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Abstract. In many biological systems, movement of an organism occurs in response to a
diffusible or otherwise transported signal, and in its simplest form this can be modeled by diffusion
equations with advection terms of the form first derived by Patlak [Bull. of Math. Biophys., 15
(1953), pp. 311–338]. However, other systems are more accurately modeled by random walkers that
deposit a nondiffusible signal that modifies the local environment for succeeding passages. In these
systems, one example of which is the myxobacteria, the question arises as to whether aggregation
is possible under suitable hypotheses on the transition rules and the production of a control species
that modulates the transition rates. Davis [Probab. Theory Related Fields, 84 (1990), pp. 203–229]
has studied this question for a certain class of random walks, and here we extend this analysis to the
continuum limit of such walks. We first derive several general classes of partial differential equations
that depend on how the movement rules are affected by the local modulator concentration. We then
show that a variety of dynamics is possible, which we classify as aggregation, blowup, or collapse,
depending on whether the dynamics admit stable bounded peaks, whether solutions blow up in finite
time, or whether a suitable spatial norm of the density function is asymptotically less than its initial
value.
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1. Introduction.

1.1. Biological background. A characteristic feature of living systems is that
they sense the environment in which they reside and respond to it. The response
frequently involves movement toward or away from an external stimulus, and such a
response is called a taxis, which stems from the Greek taxis, meaning to arrange. Taxis
results when individuals change their pattern of movement, or kinesis, in response to
the stimulus. It may be characterized as positive or negative, depending on whether
it is toward or away from the external stimulus that affects the pattern of movement.
Many different types of taxis are known, including aerotaxis, chemotaxis, geotaxis,
haptotaxis, and others. The purposes of taxis range from movement toward food and
avoidance of noxious substances to large-scale aggregation for the purpose of survival.
The latter serves as a model for morphogenetic movements in general.

Any taxis involves two major components: (i) an external signal and (ii) the
response of the organism to this signal. The response in turn involves two major
steps: (i) detection of the signal and (ii) transduction of the external signal into an
internal signal that controls the pattern of movement. At the individual level, one
can distinguish between cases in which individuals change their direction of motion
in response to the stimulus and cases in which they change the frequency of turning or
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the length of the “run” between reorientations. Both of these behavioral patterns can
produce taxis at the population level. Another important aspect of taxis is whether
or not the individual merely detects the signal or alters it as well, for example, by
amplifying it so as to relay the signal. When there is no significant alteration, the
individual simply responds to the spatiotemporal distribution of the signal. However,
when the individual produces or degrades the signal, there is coupling between the
local density of individuals and the intensity of the signal. This occurs, for example,
when individuals aggregate in response to a signal from “organizers” and relay the
signal as well.

In the majority of the theoretical analyses of taxis the signal is transported by
diffusion, convection, or by some other means. However, there are instances in which
the “walker” seems to modify the environment in a strictly local manner and there is
little or no transport of the modifying substance. Examples include the myxobacteria,
which produce slime over which their cohorts can move more readily, and ants, which
follow trails left by predecessors. In either case, the question arises as to whether
aggregation is possible with such strictly local modification or whether some form of
longer range communication is necessary. Since we were first motivated to address
this question by experiments on the myxobacteria, we shall describe their behavior in
more detail and discuss some previous results on a stochastic automaton model for
their motion that is based on a reinforced random walk.

1.2. An automaton model for the motion of myxobacteria. The myxo-
bacteria are ubiquitous soil bacteria that glide on suitable surfaces or at air-water
interfaces. Under starvation conditions they tend to glide close to one another. Dur-
ing gliding they form different patterns and finally aggregate to build so-called fruit-
ing bodies. Inside these fruiting bodies they survive as dormant myxospores. The
mechanisms by which myxobacteria glide on the substrate and aggregate are still not
understood, and thus theoretical analysis of different mechanisms is useful. In this
paper we focus on the trail-following behavior.

During gliding the myxobacteria produce so-called slime trails on which they
prefer to glide. When a myxobacterium glides on bare substrate and encounters
another slime trail at a relatively shallow angle, it will typically glide onto it. Once
on the slime trail it increases its gliding velocity. In order to test the possible effects
on aggregation of the slime-trail-following, a stochastic cellular automaton model
was analyzed by Stevens [27], [28]. In this automaton, the bacteria are modeled as
elongated objects with a realistic length-to-width relationship. They can glide on
a square grid with periodic boundary conditions. In each time step new slime is
produced under the entire cell body of each bacterium, and they all glide to one of
their three nearest neighbors of their tip that is not occupied by their own cell body
(doubling back is not allowed). If there is no slime on these spots for a bacterium,
it will glide in the direction of its current orientation with a higher probability than
in other directions. If there is slime on at least one of the neighboring spots, the
probability to glide to one of them depends primarily on the slime density at these
spots. The exact rules for this automaton are given in [27] and [28]. This model is
a stochastic cellular automaton in the sense that there is a finite number of different
states at each of the grid points and noise is added to the transition probabilities of
the jump process. Although the jump process for a bacterium is not a Markov process,
one gets a Markov process by including the slime as one of the state variables.

The results of the simulations with this stochastic cellular automaton show that
the rules for slime-trail-following produce the observed preaggregation patterns but
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do not lead to a final stable aggregation. Thus a number of bacteria aggregate sim-
ply by slime-trail-following, but these aggregates subsequently break up. Because of
this effect, positive chemotaxis toward a diffusible substance was introduced into the
model. Biological evidence for the existence of chemotaxis during myxobacterial ag-
gregation is discussed by Dworkin and Kaiser [4]. In the model, after a fixed number
of bacteria have aggregated by slime trail following, the bacteria begin to produce
a diffusible chemical. The choice of directions is now supposed to depend on both
the slime and the density of the diffusing chemical at the neighboring sites, and the
effect of the chemoattractant is much stronger than the effect of the slime. With these
additional rules, the automaton produces stable aggregation centers. In view of these
results, we wanted to understand why slime-trail-following by itself does not account
for aggregation in the cellular automaton and to determine if there are models in
which it does.

Some insight in this problem can be gained from a result of Davis [3]. He con-
sidered a reinforced random walk for a single particle in one dimension. This random
walk is closely related to the one used in the stochastic cellular automaton model for
many bacteria in two dimensions. To describe his results, consider a nearest neighbor
random motion !X = X0, X1, ... on the integers. Initially there is a weight on each in-
terval (i, i+1), i ∈ Z, which is equal to 1. If at time n an interval has been crossed by
the particle exactly k times, its weight will be 1+

∑k
j=1 aj , where aj ≥ 0 , j = 1, ..., k.

If (X0, X1, ..., Xn) = (i0, i1, ..., in) are given, then the probability that Xn+1 is in − 1
or in + 1 is proportional to the weights at time n of the intervals (in − 1, in) and
(in, in + 1).

Davis’s main theorem asserts that localization of the particle will occur if the
weight on the intervals grows quickly enough with each crossing. To be more precise,
let !a = a1, a2, ... . Then if φ(!a) =

∑∞
n=1 (1 +

∑n
j=1 aj)

−1 = ∞ (e.g., aj = constant;
linear growth), then !X is recurrent almost surely, which means that all integers are
visited infinitely often, almost surely.

If φ(!a) < ∞ (e.g., aj = j; superlinear growth), then !X has finite range almost
surely and there are (random) integers N and m such that Xi ∈ {m,m + 1} if i > N .
Thus the particle oscillates between two random integers almost surely after some
random elapsed time.

Since the result deals with a single particle, it does not directly address the ag-
gregation issue, but it does at least suggest that if the particles interact only through
the modification of the transition probability, there may be aggregation if this modi-
fication is strong enough.

The rules which were used in the stochastic cellular automaton model of bacterial
trail-following are quite similar to the rules described above. One difference is that
the slime is not deposited on the interval a bacterium has crossed but rather at the
point where it is located. This makes a difference, as will be shown in the following
simulations and in the continuum approximation of the jump process.

In order to make a direct comparison with Davis’s result, a simplified stochastic
cellular automaton is considered. Starting with a nearest neighbor random walk on
the integers, one puts an initial weight equal to 1 on each integer (not on the intervals).
If at time n an integer has been visited exactly k times, its weight will be 1+

∑k
j=1 aj ,

with aj ≥ 0 , j = 1, ..., k. In the following, Davis’s reinforced random walk and this
random walk are simulated for a single particle in two space dimensions. In contrast
to the assumptions in [3], an upper bound for the slime on each integer is prescribed
in both simulations.
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FIG. 1. Simulation of a random walk of one particle (black) in two dimensions on a periodic
50 × 50 grid, using Davis’s movement rules and linear growth of the slime (aj = 0.2, j = 1, 2, . . . ).
Gridpoints that have been visited at least once by a particle are marked by small gray squares. The
figure shows the result after 3000 jumps, starting from the center point.

The simulations of the two-dimensional jump process based on Davis’s rules show
that the particle ultimately oscillates between two points if the growth of the slime
is exponential in the number of crossings. If the growth is linear with a small growth
rate, the particle does not stay in a fixed finite region (cf. Figure 1). In these two
cases, the results of the simulations agree qualitatively with the theoretical result,
which is only proven for a one-dimensional system. If the growth is linear but the
growth rate is too large, the results of the simulation are no longer comparable to the
theoretical prediction, even in the one-dimensional case, because this approaches the
borderline case between recurrence of the random walk and oscillation of the particle.
The time for the particle to leave a fixed finite region grows as the growth rate of the
slime increases.

If the two-dimensional simulations are done using the simplified stochastic cellu-
lar automaton rules instead of Davis’s rules, one finds that the localization effect is
stronger (cf. Figure 2).

