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Figure 4.3.

where N denotes the number of bacteria in the tube at time T and A the cross-
sectional area of the tube.

The way (4.4.4) is used is: for several choices of u0 and T the experiment is
performed and N is determined. The right hand side is then computed and if,
within reasonable accuracy, the value is the same for all u0, T and N combinations,
then we have confidence in the model and, in addition, the value serves as an
estimate for d. A typical value is 0.2 cm2/hr.

Hints and remarks: take as a starting point the fundamental solution

1

2
√
πdt

e−
x2

4dt ,

which we will derive later on in Section 5.1. The fundamental solution serves as
a building block: since the equation is linear, the superposition principle applies.
The fundamental solution is the solution of the diffusion equation with initial data
u0(x) = δ(x), the Dirac delta function. For instance, if we replace this initial
condition by the general condition u(0, x) = g(x), for x ∈ R, then

u(t, x) =
1

2
√
πdt

∫

R
e−

(x−y)2

4dt g(y) dy.

To make this formula applicable to (4.4.3), we need the trick of extending the
domain and the initial condition to (−∞,∞) in such a way that the boundary
condition automatically holds (essentially this is based on symmetry). The right
choice is

u(0, x) = 2u0, x < 0,

so that the value for x = 0 is (for t = 0, but in fact also for t > 0) exactly the
average of the value to the left and the value on the right. You should now arrive
at

u(t, x)

u0
=

2√
π

∫ ∞

x/
√
4dt

e−ξ2 dξ. (4.4.5)

To be clear: deriving (4.4.5) forms part of the Exercise! To derive (4.4.4), you may
want to use integration by parts.

4.5 About sojourn times

Suppose particles enter a compartment at a rate F . Let N denote the total
number of particles in the compartment. To find a relation between N and F
we need to know how long particles stay in the compartment. We assume that
this so-called sojourn time is a stochastic variable T with a continuous probability
distribution.

Exercise 4.5.1. Assume that both F and N depend on time t. Explain in
words the bookkeeping considerations underlying the identity.

N(t) =

∫ ∞

0
F (t− σ)P (T ≥ σ) dσ. (4.5.1)
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Exercise 4.5.2. Now assume that both N and F are constant. Let f denote
the probability density of T , so, in particular,

P (T ≥ σ) =

∫ ∞

σ
f(s)ds, and

∫ ∞

0
f(s) ds = 1.

Let

τ =

∫ ∞

0
σf(σ) dσ

denote the mean of T . Show that N = F τ . Are you surprised? Finally, reflect a
moment on the possibility that τ = ∞. How would you interpret the result N = F τ
in that case ?

4.6 How long does it take?

Suppose particles are released at x = L and removed upon arrival at x = 0. We
want to check that the rule of thumb formulated in Section 4.3 applies. To do so,
we use a trick: we consider a steady situation with continuous release and removal
rather than following an individual particle (the point being that in this manner
we let the equation take care of the statistics; this works since we are satisfied
with the average, the expected, time and do not aim to derive the full probability
distribution).

Exercise 4.6.1. Why should we supplement the steady state equation

d
∂2u

∂x2
= 0

with the boundary conditions

u(L) = u0 and u(0) = 0.

Compute the steady particle density, i.e., find a function u that satisfies the equation
as well as the boundary conditions. Express the influx Jin, i.e., the number of
particles that enter at x = L per unit of time, in terms of u0, d and L. Next,
compute the total number N of particles that are present.
How are Jin and N related (recall Section 4.2)? Compute the average sojourn time.
Check in particular that it does not depend on u0 (did you already anticipate this?)
and that it confirms nicely to the rule of thumb.

The efficiency of diffusion as a transport mechanism depends not only on size
but also on shape, in particular on the dimension (1, 2 or 3) of the domain. We
now want to demonstrate that it has advantages for a cell to arrange the chemical
“factories” along a two-dimensional membrane (incidentally, recent findings indicate
that a cell is partly an assembly-belt and that the traditional picture of a freely
floating 3D chemical soup is fundamentally flawed). In this connection it is also
good to realise that diffusion can only “work” if there is an excess of particles, as
any one of them may go the wrong direction and/or take ages before reaching the
target (if at all).

Exercise 4.6.2. Consider a radially symmetric two-dimensional setting. Show
that the conservation equation takes the form

r
∂u

∂t
= − ∂

∂r
(rJ),

that Fick’s law amounts to

J = −d
∂u

∂r
,
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and that accordingly the diffusion equation reads

∂u

∂t
=

1

r

∂

∂r

(
dr
∂u

∂r

)
.

