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The zero set of
a solution of a parabolic equation

By Sigurd Angenent*) at Pasadena

1. Introduction
In this note we study the zero set of a solution u(t, x) of the equation
(.1 u,=a(x, hu, +b(x, t)u,+c(x, t)u.

Our motivation for doing so comes from a number of recent papers on the dynamics of
semilinear analogues of (1.1) (see [A], [AF], [BF1], [BF2], [BF3], [M1], [M2],
[H2]). In one way or another all these papers use a result of the following kind:

Let u be a solution of (1.1) on Q={(x,#):0=<x=<1,0=t< T} with Dirichlet
boundary conditions: u(0, t)=u(l, t)=0. Define the “number of zeroes” of u( -, t) to be
the supremum over all k such that there exists 0 <x; <x, < --- <x, <1 with

u(t, x;) - ult, x;1,)<0 (=12,...,k—1).

Let z(¢) denote this supremum.

The result we mean is that z(t) is a nonincreasing function of t. Loosely speaking,
the number of zeroes of a solution of (1. 1) cannot increase with time.

Results of this nature were obtained by Nickel ([N]) in 1962, and revived by
Matano ([M2]) in 1982 and Henry ([H2]) in 1985.

None of the existing results deals with the actual number of zeroes of u(-, t).
Instead, an alternative definition of this number is usually given (like the definition of
z(t) we just gave). Moreover the possiblility that z(t)= +o0 for 0<t<T is never
excluded. There is therefore some incompleteness in the existing results on z(t).

The effect of this incompleteness is that in some of the applications to semilinear
equations extra hypotheses have to be included so as to ensure z(t) < o (e.g. piecewise
monotonicity of solutions, or even real analyticity of all occurring functions as in [AF]).

Here we present a detailed description of the zero set of a solution of (1. 1) under
very general assumptions on the coefficients a, b and c.

*) Supported by a Nato Science Fellowship and by the Netherlands Organization for the advancement
of pure research (Z.W.0.).
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In addition to the application to the dynamics of semilinear parabolic equations,
the results of this paper may also be applied to other problems in PDE. One of these is
described at the end of this introduction, and may be referred to as “time dependent
Sturm Liouville theory”. Another one is the “geometric heat equation”, or the “curve
shrinking problem”, which was considered by Grayson ([Gr]). The nature of these
applications is described in [A'].

The main part of this paper deals with solutions of
(1. 2) u=u.,.+qxt)u xelR, O0<t<T

where g€ L, and |u(x, t)| £ Ae®** for some constants 4 and B.

Our main results concerning u(x, t) are the following.

Theorem A. For each t € (0, T) the zero set of u(-,t),
Z,={x € Rlu(x, t)=0},

is a discrete subset of .

Theorem B. If at (x,,t,) both u and u, vanish then there is a neighbourhood
N=[x,—¢ xg+¢&] x[tg—0, to+ ] of (xq, to) such that

(i) u=0 on the sides of N (i.e. u(xqte¢ t)£0 for |t —ty| <9),

(i) wu(-,t+ ) has at most one zero in the interval [x,—é&, Xo + €],

(i) u(-,t—0) has at least two zeroes in the interval [xo—e¢, xo + €].

This theorem says, roughly, that if, at t=t,, u(-,t) has a multiple zero then,

for t <ty, u(-,t,) has more zeroes than for ¢t > t,.

In case the coefficients and the solution are real analytic theorem A is trivial and
theorem B was already proved in [AF], theorem 5. 1.

These results are also true for solutions of (1. 1) instead of (1. 2) (with the same a
priori bound |u(x, t)| < A exp(Bx?)), if one assumes the following about the coefficients

a,b and c:

(1. 3.a) a,a ' a,a, and a, €L,
(1.3.b) bb, and b.eL,,
(1. 3.¢) ceL,.

Furthermore a should be positive, so that the equation is parabolic. The reason that
theorems A and B hold for solutions u of (1.1) is that (1. 1) can be reduced to an
equation of the type (1. 2). This reduction proceeds in two steps. First introduce a new
coordinate

y=3" af(s, t)—%ds

0
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In the y, t coordinates u satisfies
u=u,, +b(y, t)u,+&(y, )u

where b and ¢ satisfy (1. 3b, c). Next substitute

v(y, t)=exp |:% ? b(s, t)ds:lu(y, t).
o

Then v satisfies v,=v,,+q(y, t)v for suitable q. It is not hard to verify that g is
bounded, and that if u satisfies an a priori bound of the form |u| £ A exp(Bx?) then so
does v (with different constants 4 and B). Clearly u and v have the same zero set, and
theorems A and B are invariant under the coordinate change (x, t) — (y, t).