Next these rules are used for many particles on a fixed two-dimensional grid with
periodic boundary conditions. Initially, 1000 particles are randomly seeded on the
30 × 30 central square of the original grid. Each particle lays down slime in every
time step, and the slime grows exponentially. Again the aim is to compare the results
using Davis’s rules with those from the simplified stochastic cellular automaton. The
results are shown in Figures 3 and 4. Using Davis’s rules one finds that after a short
time each particle oscillates between two lattice sites, but only about three or four are
concentrated at any pair of sites. If we use the same initial conditions in the simplified
stochastic automaton, we find that particles also oscillate between two neighboring
points of the grid after a short time, but now the local aggregates are larger. On
average about 12 particles oscillate between the same two points, and of course fewer
points are occupied by the particles (cf. Figures 3 and 4). Therefore there are rules for
the simplified stochastic cellular automaton that do not involve long-range signaling
and under which aggregation of many particles by slime-trail-following occurs. In
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FIG. 2. Simulation of a random walk of one particle in two dimensions on a periodic 50 × 50
grid, using the rules of the simplified cellular automaton model and linear growth of the slime
(aj = 0.2, j = 1, 2, . . . ). The figure shows the sites visited after 3000 jumps. Clearly the particle
visits fewer sites as compared with Figure 1, which implies that these rules tend to produce stronger
localization.

FIG. 3. This figure shows the discrete density distribution for 1000 bacteria after 1000 jumps,
using Davis’s movement rules with a1 = 1 and aj = 1 + 1 +

∑j−1
k=1 ak. The bacteria are interacting

only via the slime trails. The density of bacteria is coded as follows: black for one bacterium at a
grid point, dark gray for two to four bacteria, gray for five and six bacteria, and light gray for seven
and more bacteria located at the same grid point. All grid points that have been visited by at least
one bacterium are marked by smaller gray squares. All particles are quickly trapped in the sense
that they soon oscillate between two points.

the automaton the bacteria sense the slime on the nearest neighbors, whereas in
Davis’s case they sense the slime only at a distance of a half-step. This suggests that
aggregation, as opposed to mere localization, requires longer-range sensing than what
is suggested by Davis’s one particle result.

However, when these rules of slime production are tested in the full stochastic
cellular automaton, one finds that even this does not account for stable aggregation



AGGREGATION, BLOWUP, AND COLLAPSE 1049

FIG. 4. The density distribution using the rules for the simplified stochastic cellular automaton
for 1000 bacteria after 1000 time-steps with a1 = 1 and aj = 1 + 1 +

∑j−1
k=1 ak. The localization

of the particles is stronger than in Figure 3, since more particles are trapped in most of the small
areas than before.

centers. The reasons for this must lie in additional factors suggested by the exper-
iments, such as (i) the persistence in the movement of the bacteria or (ii) contacts
between bacteria, which forces nearest neighbors to alter their gliding velocity.

1.3. Background on continuum descriptions of motion. In this paper we
will analyze continuous approximations of the various jump processes with a view
toward determining whether stable aggregation or blowup is possible without long-
range signaling. To understand where our analysis fits into different approaches to
modeling movement, let us first restrict attention to noninteracting particles. If the
forces are deterministic and individuals are regarded as point masses, their motion can
always be described by Newton’s laws, and this leads to a classification of movement
according to the properties of the forces involved. (Although the particles are regarded
as structureless, we admit the possibility that they can exert forces.) First, if the forces
are smooth bounded functions, the governing equations are smooth and the paths are
smooth functions of time. In a phase space description in which the fundamental
variables are position and velocity, Newton’s equations are

dx
dt

= v,(1)

m
dv
dt

= F.(2)

If we assume that the forces are independent of the velocity, then these are just the
characteristic equations for the hyperbolic equation

∂ρ

∂t
+ v · ∇xρ +

F
m

· ∇vρ = 0.(3)

Here ρ is the density of individuals, defined so that ρ(x,v, t)dxdv is the number of
individuals with position and velocity in the phase volume (dxdv) centered at (x,v).
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If we define the number density n and the average velocity u by

n(x, t) =
∫

ρ(x,v, t)dv,(4)

n(x, t)u(x, t) =
∫

ρ(x,v, t)vdv,(5)

then the evolution of these average quantities is governed by

∂n

∂t
+ ∇x · (nu) = 0.(6)

If we admit impulsive (i.e., distributional) forces, then we arrive at the second
major type of movement, which is called a velocity jump process in [22]. In this case
the motion consists of a sequence of “runs” separated by reorientations, during which
a new velocity is chosen instantaneously. If we assume that the velocity changes are
the result of a Poisson process of intensity λ, then in the absence of other forces we
obtain the evolution equation

∂ρ

∂t
+ ∇x · vρ = −λρ + λ

∫
T (v,v′)ρ(x,v′, t) dv′.(7)

For most purposes one does not need the distribution ρ but only its first few velocity
moments. If we integrate this over v, we again obtain (6). Similarly, multiplying (7)
by v and integrating over v give

∂(nu)
∂t

+ ∇ ·
∫

ρvv dv = −λnu + λ

∫
T (v,v′)vρ(x,v′, t) dv′ dv.(8)

This is an adequate description for the movement of many organisms, and examples
of its application are given in [22].

The final description of motion, which in a sense is the roughest, is the familiar
random walk, in which there are instantaneous changes in position at random times.
These are called space-jump processes in [22], where it is shown that the probability
density for such a process satisfies the integral equation

P (x, t|0) = Φ̂(t)δ(x) +
∫ t

0

∫

Rn

φ(t − τ)T (x,y)P (y, τ |0) dy dτ.(9)

Here P (x, t|0) is the conditional probability that a walker who begins at the origin
at time zero is at x at time t, φ(t) is the density for the waiting time distribution,
Φ̂(t) is the complementary cumulative distribution function associated with φ(t), and
T (x,y) is the redistribution kernel for the jump process.

If the initial distribution is given by F (x), then

n(x, t) ≡
∫

Rn

P (x, t|x0)F (x0) dx0

can be regarded as the number density of identical noninteracting walkers at x at
time t. Clearly n(x, t) satisfies

n(x, t) = Φ̂(t)F (x) +
∫ t

0

∫

Rn

φ(t − τ)T (x,y)n(y, τ) dy dτ.(10)
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If the support of the kernel T (x,y) is a lattice and the waiting time distribution
is exponential, as in a Poisson process, then it is easy to see that (9) reduces to

∂P

∂t
(xi, t|0) = −λP (xi, t|0) + λ

∑

j

TijP (xj , t|0).(11)

Here λ is the parameter of the exponential distribution, and the sum is over the
support of T . This is just a master equation for a continuous-time, discrete-space
random walk. A generalization of it that incorporates state-dependent transition
rates serves as the starting point for the derivations given in the following section.

An alternate approach in which the changes of position or velocity are not gen-
erated by a jump process postulates the presence of small fluctuating components of
velocity and/or position. This leads to the familiar stochastic differential equations

dx = vdt + dX ,(12)

mdv = Fdt + dV,

where X and V are random displacements and velocities, respectively. This approach
leads to a Fokker–Planck equation under suitable conditions on the fluctuating forces
[12].

The situation is more complicated when particle interactions are taken into ac-
count (cf. [26], [20]). Thus, for instance, in the case of myxobacteria, a bacterium
gliding on a slime trail reacts to its own contribution to this trail and to the contribu-
tions of the other bacteria. In [28] a rigorous derivation of density equations for the
reaction of myxobacteria to a chemical which they produce is given. The reinforced
random walk of one particle as used in the simplified cellular automaton is related
to a Fokker–Planck equation that will be derived in the following sections. In [28]
the stochastic equation, equivalent to this Fokker–Planck equation, was set up for
the position of a bacterium and the chemical species was described by a diffusion
process. Under certain regularity assumptions it was shown that the equation for the
dynamics of the bacterial density corresponds to the probability density equation for
the dynamics of a single bacterium if the self-interactions of the bacteria and their
interaction with the chemical is moderate. This means that in the limit as the popu-
lation size tends to infinity, the primary range of interaction for each bacterium must
shrink to zero, but the number of other bacteria and chemical molecules within this
range of interaction must tend to infinity.

To date, a similar derivation of density equations for a strictly local interaction
of the particles instead of a moderate one has not been done. In [28] it was necessary
to assume diffusion for the chemical, but the difficulty in repeating such a derivation
of the density equations for myxobacteria reacting towards slime trails (which means
a nondiffusing “chemical substance”) is probably only a technical one. In this paper
the particle motion is governed by a jump process, and our results can be rigorously
interpreted only as equations for the probability density of a single particle or via
the equivalent stochastic equation as a density equation when moderate interaction
is taken into account.

With this in mind, we derive continuum descriptions that correspond to various
rules for the motion of a particle on a one-dimensional lattice, beginning with a master
equation for a continuous-time, discrete-space process. This leads to equations of the
form

∂p

∂t
=

∂

∂x

(
D

∂p

∂x
− pχ(w)

∂w

∂x

)
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for the evolution of the probability density p. In addition there will be an evolution
equation for the control or modulator substance w, but this does not diffuse. One
of our objectives is to understand how the microscopic model for the response of an
individual to the signal translates into the chemotactic sensitivity χ that appears in
this equation. As we shall see, we are able to derive all the commonly used forms of
the chemotactic sensitivity function from plausible assumptions about the microscopic
models for the individuals’ response. We analyze various combinations for the form
of the taxis functional and the local dynamics, and we give examples of aggregation,
blowup, and collapse.

In section 2 we derive the equations for the probability density, and in section
3 we discuss various forms of the local dynamics used in the simulations reported
in section 4. For certain choices of the chemotactic response function and the local
dynamics, the simulations suggest that the solutions blow up in finite time. In section
5 we analyze the effects of saturation in the response functional on the dynamics and
show computationally that aggregation and collapse can exist for suitable choices of
the functional.