Next show that in three dimensions one obtains

∂u

∂t
=

1

r2
∂

∂r

(
dr2

∂u

∂r

)
.

For both these exercises, a hint: see Figure 4.4.
Now suppose the particle density is held at u0 > 0 on a circle/ball of radius L

and at zero at a circle/ball of radius a < L. Derive that the average sojourn time
is given by, respectively

1

2d

{
L2

(
log

L

a
− 1

2

)
+

1

2
a2
}
,

and
1

ad

{
1

3
L3 − a

2
L2 +

1

6
a3
}
.

Reflect on the difference for large L.

As a final note along this theme, let us consider phytoplankton cells drifing in
an ocean of depth L, undergoing random motion due to turbulent eddy diffusivity
in the ocean’s mixed layer, and about to be devoured by clams waiting at the ocean
floor. How long does a phytoplankton cell drift on average? Does it drift long
enough to able to grow, absorp light and take up nutrients, and divide? Gravity
is less of a problem than random motion by turbulent eddy diffusivity. The key
observation: let T (x) be the expected time till absorption (i.e., until it is eaten by
the big monster at the boundary). Then

T (x) = t+

∫ ∞

−∞
Φ(t, ξ − x)T (ξ)dξ + small correction

for t small and x not very near to the boundary [This requires some additional
explanation]. Differentiate with respect to t, and use that Φ satisfies the diffusion
equation to find

0 = 1 + d

∫ ∞

−∞

(
Φ(t, ξ − x)

)

xx
T (ξ)dξ + · · ·
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Integrate by parts twice and let t → 0 to find

0 = 1 + T ′′(x).

The boundary condition are T (0) = 0 (the monster!) and T ′(L) = 0 (no flux,
reflecting). Then the explicit solution is given by

T (x) = −1

2

x2

d
+

L

d
x =

x

d

(
L− x

2

)
. < /0,

T reaches its maximum L2/2d at x = L, and for x = L/2 we have T = 3L2

8d . The
vertical eddy diffusivity in the ocean’s mixed layer is approximately 10−4 m2s−1,
so if the ocean is about 10 meters deep, it takes about 4 days to reach the bottom
and be devoured by the clams.

4.7 A remark on boundary conditions

The idea behind the boundary condition u(L) = u0 in Exercise 4.6.1 is that
to the right of x = L there is a reservoir of particles which is held at a constant
density. Alternatively, we might imagine a pumping device that somehow manages
to generate a constant influx. In that case we should put as boundary conditions

d
∂u

∂x
(L) = prescribed influx ∼ number

time

(note that, as we saw in Section 4.2, Derivation 1, the flux equals −d∂u
∂x if our

orientation is from left to right; but the domain is to the left of x = L, i.e., the
inward normal points to the left). One can redo Exercise 4.6.1 with the alternative
boundary condition and arrive, of course, at the same answer.

If we model animals that can move freely in some domain Ω, but cannot (for
whatever reason) leave Ω, we should put no-flux boundary conditions

∂u

∂n

∣∣∣
∂Ω

= 0.

These are also called (zero-)Neumann conditions and we omitted, as usual, the
factor d since when we put zero at the right-hand side it has no influence (but be
aware of this factor when the flux isn’t required to reduce to zero!). ∂Ω is called a
reflecting boundary.

If u is the density of plants and the diffusion term is used to describe the
dispersal of seeds, it may be that the complement of Ω is simply unsuitable habitat
in which no plant can grow. We may then impose (zero-)Dirichlet conditions

u
∣∣∣
∂Ω

= 0,

but should realise that such a form of heterogeneity of the world as a whole has
a strong impact on pattern formation (we shall return to this point in the next
chapter).

Mixed boundary conditions
[
−(1− θ)d

∂u

∂n
+ θu

]

∂Ω

= 0

are, from a mathematical point of view, a one-parameter family that forms a
homotopy between no-flux and zero-Dirichlet and describe, from a biological point
of view, a partially reflecting boundary to a completely hostile exterior. Their
relevance in a biological modelling context is not clear at all.

In some diffusion problems arising in population genetics, the spatial variable
x is actually a fraction of the population carrying a certain allele. In such problems
d depends on x and declines to zero when x approaches the boundary points x = 0
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and x = 1. The classification of the mechanistic effect of the boundary is far more
subtle in such a situation, see (Feller, 1952, 1954, 1955).

Boundary conditions should be chosen on the basis of modelling considerations,
even though this is far less straightforward than one is tempted to believe. Much
mathematical work on biology inspired equations is wasted for the simple reason
that boundary conditions, in particular zero-Dirichlet conditions, are chosen out of
habit and without a critical reflection on their meaning and effect.
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