The theorems A and B also hold for solutions of (1. 2) on bounded domains, if one
imposed either Dirichlet, Neumann or periodic boundary conditions.

To see why this is so, we first consider a bounded solution u(x, t) of (1. 2) on the
rectangle [0, 1] x [0, T), which satisfies Dirichlet boundary conditions, i.e.
u@,t)=u(l,t)=0 O=t=T).
Let U(x, t) be the (unique) extension of u(x, t) to R x [0, T] which satisfies
U(—x,t)=—-U(x, t)=UQ2—x, t).
(Note that this implies U(x+2, t)=U(x, t).) Then U satisfies
U=U,,+0(x1t)U

where Q(x, t) is the extension of g(x, t) which satisfies Q(x + 1, t)=Q(x, t).
Since both U and Q are bounded we can apply theorems A and B to U.

If u satisfies Neumann boundary conditions then one should require U to be even
instead of odd.

The case of periodic boundary conditions is a special case of the situation on
R x (0, T).

Next we show how equation (1. 1) can be reduced to (1.2) if the domains are
bounded.

Let u(x, t) be a bounded solution of (1. 2) on [0, 1] x [0, T] and assume that the
coefficients satisfy (1. 3.a, b, ¢). Then define

oc(t)=i a(x, t)_%dx,

0
1 = -1
0

t

s(@)=[ a(t)*dt.

0
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The transformation (x, t) — (y, s) maps [0, 1]x [0, T] to [0, 1]x [0, S] for some S>0,
and is C*! in the x-coordinate and C°! in the t-coordinate.
In the new coordinates u satisfies
Ug=1uy,, + B(s, y)u, +C(s, y)u.
As before, we can get rid of the first term by multiplying u with a suitable exponential.

In this way we get a solution v of vy=v,,+ q - v with Dirichlet boundary data. Again we
can apply theorems A and B.

We summarise this discussion in the following theorem.

Theorem C. Let u:[0,1]x[0,T] — R be a bounded solution of (1.1) which
satisfies either Dirichlet, Neumann or periodic boundary conditions.

Assume that a, b and c satisfy (1. 3.a, b, ¢), and in addition, in the case of Neumann
boundary conditions, assume that a=1 and b=0.

Let z(t) denote the number of zeroes of u(-,t) in [0, 1]. Then
(@) for t>0 z(t) is finite,
(b) if (xq, to) is a multiple zero of u then for all t, <ty <t, we have z(t;)>z(t,).

Finally we observe that if inhomogeneous boundary conditions are imposed, we
can still say something about the zero set of u(x, t).

Theorem D. Let u:[xq, x;]1 %[0, T] — R be a classical continuous solution of
(1. 1) such that

u(x;, )*£0 (i=12;0Zt=T).
Assume that a, b and c satisfy (1. 3.a, b, ¢). Then statements (a) and (b) of theorem C hold
in this case.
Here “classical” means that u,, u, and u,, are continuous on (x,, x,) x [0, T].

To prove this theorem observe that we can extend our solution u to a bounded
function on the strip R x [0, T], whose absolute value is bounded from below outside
the rectangle [xq, x;]1x[0, T]. Moreover we can modify this function outside a
neighborhood of its zero set so that u,, u,, u,, become bounded functions. Next we
extend the coefficients a(x, t) and b(x, t) to B x[0, T] in such a way that they still
satisfy (1. 3.a, b) and define

¢(x, t)=(u, — au,,, —bu,)/u.

Since ¢ satisfies (1. 3¢) we can apply our previous results to the new function u, to prove
theorem D.

As an application of these results we mention the following.