2. The dynamics of movement. As we remarked in the introduction, we begin
with a master equation for a continuous-time, discrete-space random walk. At the
outset we consider only random walks on one-dimensional lattices, but the derivations
extend to higher dimensions without change and we usually simply state the general
result in each case. We postulate a generalized form of (11) in which the transition
rates depend on the density of a control or modulator species that modulates the
transition rates. We restrict attention to one-step jumps, although it is easy, using
the framework given in the introduction, to generalize this (cf. [1]). However, one
usually does not obtain diffusion equations in the continuum limit.

Suppose that the conditional probability pn(t) that a walker is at n ∈ Z at time
t, conditioned on the fact that it begins at n = 0 at t = 0 and evolves according to
the continuous-time master equation

∂pn

∂t
= T̂ +

n−1(W ) pn−1 + T̂ −
n+1(W ) pn+1 − (T̂ +

n (W ) + T̂ −
n (W )) pn.(13)

Here T̂ ±
n (·) are the transition probabilities per unit time for a one-step jump to n±1,

and (T̂ +
n (W ) + T̂ −

n (W ))−1 is the mean waiting time at the nth site. We assume
throughout that these are nonnegative and suitably smooth functions of their argu-
ments. The vector W is given by

W = (. . . , w−n−1/2, w−n, w−n+1/2, . . . , wo, w1/2, . . . ).(14)

Note that the density of the control species w is defined on the embedded lattice of
half the step size. The evolution of w will be considered in section 3; for now we
simply assume that the distribution of w is given. Clearly a time- and p-independent
spatial distribution of w can model spatial variation in the transition rates, but this
case is not treated here.

As (13) is written, the transition probabilities can depend on the entire state and
on the entire distribution of the control species. Since there is no explicit dependence
on the previous state the process appears to be formally Markovian. However, if
the evolution of wn depends on pn, as in section 3, then there is an implicit history
dependence, and the space-jump process by itself is not Markovian. However, if one
enlarges the state space by appending the slime concentration w, one gets a Markov
process in this new state space.
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To model movement in a finite domain we consider a finite segment (−N,N) of
the lattice and extend w and p as even functions about −N and N . Under suitable
conditions on T̂ this ensures that the net flux across the boundary is zero in the con-
tinuum limit of the one-dimensional problem, and as a result, the mass is conserved.
For a general domain we later simply assume that the flux vanishes on the boundary.

There are three distinct types of models, which differ in the dependence of the
transition rates on w, that we consider here: (i) strictly local models, (ii) barrier
models, and (iii) gradient models. These are treated in the following subsections.

2.1. Transition rates based on local information. In the first scheme we
assume that the mean waiting time at site n depends only on the density of the control
species at that site. Since the transition probabilities are independent of the lattice
site and depend only on the local densities, there is no source of spatial bias in the
walk, so T̂ ±

n are equal and we denote them by T̂ (wn). As a result (13) becomes

∂pn

∂t
= T̂ (wn−1) pn−1 + T̂ (wn+1) pn+1 − 2T̂ (wn) pn.(15)

We consider a grid of mesh size h, set x = nh, and expand the right-hand side as a
function of x to second order in h and obtain

∂p

∂t
= h2 ∂2

∂x2

(
T̂ (w) p

)
+ O(h4).(16)

We assume that there is a scaling of the discrete transition rates such that T̂ (w) =
λT (w) and such that the limit

lim
h→0

λ→∞

λh2 = D

exists. Here λ has dimension t−1 and T (w) is now a dimensionless function. The
diffusion limit of (15) is

∂p

∂t
= D

∂2

∂x2 (T (w) p),(17)

and in higher space dimensions the analogue of (17) is

∂p

∂t
= D∆(T (w) p)(18)

for x ∈ Ω, provided that the medium is homogeneous and isotropic. Here and hereafter
we regard the diffusion limit as formal since we do not obtain the a priori bounds on
higher derivatives needed to validate this limiting procedure. In particular, as we shall
see later, there are solutions of the continuum equations for which this limit probably
is not valid.

The evolution of p according to (18) is subject to initial and boundary conditions,
and p should be nonnegative. If Ω is a bounded domain, then we suppose that the
boundary is smooth and we suppose that the flux vanishes on the boundary. As a
result, the solution of (18) must also satisfy the conservation condition

∫

Ω
p(x, t)dx =

∫

Ω
p(x, 0)dx ≡ P0(19)
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for any bounded or unbounded one-, two-, or three-dimensional domain Ω. If Ω is
infinite, we assume that the initial data has finite mass. Similar remarks apply to all
the continuum equations derived in the remainder of this section.

The conservation law (18) can be written in the form

∂p

∂t
+ ∇ · j = 0,(20)

where the particle flux for this process is

j = −D∇(T (w) p).(21)

This can be written in the alternate form

j = −DT (w)∇p − DpT ′(w)∇w,(22)

and to conform with the conventional notation [25] we can write this as

j = −DT (w)∇p + pχ(w)∇w,(23)

where χ(w) ≡ −DT ′(w) is called the chemotactic sensitivity. If T ′(w) (= 0, the flux
contains both a diffusional component with coefficient DT (w) and a component due to
taxis. When T ′(w) < 0, the tactic component of the flux is in the direction of ∇w and
the taxis is positive. For the simple linear response given by T (w) = α+βw with α and
β nonnegative, the diffusion coefficient is D(α + βw) and the chemotactic sensitivity
is simply −Dβ. Of course it may be more realistic to suppose that the response to
w saturates at large w, and this can be described by T (w) = α + βw/(γ + w), where
γ ≥ 0. In this case the chemotactic sensitivity is χ(w) = −Dβγ/(γ + w)2. In either
case the taxis is negative when β > 0, which reflects the fact that the mean waiting
time at a site is a decreasing function of w, and thus particles tend to accumulate
where w is small. If β < 0, the taxis is positive, but then the linear response is only
meaningful for w < α/β.

The average particle velocity, as defined by j = pu, is given by

u = −DT (w)
∇p

p
− DT ′(w)∇w.(24)

This should be compared with the average velocity for a pure diffusion process (T ≡ 1
in (21)), namely,

u = −D
∇p

p
.(25)

Consideration of the average particle velocity provides an alternate way to view posi-
tive and negative taxis: a taxis is positive when the component of the average velocity
due to taxis (the taxis velocity for short) is in the direction of ∇w and negative oth-
erwise.

When there is a nonzero taxis component in the motion, it can balance the dif-
fusional component and lead to a nonconstant steady state of (18). At a steady
state, T (w)p is harmonic, and if Ω is a bounded domain with homogeneous Neumann
conditions on the boundary, then the steady-state solution of (18) is

p(x) =
P0

T (w)(x)

(∫

Ω

dΩ
T (w)(x)

)−1

.(26)
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In particular, if w(x) is a specified nonconstant function, then the steady-state distri-
bution of p is also nonconstant and the maxima of p coincide with the minima of T (w).
If such a solution is stable, it represents an aggregation or a collapse, depending on
the initial data of the time dependent problem. More precisely, we define aggregation,
blowup, and collapse as follows.

DEFINITION 2.1. Let p(x, t) be the solution of an evolution equation such as (18)
for a given initial distribution p(·, 0). Then

• if lim inft→∞ ‖p(., t)‖L∞ > ‖p(., 0)‖L∞ and ‖p(., t)‖L∞ < constant for all t,
we call this an aggregation,

• if ‖p(., t)‖L∞ becomes unbounded in finite time, then we say that there is
blowup,

• if lim supt→∞ ‖p(., t)‖L∞ < ‖p(., 0)‖L∞ we say that there is collapse.1
Clearly the definition does not preclude the possibility that all three cases may

occur for the same equation, depending on the choice of initial data. Examples of
these possibilities will be given later.

2.2. Barrier and nearest-neighbor models. In a barrier model we suppose
that the w-dependence of the transition rate at site n is localized at n±1/2. One may
think of an interpenetrating set of barriers between the primary lattice sites whose
ease of passage is governed by the density of w at that site. In these models the
w-dependence gives rise to a bias in the transition rates at a point (i.e., the rates
are not isotropic), and we should expect the resulting equation to contain terms that
are not invariant under the transformation x → −x. Two cases arise, depending on
whether or not the transition rates are renormalized so that the mean waiting time
at a site is constant.

When the transition rates depend only on the barrier to be crossed, a case which
has been treated by others (see, e.g., [6], [21]), we write

T̂ ±
n (W ) = T̂ (wn±1/2).(27)

Using the same scaling as before we find that p evolves according to the equation

∂p

∂t
= D

∂

∂x

(
T (w)

∂p

∂x

)
(28)

in one space dimension, where D is as previously given. The invariant form for any
number of space dimensions is

∂p

∂t
= D∇ · (T (w)∇p).(29)

The average particle velocity is

u = −DT (w)
∇p

p
,(30)

and thus this process contains only a diffusional component; there is no directed
motion and hence no taxis. In addition, if T (w) > 0 it is easy to show that there are
no nonconstant steady-state solutions; simply observe that T defines a new metric for
Ω under which the steady-state version of (29) is Laplace’s equation.

1The term collapse is sometimes used to denote what is called blowup here. Our terminology is
consistent with that used for similar phenomena in other equations.
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Lapidus [13] has studied the time evolution of solutions to equations of the form
(29) for various initial data and has found that there may be transient “aggregation.”
However, this does not persist, as we would predict from the steady-state analysis.
He calls this phenomenon “pseudochemotaxis.” Both of the preceding cases are also
discussed by Patlak [23], who gives references to earlier work.

The form of the transition rates given by (27) imposes no restriction on the
transition rates at a site; they may take any value in R+, and there is no correlation
between the transition rates to the right and left. However, we may also suppose that
the decision when to jump is made independently of the decision where to jump, as
in (9). If the mean waiting time at a site does not depend on w (or x), then it is
constant across the lattice and the transition rates must be renormalized to reflect
this. Thus

T̂ +
n (W ) + T̂ −

n (W ) = constant,(31)

and without loss of generality we may suppose that the constant is equal to 2λ. To
achieve this we can define2

T̂ ±
n (W ) = 2λ

T (wn±1/2)
T (wn+1/2) + T (wn−1/2)

≡ 2λN ±
n (W ).(32)

When T (w) = w, this is the form used in the result due to Davis discussed earlier.
Clearly this renormalization is uninteresting in the case in which the transition rates
depend only on information at the site, for then (32) implies that N ±

n (w) = 1/2. This
is to be expected from the symmetry that exists in this case.

This renormalization introduces longer-range dependence of the transition rates
on the control species, for now

N ∓
n±1(wn±1/2, wn±3/2) =

T (wn±1/2)
T (wn±3/2) + T (wn±1/2)

,(33)

and the master equation (13) reads

1
2λ

∂pn

∂t
= N+(wn−1/2, wn−3/2) pn−1 + N −(wn+1/2, wn+3/2) pn+1

(34)
−

(
N+(wn+1/2, wn−1/2) + N −(wn−1/2, wn+1/2)

)
pn.

Here and hereafter we suppress the lattice index on N ±
n (·, ·) because the underlying

lattice is homogeneous. To obtain a diffusion equation from (34) we use the fact that
N+(u, v) = 1 − N −(v, u) and define N ≡ N+. Then

∂p

∂t
= D

∂

∂x

(
∂p

∂x
− 2p (N1 − N2)

∂w

∂x

)
,(35)

where D = lim h→0
λ→∞

λh2, Nk ≡ ∂kN (·, ·), and ∂k denotes a derivative with respect to
the kth argument for k = 1, 2, evaluated at (wn, wn). It follows from (32) and (33)
that

N1 =
1
4

(lnT (w))′

2This is not just a rescaling in time but a new jump process.
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and that N2 = −N1. Therefore (35) can be written in the alternate forms

∂p

∂t
= D

∂

∂x

(
∂p

∂x
− p

∂

∂x
lnT (w)

)
(36)

= D
∂

∂x

(
p

∂

∂x

(
ln

p

T (w)

))
.(37)

The chemotactic sensitivity is

χ(w) = 2D (N1 − N2) = D (lnT (w))′ ,(38)

and the average velocity is

u = −D
∂

∂x
ln p + D (lnT (w))′ ∂w

∂x
.(39)

Thus the taxis is positive if T ′(w) > 0.
If we suppose that the transition rate is given by T (w) = α + βw, with β > 0,

then one finds that

N1 =
1
4

(
β

α + βw

)

and therefore
∂p

∂t
= D

∂

∂x

(
∂p

∂x
− p

β

α + βw

∂w

∂x

)
(40)

= D
∂

∂x

(
p

∂

∂x

(
ln

p

α + βw

))
.(41)

We shall use this functional form of T (w) as a prototype for renormalized transition
rates in section 4. Davis’s result discussed earlier corresponds to the choice α = 0,
β = 1.

In two space dimensions we use a square grid, and analogous to (32), we define
the renormalized transition probabilities as

T̂ (u, v, y, z) = 4λ
T (u)

T (u) + T (v) + T (y) + T (z)
≡ 4λN (u, v, y, z).

The resulting master equation is the two-dimensional analog of (34). To simplify
the notation we let Nk = ∂kN (·, ·, ·, ·), k = 1, 2, where the derivatives are evaluated
at (wn,m, wn,m, wn,m, wn,m). Then we find that the diffusion limit of this master
equation leads to the evolution equation

∂p

∂t
= D∇ · (∇p − 4p (N1 − N2) ∇w) ,(42)

where D = lim h→0
λ→∞

λh2. One also finds that

4 (N1 − N2) = (lnT (w))′ ,

and therefore (42) can be written

∂p

∂t
= D∇ ·

(
∇p − p (lnT (w))′ ∇w

)
(43)

= D∇ ·
(

p∇
(

ln
p

T (w)

))
,(44)
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which has the same form as the corresponding equation (37) for one space dimension.
Clearly the renormalization of a barrier model has a very significant effect: it

introduces a taxis when compared to a barrier model without renormalization, and
the chemotactic sensitivity is quite different from that for strictly local sensing. Here
χ(w) = D(lnT (w))′ and the taxis is positive if T ′(w) > 0.

For the original and the simplified stochastic cellular automaton one deals with a
renormalized nearest-neighbor model. A generalized description of the random walk
simulated in Figure 1 yields the following transition rates:

N±
n (W ) =

T (wn±1)
T (wn+1) + T (wn−1)

.(45)

The diffusion limit in this case is

∂p

∂t
= D

∂

∂x

(
∂p

∂x
− 2p(lnT (w))′ ∂w

∂x

)
,(46)

and therefore the chemotactic sensitivity is 2D(lnT (w))′. In the original and simplified
stochastic cellular automaton we used T (w) = w, so the chemotactic sensitivity is
2D/w, which is twice that in Davis’s case. This may explain the differences between
the localization behavior of one particle and the aggregation of many particles shown
in Figures 1 and 2 and Figures 3 and 4, respectively. This result suggests that the
bacteria must have a certain perception range to be able to aggregate, but a single
particle will localize for a smaller perception range.

2.3. Gradient-based (nonlocal) models. If the “organism” probes the local
environment before making a decision as to how to move, then the transition rates may
depend on the difference between w at the current point and the nearest neighbor in
the direction of movement. For simplicity we treat only linear dependence on nearest-
neighbor differences, but the results can easily be generalized. Suppose that in one
space dimension

T̂ +
n−1(W ) = α + β(τ(wn) − τ(wn−1)),

T̂ −
n+1(W ) = α + β(τ(wn) − τ(wn+1)),(47)

where α ≥ 0. One easily shows that for this choice of the transition rates the invariant
form of the evolution equation is

∂p

∂t
= D (α∆p − 2β∇ · (pτ ′(w)∇w)) .(48)

Equation (48) can also be written in the form

∂p

∂t
= D∇ ·

[
p

(
α∇p

p
− 2βτ ′(w)∇w

)]
,(49)

and thus the average particle velocity is

u = D

[
−α∇p

p
+ 2βτ ′(w)∇w

]
(50)

and the chemotactic sensitivity is

χ(w) = 2Dβτ ′(w).(51)
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TABLE 1
Dependence of the response on the sensing mechanism.

Type of Taxis Chemotactic Type of
sensing velocity sensitivity taxis

Negative
1. Local −D∇T −DT ′(w)

if T ′(w) > 0
Barrier without

2.
renormalization

0 0 None

Barrier with Positive
3.

renormalization
D∇lnT D (lnT (w))′

if T ′(w) > 0
Nearest neighbor with Positive

4.
renormalization

2D∇lnT 2D (lnT (w))′
if T ′(w) > 0

Gradient without Positive
5.

renormalization
2Dβ∇τ 2Dβτ ′(w)

if βτ ′(w) > 0
Gradient with Positive

6.
renormalization

D β
α ∇τ D β

α τ ′(w)
if βτ ′(w) > 0

Thus the taxis is positive or negative according to whether βτ ′(w) is positive or neg-
ative. The diffusion component of the velocity vanishes if there is no basal transition
rate (α = 0).

If α > 0, the transition rates can be renormalized so that their sum is one point-
wise and (48) is replaced by

∂p

∂t
= D∇ ·

{
1
2
∇p − p

βτ ′(w)
α

∇w

}
.(52)

Other types of nonlocal schemes are possible. For instance, one may suppose that the
difference in τ(w) only provides the direction, and hence (47) should be divided by
the modulus of the difference. In another possible scheme the transition rate could
be determined only by w at the destination. We leave the derivation of the governing
equations for these cases to the reader.

For comparison purposes, we summarize the results of this section in Table 1.
To illustrate the differences between the mechanisms more concretely, let us sup-

pose that the control species binds to a receptor R and that the complex transduces
the external signal into an internal signal. Further, suppose that the response is pro-
portional to the fraction of receptors occupied. The binding reaction may be written

R + w
k1−→←−
k−1

[Rw] ,(53)

where [Rw] denotes the receptor-signal complex. If binding equilibrates rapidly on
the time scale of the evolution of p and w, then for the local sensing model and the
barrier model we may suppose that

T (w) = β
w

γ + w
,(54)

where β is a constant that incorporates the total number of receptors and γ ≡ k−1/k1.
For a gradient model we may set τ(w) equal to the ratio on the right-hand side of
(54). One then has

∇τ(w) =
βγ

(γ + w)2
∇w,(55)
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whereas for a barrier and a nearest-neighbor model with renormalization one has

∇lnT (w) =
γ

w(γ + w)
∇w.(56)

Thus the taxis velocities and sensitivities will have very different behaviors when
w << γ, depending on the type of model used.

3. The local dynamics for the control species. Davis’s results and the two-
dimensional simulations in Figures 1 and 2 suggest that the asymptotic behavior
of the probability density p for one particle, or analogously the density equation
interpreted as a limiting equation for moderately interacting bacteria, may depend
strongly on the dynamics of w. In particular the growth of w determines whether or
not blowup occurs. In the following section we consider several different combinations
of chemotactic sensitivities and production rates for w. In this section we summarize
the three types of dynamics considered for w. We scale the time and, where necessary,
w so as to make the leading coefficient equal to one.

(I) Linear growth:

dw

dt
= p − µw.(57)

Here we suppose that production of w is proportional to the local density of
p. Davis’s result for µ = 0 and equation (40) would suggest that this growth
is too slow to lead to blowup.

(II) Exponential growth:

dw

dt
= (p − µ)w.(58)

Here the control species grows exponentially, and Davis’s result for µ = 0 and
equation (40) would suggest that blowup may occur.