Let p(x, t), q(x, t) be two doubly periodic functions (i.e.
gx+1,t)=q(x, t+1)=q(x, t)

and the same for p) of which g is bounded and p is C'.
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Consider the operator L defined by
0 0\ 0
L:E_<Ex‘> _p(x’ t)a—x_q(x’t)’

and let £ = C be the set of numbers A for which there exists a bounded, complex valued,
solution u(x, t) of

Lu=0,
u(x+1,t)=u(x,t) x, te R,

ulx,t+1)=24-u(x,t) xtelR,

It follows from parabolic regularity theory that X is a countable set of points with 1 =0
as only limit point. So we can write X as {/,},>, Where 4, occurs as often as its
multiplicity, and |4,| =4, 4]

In this setting the following holds:
o danl >1A2n s 1| 21 A2n 420 > |A2p e sl

In particular, the multiplicity of an eigenvalue never exceeds 2. The proof of this fact
was given in section 2 of [AF], using the assumption that p and q are real analytic.
Given theorem C of this note one can prove the general case in exactly the same way.

The proof of our main result (theorems A and B) is based upon a coordinate
transformation. The transformation in question is

(u, x, t) > (w, &, 1)
where

_.2 -
Lx=Xxq+e ¢

w=exp<——§— éz>u.

It turns out that w satisfies a nice parabolic equation in the ¢, © coordinates. By
studying the asymptotic behaviour of w as t— oo (i.e. of u as t11t,) we get some
information about the zero set of u near (x,, t,). This is done in sections 2, 3 and 4.
Then some additional arguments are needed to prove theorems A and B. These
arguments are presented in section 5.

and

Before 1 start with the main portion of this paper, I would like to thank Lillian
Chappelle for typing the manuscript.
2. Notation
Let u(x, t) be a nonzero solution of the parabolic equation

2.1 u—u,=qx,t)u xeR, 0<t<T.
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We assume that u satisfies the following estimate
lu(x, 1)) < K e™*

for all (x,t)e Q=R x(0, T) and that the coefficient g(x, t) belongs to L. (Q). By
rescaling (i.e. taking (e x, £2t) as new coordinates) and passing to a multiple of u we may
assume that

lu(x, )| S e/t (a.e),
@.2)
2q(x, )IS1  (ae).

It follows from local regularity theory of the inhomogeneous heat equation that u
and u, are locally Holder continuous functions in Q, of any exponent o <1.

We define Z to be the zero set of u, i.e.
Z={(x,t)e Q:u(x,t)=0},
and S to be the singular part of Z,
S={(x,t)e Z:u,=0}.

The complement of S in Z, denoted by R, will be called the regular part of Z.

It follows from the implicit function theorem that R is the disjoint union of curves
C;<= Q. Each C; is given by the graph of a Holder continuous function:

Ciix=y(t) (t;-<t<t;,).

In order to study the local structure of S we introduce the functions w(x, t, h, £). They
are defined by

_1x2
wix, t, by E)=e 2% u(x+2hE, 1).

It follows from our estimate (2.2) that for all (x,t)e Q and 0<h<1 the function
w(x, t, h, - ) belongs to L, ([R). Moreover, as elements of L, (/R) they depend continuously
on x, t and h.

Whenever w(x, t, h, - ) is not identically zero we define

w(x, t, h, &)

Wi(x, t, h, §)=m'

3. Basic estimates

For given (x, t) € @ we consider

o(t, ) =w(x, t—e %, e 5 &)

1z
—e 25 y(x+2e7 T t—e ).
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. 1 .
This function is defined for 2> —Elog(t)=ro. A straightforward computation shows

that v satisfies

3.1) b= 1

1
5 v¢§—5(52-1)0+2e_2’qv,

where g should be read as q(x +2e "¢ t—e™27).

Since v(t,-) belongs to L,(R) we shall reformulate (3.1) in an L,([R)-setting.
Define the following Hilbert spaces

Ey=L,(R),
E,={ue L,(R)|x*u u, e L,(R)},
E%——- {u € Lz(R)'xu’ Uy € LZ(R)}’

and let the operators A and B(t) be given by

1 1
AU= —i" U§§+‘2“(£2—'1)U,

B(t)-v=2e %*"q-v.

Then A: E, — E, is bounded. Seen as an unbounded operator in E, it is self adjoint
with respect to the usual innerproduct on L, (/). Its spectrum consists of the simple
eigenvalues {0, 1, 2,...}. The eigenfunctions have the form

0O = H, @)

where H, is a multiple of the n-th Hermite polynomial. These facts are well known since
A is the quantum mechanical Hamiltonian for the harmonic oscillator (see [RS],
appendix to V.3 on page 141).