(III) Saturating growth:

dw

dt
=

pw

(1 + νw)
− µw + γr

p

1 + p
.(59)

Saturation in the production of the control species is certainly more realistic
in the biological context. In the above form the production can locally be
very large if ν is sufficiently small, but eventually it saturates. In addition,
there is a w-independent production. As we shall see, these factors produce
very interesting behavior in the p equation.

4. Analytical and numerical results on stability and asymptotic dy-
namics. In this section we obtain some analytical results on the local behavior of
solutions of the partial differential equations which result from the diffusion approx-
imation of the jump processes discussed earlier. We also numerically simulate these
equations. The main objectives are to determine whether or not aggregation, blowup,
or collapse occurs, how the asymptotic dynamics depend on the chemotactic sensi-
tivity, the production rate of the control species and the initial data, and how the
results compare with the simulations done for the associated jump processes with
one or many particles. From the standpoint of the application which motivated this
study, we want to determine the conditions under which myxobacteria may be able
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to aggregate solely as a result of following slime trails, i.e., in the absence of any
long-range communication via a diffusible substance.

Throughout this section we consider a barrier model with linear response function
and renormalized transition rates, and we first consider one space dimension. The
governing equation for the particle density is equation (40):

∂p

∂t
= D

∂

∂x

(
∂p

∂x
− p

β

α + βw

∂w

∂x

)
for x ∈ (0, 1)(60)

with boundary conditions

p
∂

∂x
ln

(
p

α + βw

)
= 0 for x = 0, 1(61)

and initial data p(x, 0) = p0(x). Until otherwise stated, β > 0, and when it is we
may set it equal to 1. The time scale and the constants on the right are rescaled as
necessary to reflect the scaling of the equations for the local dynamics.

In the following subsections we analyze the behavior of solutions of this equation
for the three types of local dynamics given in section 3. In each case one can establish
the existence of smooth solution for smooth initial data locally in time, and one can
show that (p(x, t), w(x, t)) ≥ (0, 0) if (p0(x), w0(x)) ≥ (0, 0) by a maximum principle
argument. We will not do this here but instead will focus on the asymptotic behavior
of solutions.

4.1. Type I local dynamics. If the local dynamics for w are given by (57)
and µ > 0, then the system comprising (60), (61), and (57) has the constant solution
(p, w) = (p0, p0/µ) for any p0 > 0. If µ = 0, then there is no time-independent
solution, but there is a space-independent solution (p, w) = (p0, w0 + p0t), provided
that p(x, 0) ≡ p0 and w(x, 0) ≡ w0. A translation of Davis’s result for linear growth
to the continuum context is that both constant solutions should be stable. However,
in the following proposition we prove that the former solution is asymptotically stable
and the latter is unstable.

PROPOSITION 4.1. If µ > 0 and α > 0, the constant solution (p, w) = (p0, p0/µ) of
(60), (61), and (57) is asymptotically stable. If µ = 0, the space-independent solution
(p0, w0 + p0t) is unstable for any α ≥ 0.

Proof. First suppose that µ > 0 and α > 0, and let

p(x, t) = p0 + ξ(x, t),
w(x, t) = w0 + η(x, t),(62)

where w0 ≡ p0/µ. Set Λ = βp0/(α + βw0); then the linearized evolution equations
are

∂ξ

∂t
= D

∂

∂x

(
∂ξ

∂x
− Λ

∂η

∂x

)
,(63)

dη

dt
= ξ − µη,(64)

with boundary conditions

∂ξ

∂x
− Λ

∂η

∂x
= 0.(65)
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A Fourier analysis of solutions of this system shows that all solutions tend to zero as
t → ∞ if and only if

µα > 0.

If µ = 0, then linearization around the space-independent solution leads to the system

∂ξ

∂t
= D

∂

∂x

(
∂ξ

∂x
− Λ(t)

∂η

∂x

)
,(66)

dη

dt
= ξ,(67)

where Λ is now time-dependent. We may solve the second equation and use the
solution to rewrite the first equation as

∂ξ

∂t
= D

∂2ξ

∂x2 − DΛ(t)
∫ t

0

∂2ξ

∂x2 (x, s)ds.(68)

Here we have assumed, without loss of generality that ηxx(x, 0) = 0. We assume a
solution of (68) of the form

ξ(x, t) = φ(t) cos(kx)

and find that φ is a solution of the equation

φ′(t) = −k2Dφ + k2DΛ(t)
∫ t

0
φ(s)ds.

This may be written as the system

Φ
′
=

[
−k2D k2DΛ(t)

1 0

]
Φ ,(69)

where Φ1 ≡ φ and Φ2 ≡
∫ t
0 φ(s)ds. The asymptotic behavior of the solution can be

determined by appeal to the following theorem due to Hartman and Wintner [7] (cf.
[5]).

THEOREM 4.2. Consider the linear system

x
′
= (∆(t) + R(t))x,(70)

where ∆ is a diagonal matrix. Suppose that the eigenvalues of ∆ are such that for
i, j ∈ {1, . . . , n}, whenever i (= j

|Re{λi(t) − λj(t)}| ≥ δ

for some δ > 0 and t ∈ [a,∞). Further suppose that the entries of R satisfy
∫ ∞

a
|Rij |pdt < ∞(71)

for some p ∈ (1, 2]. Then (70) has solutions x(m)(t) with the asymptotic form

x(m)(t) = {em + o(1)}e
∫ t

a{λm(t)+Rmm(t)}dt(72)

for t → ∞, where em is the mth vector in the canonical basis for Rn.
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To apply this result, we define x1 = Ωφ1
k2D and x2 = φ2 + φ1

k2D . Then (69) can be
written as

dx

dt
=

[
−k2D 0

0 0

]
x + Λ(t)

[
−1 Ω
− 1

Ω 1

]
x,(73)

where Ω ≡
√

1 + (k2D)2. Clearly the second matrix satisfies (71) for any p > 1, since
Λ(t) ≡ βp0/(α + βw0 + βp0t). Thus there is one exponentially decaying solution, but
the solution corresponding to the zero eigenvalue requires closer examination. That
solution has the form

x(2) = {e2 + o(1)}e
∫ t

a Λ(s)ds ,(74)

and the exponential factor is

α + βw0 + βp0t

α + βw0 + βp0a
.(75)

It follows that the solution of (70) corresponding to the zero eigenvalue is given by

Φ(2) = {e2 + o(1)}
(

α + βw0 + βp0t

α + βw0 + βp0a

)
(76)

as t → ∞. Therefore Φ(2),2 ≡
∫ t
0 φ(s)ds ∼ O(t) as t → ∞, so φ ∼ O(1), and the

result follows.
This result shows that growth of the control species proportional to the local den-

sity of the particles is not rapid enough to cause instability of the constant uniform
solution when µ > 0. Computational experiments show that for a wide variety of
initial data, type I dynamics lead to collapse, and we conjecture that they always do
when µ > 0. The asymptotic behavior of solutions in the case µ = 0 is also unknown,
but our computations suggest the existence of small-amplitude stable solutions. An
example using D = 3.6 × 10−2 and α = 0 is shown in Figure 5. Here and hereafter,
solutions are computed by discretizing the spatial derivatives using centered differ-
ences and solving the resulting system of ordinary differential equations using the
stiff integrator package LSODE. To conserve particles, it is important to discretize
the divergence form of the partial differential equation rather than expand the deriva-
tives and discretize the resulting equation. Unless stated otherwise, all computational
results are for a uniform grid of 201 points. We do not show w in this figure, but it is
clear from (57) that asymptotically w grows linearly in t at the pointwise rate p(x).

4.2. Type II local dynamics. The results are quite different for type II dynam-
ics. First, the space-independent solution is catastrophically unstable in the sense that
the unstable manifold is infinite dimensional. To simplify the analysis we set α = 0
and first consider the case µ = 0. Later we remark on the effect of α (= 0 and µ (= 0.

PROPOSITION 4.3. The space-independent solution

(p0, w0e
p0t)(77)

of the system

∂p

∂t
= D

∂

∂x

(
∂p

∂x
− p

w

∂w

∂x

)
,

for x ∈ (0, 1)(78)
dw

dt
= pw
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FIG. 5. The dynamics of the system (57), (60), and (61) with µ = α = 0, D = 0.036,
and 201 grid points. The initial Gaussian distribution for the bacterial density is p(x, 0) =
4e−2(x−0.5)2/(2π)0.5. The initial maximum is 1.596, and the asymptotic maximum is 1.465. In
the context of myxobacteria, this behavior can be compared to what is called “swarming,” where
bacteria that are initially concentrated spread out as time evolves.

with boundary conditions

p
∂

∂x
ln

( p

w

)
= 0 for x = 0, 1(79)

and initial data p(x, 0) ≡ p0 > 0, w(x, 0) ≡ w0 > 0 is unstable.
Proof. The linearized equation governing small perturbations of the basic solution

is

∂ξ

∂t
= D

∂

∂x

(
∂ξ

∂x
− Λ(t)

∂η

∂x

)
,(80)

dη

dt
= p0η + w0e

p0tξ ,(81)

where Λ(t) ≡ p0e−p0t/w0. The solution of the second equation is

η(t) = ep0tη(x, 0) + ep0tw0

∫ t

0
ξ(x, s)ds,

and therefore, if we assume that ηxx(x, 0) ≡ 0, (80) becomes

∂ξ

∂t
= D

∂

∂x

(
∂ξ

∂x
− p0

∫ t

0

∂ξ

∂x

)
.(82)

We may assume a solution of the form ξ(x, t) = φ(t) cos(kx) and then find that φ
satisfies

φ
′
= −k2Dφ + p0k

2D

∫ t

0
φ(s)ds.(83)
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FIG. 6. The dynamics of the system (78), (79), and (58), using µ = α = 0, D = 0.036, and a
grid of 201 points. The initial data are p(x, 0) = 1 − 0.01 cos(2πx), w(x, 0) ≡ 1. Initially the peak
decreases, which cannot be seen in the figure, but then recovers and apparently blows up in finite
time.