The operators B(t) are bounded on E,. In view of (2. 2) we even have
(.2 1B@) g0 <€ "
With these definitions (3. 1) can now be written as

(3.3) v,+Av=B(1)v T>710,

where v is a mild solution of (3. 3). This means that for 7y <1, <7, one always has
T2
v(ty)=e""P4y(r,) + [ 724 B(1) v(r)dt.
T

(the “variation of constants formula”).
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Using the bound ||B(tr)||<e 2%, and the fact that A generates a contraction
semigroup, we find a bound for ||v(r)||. Indeed, by applying a Picard iteration to the
variation of constants formula, and observing that

T IB@ldr=1/2<1
0

one finds
lo@)I =2(v(z)l (VT 21y).

One can amplify this estimate by observing that if 0<6 <1,
[4°e4|<C-t7° (0=t< o)
(where C depends on 6 only). This, and the variation of constants formula lead to
3.4 1A% (z2) < C{1+ (1, —71) "} o (el

If we apply this estimate to the functions w, then we get the following lemma.

Lemma 3. 1. For all (x,t) in Q and h<1 for which h* <t < T — h? there is
wx,t,h,-)e E, (020<1)

and w(x, t, h, - ) depends continuously on (x, t, h) in the E, topology.
Here E, denotes dom(4°%) (0<60<1).

Proof. Consider
v(1, O =w(x, t+h*—e 2, e ),
and define

1
7=~ log(2h?), ©, = ~log(h).

Then
U(TZ’ : )=W(X, [ h’ )

1 : . L
and 17, —1, =3 (log2h?) is a constant. Therefore the inequality (3. 4) implies w € E,.

To prove continuous dependence, let (x,, ,, h,) converge to (x,t, h), and let w,
and w be the corresponding functions. Our estimates imply that the w, remain bounded
in all E, spaces. Since 4 has compact resolvent this means that the sequence w, is
precompact in any E,. We already know that w, — w in E,, so that w is the only
possible limit point in the E,-topologies. Hence w, — w in E,.

4. Compactness

In this section we shall prove the following two results.

Lemma 4. 1. For all x,t and h, one has

Iwx, &, b, )z, #0.
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As a consequence of this lemma the function W(x,t, h, -) is always well defined.
Let K < Q denote the compact set

K=[—xg, xo] x[2h3, T—2h3]
for some x,>0 and hy,>0.
Theorem 4. 2. The set
{(W(x,t,h,-)|0<h<h, and (x,t)e K}

is precompact in E, for any 0 <1.

Proof of Lemma 4. 1. Whether or not w(x, t, h,-)=0 does not depend on x or h.
Let t, be the smallest t >0 such that w(x, t, h,-) vanishes, and assume that t < T. Let
h=1/3 and consider

v(t, &) =w(x, to+h?—e 2%, e 7 &).

Then v is a mild solution of (3. 3). Since the gaps in the spectrum of A all have length
1
one, and |B(1)|| e 2" <2h? <§ for t= —log(h 1/5), the results in [A] imply that v(z, - )

is nonzero for all 7, unless v(—log(h ]ﬁ), -) vanishes identically (following a suggestion
of the referee we have included the relevant statements of [A] in the appendix to this

paper).

Therefore v(logh, - )=w(x, ty, h, - )+ 0 which contradicts our definition of ¢,.

Now we turn to the proof of the theorem. Our proof is based on the following
observation. Let C be a closed subset of the unit ball in E,. Denote the orthogonal
projection onto the first n eigenfunctions of 4 by P,, and write Q, for 1, — P,. Suppose
the set C is such that, for any ¢>0 there exists an n, so that

4.1) 1Qn, Wl S ellP,,wll
holds for ail w in C. Then C is compact.

Indeed, the condition (4.1) implies that C is contained in an e-neighbourhood
of the unit ball in the range of P,. Since P, has finite rank this unit ball is
compact, so that C lies in an e-neighbourhood of a compact set, for any ¢ >0. Thus for
given ¢>0 we can find a finite number of balls B(x, ¢),..., B(x,,, &) whose union
contains the unit ball in the range of P, , and whose centres lie in this unit ball. The
doubled balls B(x;, 2¢) will then cover our set C, by construction. We can do this for
any ¢>0 so that C is totally bounded. Since C is complete as a metric space, it is also
compact.