It follows that

φ(t) = c+eλ+t + c−eλ−t,

where λ± are given by

λ± =
−k2D ±

√
k4D2 + 4p0k2D

2
.

The result follows from this, since λ+ > 0 for all k (= 0, and k = 0 is not admissible
in light of the conservation condition.

Since all wave numbers are unstable, the unstable manifold of any spatially uni-
form solution is infinite dimensional. Furthermore, since λ+ is monotone increasing
in k2, the shortest wavelengths grow most rapidly. Since p(x, t) ≥ 0 for t ≥ 0 as long
as the solution exists, w must always become unbounded in the sense that given any
W > 0, there exists a time T > 0 such that

sup
x∈(0,1)

w(x, t) > W(84)

for t > T . Numerical solution of the equations suggests that in fact blowup occurs in
finite time for µ = 0. The results of one simulation are shown in Figure 6.

The results shown are for 201 grid points and initial data comprising the second
cosine mode, with an amplitude of 1% of the mean of p. The total mass becomes
concentrated in a sharp spike centered at the maximum in the initial data. To check
whether this is a numerical artifact, we monitor the total mass, which is conserved to
within a few percentage points in all the results reported here. For instance, for the
solution shown in Figure 6 the total mass at t = 0 is 200.9900, whereas at t = 9.3 it
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is 200.3284. We have also done a similar computation using 401 and 801 grid points,
with the same result: the entire mass becomes concentrated at a few points at the
center of the interval. Initial data with two or three equally spaced maxima produce
two or three points of concentration. Similar tests with initial data comprising the
first 10 cosine modes, with random amplitudes chosen from [0, 0.01], also produce
numerical blowup. In all cases the total mass is conserved to within a few percentage
points. Thus we believe that the underlying partial differential equation has solutions
that blow up when the control species grows according to (58) with µ = 0.

To test how strong the growth must be to produce blowup, we have also done
simulations using the production pw0.1. If we reduce D to 3.6 × 10−4 and use initial
data with a single maximum, for instance, the initial peak in p first decreases but then
recovers and finally blows up in finite time. It appears that blowup results whenever
there is weak, nonsaturating, superlinear growth and no decay of the control species.
These results are similar to Davis’s result in that superlinear growth produces local-
ization of the particle in the jump process and blowup in the continuum description.

To gain some insight into these results we shall consider the amplitude equa-
tions for a Fourier decomposition of the solution. For this purpose we assume that
w0(x, 0) ≡ constant as in the simulation shown in Figure 6. Then we may write (78)
as

∂p

∂t
= D

[
∂2p

∂x2 − ∂p

∂x

∫ t

0

∂p

∂x
ds − p

∫ t

0

∂2p

∂x2 ds

]
,(85)

and, in view of the Neumann boundary conditions, we can assume a solution of the
form

p(x, t) =
∞∑

n=0

an(t) cos(nπx).(86)

If we define bn(t) ≡
∫ t
0 an(s)ds for n ≥ 1, then the amplitude equations can be written

dan

dt
= D

(
− (nπ)2an +

nπ2

2

n−1∑

k=0

(n − k)akbn−k(87)

+
nπ2

2

∞∑

k=0

[(n + k)akbn+k − kan+kbk]
)

,

for n = 1, 2, . . . . These equations show again that there are no steady states other
than a0 ≡ constant, ak ≡ 0, k = 1, 2, . . . . This system decomposes into the following
subsystems for the even and odd modes:

da2q

dt
= D

(
−(2qπ)2a2q + qπ2

2q−1∑

k=0

(2q − k)akb2q−k

+ qπ2
∞∑

k=0

[(2q + k)akb2q+k − ka2q+kbk]

)
,(88)

da2q+1

dt
= D

(
−((2q + 1)π)2a2q+1 + (2q + 1)

π2

2

2q∑

k=0

(2q + 1 − k)akb2q+1−k

+ (2q + 1)
π2

2

∞∑

k=0

[(2q + 1 + k)akb2q+1+k − ka2q+1+kbk]

)
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for q = 0, 1, 2, . . . . Since one odd index occurs in each product on the right-hand side
of the second equation, it is clear that if a2q+1(0) = 0 for all q = 0, 1, 2, . . . , then
a2q+1(t) ≡ 0. Thus “energy” does not flow from the even to the odd modes if the
amplitudes of the latter are all initially zero. Since the simulations show that apparent
blowup occurs even if the initial data contain only even modes, we assume hereafter
that the amplitudes of the odd modes are identically zero. Since a0 = constant, we
may rewrite (88) and the equation for b2q in the following form:

d

dt

(
a2q

b2q

)
=

[
−D(2qπ)2 D(2qπ)2a0

1 0

](
a2q

b2q

)
+ 2Dqπ2Q2q(89)

for q ≥ 1, where

Q2q =





q−1∑

k=1

(q − k)a2kb2(q−k) +
∞∑

k=1

[
(q + k)a2kb2(q+k) − ka2(q+k)b2k

]

0



 .

The linear part of this equation gives further insight into the mechanism of in-
stability of the constant solution. The origin is a saddle point for the linear system
associated with (89) and the unstable (stable) manifold for each q lies in the first/third
(second/fourth) quadrants. Furthermore the instability is fed by the basic solution
through a0: if a0 = 0, the trivial solution has an infinite-dimensional center manifold,
and it is easy to see that all solutions of the linear system are bounded for all time.
If we start with initial data comprising only the second mode (q = 1), then the in-
stability in higher modes can only be triggered when the corresponding a2q (= 0 (and
hence b2q (= 0). Some insight into the mechanism for energy flow between modes can
be gained by examining the first few equations in this system. The a component of
the first three equations, truncated so as to close the system, is as follows:

da2

dt
= D

(
−(2π)2a2 + (2π)2a0b2 + 2π2 [2a2b4 − a4b2 + 3a4b6 − 2a6b4]

)
,(90)

da4

dt
= D

(
−(4π)2a4 + (4π)2a0b4 + 4π2 [a2b2 + 3a2b6 − a6b2]

)
,(91)

da6

dt
= D

(
−(6π)2a6 + (6π)2a0b6 + 6π2 [2a2b4 + a4b2]

)
.(92)

Suppose that a2(0) (= 0 and a4(0) = a6(0) = 0. Then the fourth mode is excited via
the term a2b2, which in turn triggers the instability in the fourth mode via the linear
mechanism. As soon as a4 (= 0 (which of course is instantaneously), mode six can
be excited via the term 2a2b4 + a4b2, and this in turn triggers the linear instability
in the sixth mode. In this way there is a cascade in which the linear instability in
successive modes is triggered by energy flow from lower modes. Obviously there is
a complicated “back-and-forth” in that the flow is not unidirectional: a nonzero a4
and a6 affect a2 through the term 2a2b4 − a4b2 + 3a4b6 − 2a6b4, and this complicated
interplay has prevented us from proving any global results about the dynamics of
the amplitude equations to date. However, we have done a Fourier analysis of the
numerical solution of the partial differential equation which qualitatively confirms the
foregoing picture (cf. Figure 7). This figure shows the temporal evolution of log(a2

k(t))
for k = 0, 2, . . . , 8. Initially only a2(0) (= 0, but the other modes grow rapidly and
appear to converge to 1 at the blowup time. We have done a similar computation for
the first 20 even modes with similar results: all amplitudes appear to converge to 1 at
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FIG. 7. The evolution of the first five even Fourier amplitudes a0, . . . , a8 for the solution shown
in Figure 6. The amplitudes are shown in order of their index from top to bottom for t small, and
this order is preserved in the evolution.

the blowup time. This of course suggests that the solution approaches a δ-distribution
at the blowup time.3

The results thus far pertain to the renormalized transition rate with α = 0, and
the question arises as to whether blowup occurs for a nonzero α. We have done
computations with several positive values of α and have found that blowup occurs in
all cases when the local dynamics are of type II, but the blowup time does depend
weakly on α. Thus the presence or absence of the basal transition rate does not affect
the general conclusion that blowup occurs when w grows according to (58).

Another question concerns the effect of the decay rate µ on whether or not blowup
occurs, and if it does, on the time to blowup. Table 2 shows that there is no effect:
within numerical accuracy the “blowup time” (determined by failure of the integrator
to continue with a fixed error tolerance) and the maximum density at that time are
independent of µ.

Of course, when µ > 0 there is also a constant solution (p0, w0) = (µ,w0) for
any w0 > 0, but later we show that such solutions are unstable as a consequence of
Proposition 5.1.

The effect of the initial data on blowup is also of interest, since in some systems it
is known that sufficiently large initial data are needed to produce blowup. However,
in Proposition 4.3 we showed that a space-independent solution is linearly unstable
to all wave numbers, and this suggests that there may be no threshold effect for the
blowup. We have computed the solution of (78) for a variety of initial data, containing
either a single mode of varying amplitude or random components. The “blowup” time
depends strongly on the initial data, but in all cases the solution appears to blow up.
Thus it appears that the only attractor for the forward evolution has essentially the

3Levine and Sleeman [14] have shown that for a special choice of initial data that is close to what
we use in the computations one can construct an exact solution of (78) and (79). They prove that
this solution blows up at a finite time T , with p( 1

2 , t) ∼ (T − t)−1 and that p(x, t) approaches a δ
function at the blowup time.
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TABLE 2
Dependence of the blowup time on the decay rate µ for Type II local dynamics with α = 0.

µ Numerical pmax pmin
blowup time

0.0 9.45 1.540079D+02 3.049632D-07

0.01 9.44 1.531900D+02 1.438778D-06

0.1 9.43 1.523350D+02 5.935083D-06

1.0 9.45 1.534283D+02 7.550620D-07

entire mass concentrated at a point when the initial data contain a single peak or at a
finite set of points when the initial data have several local maxima. The dependence
of the final distribution of mass on the initial distribution in the latter case has not
been investigated thoroughly.

Stevens [29] has also done some preliminary computations in two space dimen-
sions, and the results are similar to those in one space dimension. For instance, sim-
ulations in which the initial peaks are located sufficiently far apart from each other
show that both can blow up in finite time. If two peaks are sufficiently close together
initially, the larger one will engulf the smaller one. If both peaks have identical pro-
files initially, they either both blow up or form a new single peak. These results are
similar to what is seen in one space dimension (results not shown), but there may be
other phenomena in two space dimensions that are not seen in one space dimension.
The two-dimensional results indicate that the model predicts behavior that is very
similar to what is observed experimentally in the aggregation of myxobacteria, where
the developing mounds may wax and wane before stabilizing in an aggregation.

4.3. Type III local dynamics. In the previous section we dealt with blowup of
solutions. In this section we present some results on how changes in the net production
rate of the modulator species w affect the asymptotic dynamics. This is a first step
toward understanding how the rules for movement and for the production of the
modulator may interact to produce aggregation, which is the primary case of interest
in the biological context. In Figure 8 we show the solution of

∂p

∂t
= D

∂

∂x

(
∂p

∂x
− p

w

∂w

∂x

)
for x ∈ (0, 1),(93)

dw

dt
=

pw

1 + νw
− µw + γr

p

1 + p
for x ∈ (0, 1),(94)

with Neumann boundary conditions for ν = 1 × 10−5, µ = 0, and γr = 0. To get a
clearer picture of the evolution of p and w, we show the spatial profiles at a sequence
of times in Figure 9.

The computational results shown in these figures suggest that p has reached a sta-
ble, stationary, nonconstant solution, whereas w continues to grow. Further evidence
for this is shown in Figure 10, where in (a) we show the value of p at the midpoint
of the interval as a function of time and in (b) we show the amplitudes of the first
five even Fourier modes as a function of time. The results in Figure 8 suggest that
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FIG. 8. The evolution of p in (93), (94) as a function of time for D = 0.036, ν = 1. × 10−5,
and µ = γr = 0. The initial data are as in Figure 6.

we should look for solutions of the form

p(x, t) = P0(x),
w(x, t) = A(t)P0(x),(95)

where P0 and A are unknown functions. Clearly solutions of this form satisfy (93)
and (94) for any P0, provided that A satisfies

A
′
=

AP0

1 + νAP0
− µA .(96)

This equation can be solved for A in terms of P0, but of course P0 is determined by
the initial data and can be determined only by solving the full evolution problem.
Nonetheless, this shows how one can understand the results given in Figures 8 and
10. In particular, when µ = 0, (96) shows that the w component of the solution at
the midpoint of the interval in Figure 9(a) grows linearly in t for sufficiently large t,
and the results in the figure can be checked against this. This behavior is similar to
that shown in Figure 5, for when p stabilizes the growth rate of w is linear in t.

The decay rate µ of the control species has a very significant effect when the
production rate saturates, as is shown in Figure 11. There we show the density p at
the midpoint of the interval as a function of time for three different values of µ. When
the decay rate is zero (µ = 0), the density converges to a stable aggregation, and at
intermediate values (µ = 0.1) it grows slowly, but when µ = 1 the solution appears
to blow up in finite time.

The blowup at sufficiently large µ can be qualitatively understood from the fact
that a large decay rate sharpens the w profile, which strengthens the chemotactic
transport, which in turn leads to a sharpening of the p and hence w distributions.
Moreover, at large µ the production of w never saturates, as can be seen by setting
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FIG. 9. The spatial profiles of p (a) and w (b) at a sequence of times for the solution shown in
Figure 8.

z = eµtw in (94). Under these conditions the behavior is similar to that for type II
dynamics.

Thus type III local dynamics can produce either stable aggregation or blowup,
depending on the decay rate of the control species, and saturation of the production
rate of the control species is essential for the former. In the following section we
examine the effect of saturation in the response to the control species.

5. Saturation in the response functional. The receptor model that leads
to (54) incorporates saturation in the response, but we shall first generalize this to
include a basal transition rate. We write

T (w) = α + β0
w

γ + w
(97)

≡ (α + β0)
β + w

γ + w
,(98)

where β ≡ αγ/(α + β0). In this section we consider only a barrier model with a
renormalized transition rate, in which case the chemotactic sensitivity is given by
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(  )

(b)

FIG. 10. (a) The evolution of p for the solution shown in Figure 8 at the midpoint of the
interval as a function of time. (b) The corresponding evolution of the amplitudes of the first five
even Fourier modes, ordered by index from top to bottom for t small.

χ = D(ln T )w

= D
γ − β

(γ + w)(β + w)

≡ D
δ

(γ + w)(β + w)
.(99)

It is clear from the definition of β that δ > 0, and thus the taxis is positive. We
consider type II and III local dynamics, and thus the governing equations are

∂p

∂t
= D

∂

∂x

(
∂p

∂x
− p

δ

(γ + w)(β + w)
∂w

∂x

)
for x ∈ (0, 1),

(100)
dw

dt
=

pw

1 + νw
− µw + γr

p

1 + p
for x ∈ (0, 1),
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µ = 1

µ = 1 

µ = 0

FIG. 11. The evolution of p for the solution of (93) and (94) at the midpoint of the interval as
a function of time for the indicated values of the decay rate µ.

with Neumann boundary conditions. Throughout this section we set δ = γ = 1 × 103

and β = 1 × 10−2 unless otherwise stated. That we set δ = γ rather then have them
differ by β is of no consequence.

We first set ν = 0, in which case there is no saturation in the production rate of
w. In Proposition 4.3 we showed that for µ = 0 the uniform solution (p0, w0ep0t) of
(78) is unstable, and numerical results suggest that solutions blow up in finite time.
In Figure 12 we show the solution of (100) for ν = µ = γr = 0 and other parameters as
above. The solution grows initially but then collapses and converges to the spatially
uniform solution in which p(x) ≡ 1 and w grows exponentially. This suggests that a
solution in which p, and hence w, is uniform may be stable when saturation in the
response is incorporated, but we only prove this in case w is also a constant.

PROPOSITION 5.1. Suppose that ν > 0 and γr = 0 and that the system (100) has
a constant solution (p, w) = (p0, w0), where p0 = µ(1 + νw0). Then that solution is
asymptotically stable if µ > 0 and p0/µ is sufficiently large.

Proof. The linearized equation governing small perturbations of the basic solution
is

∂ξ

∂t
= D

∂

∂x

(
∂ξ

∂x
− Λ

∂η

∂x

)
,(101)

dη

dt
=

w0

1 + νw0
ξ +

(
p0

(1 + νw0)2
− µ

)
η ,(102)

where Λ ≡ δµ(1 + νw0)/(γ + w0)(β + w0). We may assume a solution of the form
(ξ(x, t), η(x, t)) = φeλt cos(kx), where φ ∈ R2; then λ is an eigenvalue of the matrix

L =

[ −k2D k2DΛ
w0

1 + νw0

µ

(1 + νw0)
− µ

]
.(103)

It is easy to see that det L > 0 =⇒ traceL < 0 and that the former is equivalent to

Υ > 1 +
δν2Υ(Υ − 1)

(Υ + γν − 1)(Υ + βν − 1)
,(104)
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FIG. 12. The evolution of p for the solution of (100) for D = 0.036, ν = γr = µ = 0. The
initial data are as in Figure 6. ppeak = 1.139.

where Υ ≡ p0/µ. This can always be satisfied for sufficiently large Υ, which proves
the result.

Remark. When ν = 0, p0 = µ, and w0 > 0 is arbitrary, it follows that detL < 0,
which proves the assertion made earlier for type II dynamics.

There are also nonconstant solutions when µ > 0. If we set µ = 1.0, ν = γr = 0,
and compute the solution of (100) using the same parameters and initial data as in
Figure 12, we obtain the result shown in Figure 13. Initially the saturation in the
response is not significant and the solution “almost” blows up, but the saturation
prevents this and the solution converges to the essentially piecewise-constant solution
shown in that figure. Changing the initial perturbation on p from −0.01 cos(2πx) to
−0.1 cos(2πx) does not alter the asymptotic value of p, but it does affect the maximum
value of w in the interval at any fixed value of t. Earlier we saw that solutions of
(78) appear to blow up for this value of µ (cf. Table 2). Thus saturation in the taxis
response can produce stable aggregation as compared with blowup in its absence.
Incorporation of saturation in the production of w by setting ν = 1 × 10−5 produces
an identical solution to within four decimal places, both in ppeak and in pmax(∞).
Obviously piecewise-constant solutions satisfy (100), and one can prove that they are
stable to perturbations that respect the discontinuities. Whether they are stable to
general perturbations is not known.

However, saturation in the response does not preclude extreme concentration of
the mass, as the solution shown in Figure 14 demonstrates. In this figure the initial
value of w is reduced to 1.0 × 10−3 and the decay rate is set at µ = 1.0. For this
initial condition the solution remains essentially uniform in space for the first 62 time
units but then begins to grow explosively in the center as in Figure 6. However, the
growth is checked by the saturation in the response and the solution grows steadily
and smoothly until essentially all the mass is concentrated at one point. If we repeat
the computation using twice as many grid points (401), we again find that the mass
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FIG. 13. The evolution of p for the solution of (100) with γr = ν = 0 and µ = 1. The initial
data are as in Figure 6. ppeak = 30.15, pmin(50) = 1.82 × 10−4, pmax(50) = 18.18.
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FIG. 14. The evolution of p for the solution of (100) with ν = 1 × 10−5 and µ = 1. The initial
data are as in Figure 6 for p, but w is set to 1. × 10−3 everywhere. pmin(100) = 1.97 × 10−3,
pmax(100) = 199.6.

is all concentrated at one grid point. In both cases the mass is conserved to the same
accuracy as in Figure 6. Thus we consider this a blowup, but from a computational
standpoint it occurs much more smoothly than for the solution shown in Figure 6.