With this compactness criterion in mind we define N,(x, ¢, h) to be the smallest
integer n such that

“Qn W(X, L h’ * )” §8”Pn W(xa 13 hs . )”
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holds, and we try to estimate N,(x, t, h). Since the projections P, converge strongly to
lg, and the Q, tend to zero, the number N(x, t, h) is always finite.

A better estimate is the following.
Lemma 4.3. If ¢e<2hy =<1 then

4.2) sup(N,(x, t, h):(x, t)e K, 0<h =< hy)
: 1
<sup(N,(x,t, h):(x,t) e K, and 3 e<h<hy)
where
This lemma directly implies theorem 4.2. To see this observe that the second
supremum in lemma 4. 3 is taken over a compact set of parameters (in (x, t, h)-space).
Since the W(x, t, h, - ) depend continuously on (x, t, h) this supremum therefore is finite.
Lemma 4. 3 tells us that the set of W(x,t, h,-) with (x, t)e K and h e (0, h,) satisfies
(4. 1), so that it is precompact in £,. The smoothing property of the parabolic equation
then implies that this set is also precompact in E, for 6 < 1. So it remains to prove the
lemma.

Proof of Lemma 4. 3. Define

o(r, O =wlx, t—e e ),
1
F)=5 & P02 = 12yv(D)]?).

Then F(t)=0 is equivalent to
1@ W(x, t—e™ %, e7% )| Se| P, W(-)l.
Since the v(t) are absolutely continuous in t we have:

F’(t)=¢*(— Av+ Buv, P,v)—(— Av + B, Q,v)
= —¢&*(4v, P,v)+ (40, 0,0)— (Bv, (@, —¢&* P,) v)
2 —ne? |Poll? +(n+1)1Q,v]> —e™ > [lo]|?
=—(n+1)F(x)+&||P,ol> —e 2 ||v]%.
Therefore

d
a0 (€™ F (1)) 2 & | Pyoll* —e 2" ||v]%.

Now suppose that, at 7= —log (g)

a largest interval [7,, t,) on which F is positive. Positivity of F implies

, F(t,) is positive. Then, by continuity of F, there is

& || Poll® Z 1,0l = o]l — |P,o]l
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so that for t € [t,, t,] we have

1
[P,o]*=(14¢*)7" Hvllzzg loll,
and

d 1
E(e‘"““F(r))z(E el—e*f) ol 20.

So we see that if ¢>2e~™ then e”*!"F(1) is nondecreasing after 7.
To complete the proof of Lemma 4.3 we choose a point (x,, 7o) € K, an h>0 and

1
an ¢>0. If hgz ¢ then N,(xq, ty, h) does not exceed the righthand side in (4. 2).

1
Next consider the case h<§- ¢. The function F(r) which we have just introduced

depends on the chosen point (x,t) (namely, through the definition of v(z, &)). If we
choose this point to be (xo, to +h?), then the preceding discussions about F(r) imply
that

e\ ¢
Ne(xo, tO’ h)§ Ne <x0’ to +h2 “(‘2’> 5 ‘2‘)

So in this case N,(x,, ty, h) is also dominated by the righthand side of (4. 2).

5. Consequences of compactness

The easiest consequence of theorem 4. 2 is the following

Lemma 5.1. The solution u(x,t) of (2.1) does not vanish on any interval
(X0, x1) % {to}.

Proof. Suppose u(x, to)=0 for xo <x < x;. Choose an x, € (x,, x;) and consider
the functions W(x,, t,, h) for small h. As h | O these functions converge pointwise to
zero. But by theorem 4.2 we can extract a subsequence which converges, in L,([R), to a
function with norm one.

This is a contradiction, so that u(x, t,) cannot be zero on (x,, x;) after all.

This lemma gives us some information about how much curves in the zero set of u
can “zig-zag”.

To be more precise, let y(t) be a continuous function of ¢ for t, <t <t,, such that
u(y(t), t)=0. As an example one can take one of the curves in the regular part of the
zero set. However, we do not exclude curves passing through the singular part S of Z,
as long as they are graphs of continuous functions of ¢.

Lemma 5.2. If t,>0 then lim y(¢) exists.
tlto

Proof. Let J be the set of limit points of y(t) as ¢ | t,. If J is nonempty then the
continuity of y implies that J is connected. Since u(x, t,)=0 for all x in J, J cannot be
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an interval, by lemma 5. 1. Therefore J consists of one point only: the limit of y(t) as
tlt,.