One might expect a blowup of the type shown in Figure 6 to occur if β is zero
in (100), for then the chemotactic sensitivity would behave like 1/w for small w.
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FIG. 15. The evolution of p for the solution of (100) with ν = 1 × 10−5, β = 0, and µ = 1.
Initial data are as in Figure 14. pmin(21) = 3.0 × 10−7, pmax(21) = 199.99.

However, this is not sufficient, as can be seen in Figure 15. The solution grows more
rapidly as compared with that shown in Figure 14, but the asymptotic profile is
identical: essentially all the mass is concentrated at a single point. Thus the large
w behavior is also important in determining whether or not the solution blows up,
and a chemotactic sensitivity that behaves like w−2 for large w is strong enough to
stabilize the solution sufficiently to allow it to be continued computationally. Similar
results are obtained if the initial density of w is reduced. For instance, if we set all
parameters to the values used in Figure 15 but reduce w(x, 0) to 1 × 10−4, we obtain
a solution that “almost” blows up at t = 9.35, just as in Figure 6, but then stabilizes
as in Figure 15 (results not shown). However, if we set the decay rate µ to zero, then
the solution collapses, as is shown in Figure 16.

Thus there is a strong interplay between the chemotactic sensitivity, the produc-
tion rate of the control species, and the initial data for w. A large decay rate or a
small initial value of w promotes aggregation or blowup, whereas in the absence of
decay the solutions tend to collapse. As a result, one would predict that a higher
initial average density of p would tend to stabilize solutions that would blow up for
smaller initial p or produce collapse for those solutions that would tend to a stable
aggregation at a lower density, because more w is produced pointwise. An example
that illustrates this is shown in Figure 17. The stable aggregate shown there should
be compared with the blowup shown in Figure 15. The only difference between these
is that the mean density of p in the former is twice that in the latter. It should also
be compared with Figure 14. If we reduce the initial value of both p and w, we expect
rapid aggregation or blowup, but if we also set µ equal to zero, we would predict
that the solution collapses. These competing tendencies are illustrated in the solution
shown in Figure 18. This solution initially grows but then settles into a sequence
of decreasing plateaus in the maximum amplitude that eventually leads to collapse.
Finally, if we repeat the computations for Figure 17 but set γr = 0.1, then there is a
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FIG. 16. The evolution of p for the solution of (100) with ν = 1 × 10−5, β = 0, and µ = 0.
Initial data are as in Figure 14. ppeak(10) = 8.22.
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FIG. 17. The evolution of p for the solution of (100) with parameters as in Figure 15. The
initial data for p are 2.0 − 0.01 cos(2πx) and w is set to 1. × 10−3 everywhere. ppeak = 80.7,
pmin(18.5) = 1.44 × 10−6, pmax(18.5) = 44.4.

production term that is independent of w and the solution changes quite dramatically.
As is seen in Figure 19, the additional production of w leads to a much shallower and
broader aggregate as compared to that shown in Figure 17.
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FIG. 18. The evolution of p for the solution of (100) with parameters as in Figure 15, except
that µ = 0. The initial data for p are 0.5 − 0.01 cos(2πx), and w is set to 1. × 10−4 everywhere.
ppeak = 69.5, pmin(200) = 2.15 × 10−6, pmax(200) = 6.61.
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FIG. 19. The evolution of p for the solution of (100) with parameters and initial data as in
Figure 17, except γr = 0.1. pmin(25) = 1.27 × 10−8, pmax(25) = 8.88, ppeak = 10.74.

6. Discussion. In this paper we derived and analyzed partial differential equa-
tions that approximate several different reinforced jump processes. One objective
was to understand the qualitative behavior of the continuous equations in order to
obtain a better understanding of how parameters in the microscopic movement rules
translate into macroscopic parameters in the partial differential equations. We were
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also interested in the correspondence between the asymptotic behavior of solutions
of the partial differential equations and Davis’s [3] results for the reinforced random
walk that they approximate. We showed that one can obtain finite-time blowup for
superlinear growth of the modulator, and collapse if it grows only linearly, starting
from a single peak in the distribution of p. Strictly speaking, this is a result only for
the probability density of the location of one particle or for the limiting equations of
moderately interacting particles. When simulating the discrete many-particle jump
process where only local interactions between the particles take place, the tactic sen-
sitivity has to be higher to achieve aggregation, as was seen in the simplified cellular
automaton model. Even exponential growth of the modulator is not sufficient in this
case.

A major conclusion of our work is that within the framework of the partial dif-
ferential equation models, stable aggregation can occur with local modulation of the
transition rates, that is, without long range signaling via a diffusible chemical. In the
context of myxobacterial aggregation this implies that trail following alone may suffice
to produce aggregation if the bacteria produce a large amount of slime, at least for
a short time. However, one has to keep in mind that these equations are for walkers
which do not interact directly but only indirectly via w and, in particular, the kind of
contact interaction that is observed experimentally is not included in the model. To
date there is no model with strictly local interaction of the particles in this context,
apart from the simulation model. As we have seen, in the absence of diffusion of the
control species the asymptotic behavior of the bacterial density depends very strongly
on the history of the process and, in particular, on the initial data, which is quite
reasonable for the biological phenomenon. This is in contrast to the behavior when
the modulator diffuses and stable aggregation is possible, for then there is usually
an attractor for a large set of initial data and the final spatial distribution does not
depend on the initial data.

We have also seen that the interplay between the production of the modulator and
the chemotactic response produces a variety of interesting dynamics. At present there
is little rigorous theoretical understanding of the phenomena we have described, and
more work is needed on this aspect. For instance, one question of interest is whether
a smooth aggregate is achievable without blowup of w. An interesting approach to a
heuristic understanding of some of these phenomena is given by Levine and Sleeman
[14].

Finally we shall discuss results related to those obtained here. Rascle and Ziti
[24] analyzed the system

ut = µ∆u − ∇ · (uχ(v)∇v) ,

vt = −k(v)u ,(105)

where χ(v) = δv−α and k(v) = kvm, δ, k > 0. Assuming m < α = 1, they constructed
self-similar solutions. In the case µ = 0 in one space dimension, the bacterial density
concentrates in the center after a finite time. In two space dimensions and initial data
with u = 0 at the origin, one gets chemotactic rings concentrating at the origin after
finite time. For higher space dimensions and an initial singularity of v at the origin,
one can achieve blowup. For the case µ > 0 and smooth positive initial data u blows
up in finite time. But for space dimension ≥ 2 the authors were unable to construct
such self-similar solutions satisfying reasonable initial conditions. This system is quite
different from ours since in (105) the chemotactic species is consumed by the bacteria,
whereas it is produced in our model.
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There have been many studies of chemotaxis equations in which the chemotactic
species is diffusible. Najundiah [19] was apparently the first to suggest that aggre-
gation could be viewed as the development of a singularity. This viewpoint was
developed by Childress and Percus [2], and there have been many studies of these
equations since then [25], [15], [11]. In more recent work Mimura and coworkers
incorporate growth of the “walkers” as well [17], [16].

Schaaf [25] analyzed the stationary system

0 = ∇ · (δ ∇u − b(u, v)∇v),

0 = c∆v + κu − αv

1 + βv
,(106)

with Neumann boundary conditions and two forms of b(u, v), viz.,

(a) b(u, v) = χu or

(b) b(u, v) = χ
u

v
.(107)

This system can be reduced to a scalar elliptic equation, and if one defines γ = χ
δ , the

bifurcation results for case (b) can be summarized as follows. There exists a threshold
for the cell density above which no spatially homogeneous stationary solution exists.
This threshold depends on the production and decay of the chemical substance. The
existence of time independent spatial structure depends on αγ2

4c and α
c (γ−1) for γ ≥ 2.

The smaller c and δ are or the larger χ and α are, the more structure is possible, and
the geometry of the stationary solution depends heavily on γ.

Rigorous results on the evolution problem have also been obtained recently, be-
ginning with Jäger and Luckhaus [11], who consider the system

ut = ∆u − χ∇ · (u∇v),
vt = c∆v + cκu − αv,(108)

where x ∈ Ω ⊂ RN , u(x, 0) = u0(x), v(x, 0) = v0(x), and u and v fulfill Neumann
boundary conditions. One rescales the variables as follows:

u(x, t) → u(x, t)
ū0

, v(x, t) → v(x, t) − v̄(t)
κū0

, χ → χκū0,

where w̄ denotes 1
|Ω|

∫
Ω wdx. Then the rescaled system reads

ut = ∆u − χ∇ · (u∇v),
εvt = ∆v + (u − 1),(109)

where ε = 1+α
c . Assuming that c is very large so that the equation for v is considered

to be 0 = ∆v + (u − 1), Jäger and Luckhaus [11] prove that in two space dimensions
radially symmetric solutions can blow up for suitable initial data. Nagai [18] showed
that blowup cannot occur if N = 1, or if N = 2 and Ω is a ball, v0(x) is radially
symmetric and 1

|Ω|
∫
Ω u0(x)dx < 8

χ . Blowup occurs if this term is > 8
χ or N ≥ 3.

Herrero and Velázquez [8], [9], [10] first considered the same v-equation as Nagai
and showed that if Ω is an open ball in R2 with radius R, and T > 0 is given, then
one can obtain radial solutions (u(r, t), v(r, t)) such that u(r, t) blows up exactly at
r = 0, t = T in such a way that u(r, T ) = 8π

χ δ(r) + f(r) as r → 0. The same is true
for system (109) with ε > 0.
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