To complete the proof we have to exclude the case that J is empty. If J is empty,
then y(t) - + oo or —co as ¢ | t,. Suppose that y(¢) — + co. Then consider the region
G={(x,t):to<t<t;, x>7y(t)}, lying to the right of the curve y(t). On the parabolic
boundary of G our function u vanishes.

The maximum principle then implies that u vanishes in G. Since we are dealing
with weak solutions on an unbounded domain we must be more precise here. To prove
that u actually vanishes in G, consider

v( 1) = e*%ézu(xo +2e7 7 tg+h*—e™ %)
where h <1, and 7= —log(h) (the value of x, may be chosen arbitrarily). Then v satisfies
equation (3. 1).
Next define

a(1)
M@= | (& DPde

where xo+2e7 7 8(t) =7(to + h* — e~ ?%) defines the quantity (). Using equation (3. 1)
one proves, by integration by parts, that

M (T)=C-M(1)
for some constant C, independent of the solution u. Now, by assumption,

lim y(t)=—o0 ie. lim d(1)= —o0
tlto t| —logh

so that M(t) —» 0 as t | —log(h), and thus M(z) vanishes for all =0, which, in turn,
implies that u(t, x) vanishes in G, for t,<t<t,+ h?® Iteration of this argument then
shows that u vanishes in all of G.

The upshot is that u vanishes on an interval in G, thereby contradicting
lemma 5. 1. In the same way the assumption y(¢t)— +oo as t ] ¢, also leads to a
contradiction. This completes the proof of lemma 5. 2.

Next suppose we have two curves 7,(t), y,(t) in the zero set of u, defined for
to<t=t,, and suppose y,(t;) <v,(t,). If for some t <t;, 7,(t)=1y,(t) occurs, then there
is a largest ¢ for which this happens. Call this moment ¢,, and consider the region

G={(x,t):t,<t<ty, () <x<y,(t)}.

Then u vanishes on the parabolic boundary of G, and the maximum principle implies
that u vanishes on all of G. Since this contradicts lemma 5.1 we have now shown

Lemma 5.3. Let x=1y,(t) (k=1,2,t,<t=<t,) be two continuous curves in the zero
set of u, such that y,(t,)<7y,(t;). Then y,(t)<y,(t) for all t e [ty,t,].
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In the next lemma we show how curves in the zero set Z can be constructed.

Lemma 5.4. Let (x,, ty) € Z be given. Then there exists at least one continuous
curve y(t) in Z defined on some nonempty interval [t,, t,] such that y(ty) = x,.

Proof. Let (x4, ty) € Z be given. Consider v(t, &) defined by
v (T, é) = W(x09 tO - e_21, e_t, é)-

Then v satisfies (3. 1), or equivalently (3. 3). The discussion in [A], appendix, or [H2] on
the asymptotic behaviour of solutions of (3. 3) shows that, as 7 — oo,

v(t, -)

oz, g,

5.1 — T ¢,

for some n=0. Hence ¢, denotes the n-th eigenfunction of the operator A of section 3.

For the moment suppose that n>1. Then ¢, has n=1 simple zeroes. Since the
convergence in (5. 1) takes place in E, for all 6 <1, and therefore in C*(R), the function
v has at least n curves £ =¢&,(7) (1, £t < 00) in its zero set (where k=1,...,n and 1,
should be chosen sufficiently large). Therefore the curves

x=p(t)=xo+]/to—t &(—log)/to—1)

with t,—e 2" <t <t, lie in the zero set of u(x, t). Since y,(t) — x, as t 1 t, the lemma
is true in this case.

It should be noted that v(&, ) could have more curves &(¢) in its zero set. For these
other curves £(t) would be unbounded as 7 1 co, and our asymptotic description of
v(¢, 1) is not good enough to say anything about them.

We are left with the possibility that n=0. Since the convergence in (5. 1) holds
pointwise, and ov(t, 0)=u(x,, to—e 2%) tends to zero as t-— oo, we must have
lv(z, - )| — O (remember that @, (&) is strictly positive).

The arguments in [A], [H2] show that the norm of ov(r,-) cannot decay
exponentially (this would imply n>1). In the following we show that v cannot decay at
all, if n=0, thus reaching a contradiction which excludes the case n=0.

Let S(t, 70), (1o <7) denote the evolution operator for the equation (3.3). It is
determined by the equation

S(t, 1o) =€ 4 + [ £ 94B(0) S(g, o) do.

Define R(z, 1) to be S(, 7o) —e™ 24, Then R(z, 1,) satisfies

R(t, 19)= [ €° " 74B(0) €™~ "4do

0

+ j e 94B(0) R(o, 10)do.

%o
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Using our exponential estimate for B, we see that

(5.2 IR (z, 7o)l é% e o+ j e **|R(a, %)l do.

To

We claim that this implies |R(, 7,)| < e~ 2™. Indeed, for t =1, this is certainly true. Let
7, be the supremum of all 7> 7, for which the assertion is true. By continuity we have
T, >1y. If 7y <oo,then our inequality (5. 2) implies

T B

IR(zy, To)“§§e 2t"+5e Zogup ||R(z, 7o)l
<11

1

2

<e 2w

é (1+e-—210)e—2t0

since 7, > 0. By continuity this implies that the assertion is true for t slightly larger than
7,. The contradiction shows that 7, cannot be finite.

Let P be the orthogonal projection onto the lowest eigenvector of A, and write Q
for 1 — P. Then |P—e 4| =¢~° so that

IS(z, 7o) = Pl = [le® ™94 — P+ R(x, 7o)

ée—(t—ro) +e—2to .
Now let 7, and 7 be so large that
I8(z, 7o) — Pl £ 1072,
and ||Qu(ty)| £1072||Pv(t,)|| hold. This is possible since v/|v| converges to ¢, as
T — 0.
Then, using |Pv|? + ||Qv|? = ||v]|%, we get

lo@) =115z, 7o) v(zo)ll,
2 [[Po(zo) = 1072 [lu(zo)ll,

Z(1-1072 /(1+107%) [Pu(zo)].
Clearly, if v(r) tends to zero, then Puv(ty)=0 and therefore v(z,)=0, which is not the

case. This completes the proof of lemma 5. 4.

The following is a direct consequence of the preceding lemmas.

Lemma 5.5. If (x,, ty) € Z then there exists a continuous curve x ="y(t) in Z with
Y(to) = xo, which is defined for all values of t in (0, ty].

Proof. Let C be the set of all continuous curves x=7(t) in Z, defined on some
interval (¢, to], with y(t,) = x,.
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We define an ordering on C by saying that y, <y, if the graph of y, is contained
in the graph of y,. Clearly every chain in C has an upperbound. Since C is nonempty
(by lemma 5. 4) it contains a maximal element, y: (¢, t,] — R (by Zorn’s lemma).

If the lower bound of its domain ¢, is positive then lim y(t) exists by lemma (5. 3)
e
and lemma (5. 4) allows us to extend y to an interval (t; —¢, to], thereby contradicting

the maximality of .
Thus t; =0, and the proof is finished.

We can now prove the main result of this paper. The following is a reformulation
of Theorem A of the introduction.

Theorem 5. 6. For any t, the set of singular zeroes {(x, t) € S|t=t,} is discrete.

Proof. Let (xq,ty) €S be given. We shall construct an interval (x,—¢, x, +¢€)
which contains at most a finite number of singular zeroes.

For small positive h consider the function w" defined by
Wh(‘[a i):c,,w(xo, t0+h2(1_e*2r), he—t, é)
where the constant ¢, is chosen in such a way that w,(—1,-) has L,-norm one.

Then w" satisfies
|

(5.3) w£‘=5 wgg—%(éz—l)wHQh(é, 7w,

with Q,=2h%e™?*q(x +2he "¢ t+h*(1—e™%)).

By the compactness result of section 4, we can find a sequence h, | O such that the
wh(—1,-) converge in E,, say to W(-). Using standard results on continuous
dependence on initial data and coefficients we see that the corresponding solutions
wh(z, £) of (5. 3) converge to the solution of

(5.4) W=

1
S Wee—5 (E=DW

with initial value W(¢&).

More precisely, we get convergence in C([—1, t,); E,) for arbitrary finite 7, and
0 <1 by applying the variation of constants formula to (5.3). In particular we get
uniform convergence on compact subsets of [ —1, o) x R of w" and wh".

The limit solution is real analytic for all t> —1. Since both u and u, vanish at
(xo, to) all the w" and w" vanish at (0, 0), so that (0,0) is a singular zero of the limit
solution W.

Since W (0, &) is real analytic, £ =0 is an isolated zero of W(0, - ). We can therefore
choose an &> 0 such that W(0, +¢) +0. By continuity there also exists a J >0 such that
Wi(t, +€)+0 for —6<t<4. This 6 can be chosen in such a way that W(—¢, ) has
only simple zeroes in the interval —e¢<¢é<e.

Next we choose h so small that w" also satisfies these conditions, i.e. w(z, +¢&)+0
for —9<1<6 and simple zeroes only, on the segment {—d} x [—¢, +¢].
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Let N be the set
(5. 5) N={(xo+2he ¢ to+h2(1—e 29 | [E] S5 1| <8}
Then, by construction, u 40 on the sides of N, and u has a finite number of zeroes on

the bottom of N.

Suppose there are infinitely many zeroes (x,, t*) of u in N, all of which have the
same t-coordinate. Then by lemma S5.5. there exist curves y,:(0,t*]— R with
Ya(t*)=x, which lie in Z. The intersections of these curves with the bottom of N
produce infinitely many different zeroes of u, since the curves never touch each other
(see lemma 5. 3). Clearly this contradicts the way N was constructed.

So we see that for any t, u has only a finite number of zeroes on N N ({t} x R),
which implies the theorem.

The proof of this theorem allows us to show that zeroes of u “disappear” as time
increases.

Let N be as in (5. 5), with ¢ and J so small that (x,, t,) is the only zero of u in N
with t=t,. Then the following holds.

Lemma 5. 7. u(x, t) has more zeroes on the bottom of N (given by t= —§) than on
the top (t = + ).

Proof. Let w" and W be as in the proof of the last theorem. By construction the
w*(0, £) have exactly one zero in [—¢, +¢], namely ¢ =0. This zero is a multiple zero
since we have assumed u,(x,, t;) =0 all along. Therefore (0, 0) is a multiple zero of W.
Analyticity of W allows us to apply the results in [AF], section 5, to conclude that W
has at most one zero on {0} x [ —¢, +¢], and at least two zeroes on {—3J} x [—e¢, +¢].

Therefore, for small enough ¢ and & the same is true of w”, and hence for w.

Finally we note that theorem B of the introduction can easily be deduced from
this last lemma.

Appendix

We recall some results from our paper [A].

In the appendix to that paper we studied the asymptotic behaviour of solutions
u(t) of the equation

(A. 1) uw'(t) + Au(t) = B(t)u(t)

where A is a self adjoint operator on a Hilbert space E and B(t) is a bounded family of
operators on E. We assumed the following about A:
(1) A is bounded from below.

(2) There is a sequence of intervals [, ;] such that

[, Bl No(A)=0 (k,=1,2,...)
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and
ak<ﬁk§ak+l (k=l,2,...).
Then, writing y, = (x, + f;)/2 and 6, = (B, — o,)/2 we assumed the following about B(t):

(3) M =sup ||B(t)| is finite, and in fact
20

(&)
sup | — )< 1.
k21 5k

Since all the solutions that we dealt with in [A] had to be classical solutions we had to
assume that the B(t) were Holder continuous in the time variable. In the present paper
we deal with mild solutions, so that we do not need this extra hypothesis.

The first result from [A], appendix, that is relevant to this paper is lemma 5 (b).
This lemma says the following:

Lemma A. 1. Let u(t) be a mild solution of (A. 1), and assume (1), (2) and (3) hold.
Then there is a y <oo such that

limsup e lu(t)| > 0.
t—>
In other words, solutions of (A. 1) cannot decay faster than exponentially.
The other relevant result from [A] requires an extra hypothesis namely:

4 Eﬂ”BmH:Q

Let P, be the spectral projection of the self adjoint operator A, belonging to the interval
(—00,y,], and let

at) =u(t)/[lu()|

where u(t) is a solution of (A. 1). Then lemma 7 of [A] goes as follows:

Lemma A.2. There is a unique integer ko =1 such that

(=0 if k<ko,
(a) lim nPku(t)n{ _
t— o0 =1 lf‘ ksz)
=0 if k<k,,
(b) lim sup "' nu(t)u{ °
t— o > 1 !f kgko-

In the special case that for any k=1 a(4) N (B, %+ ) consists of precisely one
simple eigenvalue, whose corresponding eigenfunction will be called ¢,, this lemma
implies that

a(t)— + @, as t—t,.
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