Dirichlet problem at infinity for the minimal graph equation on Cartan-Hadamard manifolds

Ilkka Holopainen

University of Helsinki
ilkka.holopainen@helsinki.fi
June 16, 2015
based on joint works with
Jean-Baptiste Casteras, Esko Heinonen, and Jaime Ripoll

Overview

(1) Introduction

- Minimal graph equation
- Connection to harmonic functions/mappings
(2) Asymptotic Dirichlet problem
- Setting
- Asymptotic Dirichlet problem
- Curvature bounds
- Results
- Sketch of proof

Minimal graph equation

Suppose that $\Omega \subset \mathbb{R}^{n}$ is a bounded domain and $u: \bar{\Omega} \rightarrow \mathbb{R}$ a smooth function.
Let

$$
S_{u}=\{(x, u(x)): x \in \Omega\} \subset \Omega \times \mathbb{R}
$$

be the graph of u.
The area (n-dim. measure) of S_{u} is:

$$
\mathcal{A}(u)=\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d x .
$$

We want to minimize (the area functional) \mathcal{A} among all functions with boundary values $u \mid \partial \Omega$.
Let $\eta \in C_{0}^{\infty}(\Omega)$ and consider $u+t \eta, t \in \mathbb{R}$.

Minimal graph equation

If u is a minimizer, then

$$
0=\frac{d}{d t} \mathcal{A}(u+t \eta)_{\mid t=0}=\cdots=\int_{\Omega} \frac{\langle\nabla u, \nabla \eta\rangle d x}{\sqrt{1+|\nabla u|^{2}}}
$$

This is the weak form of the minimal graph equation

$$
\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=0
$$

(The left hand side is also called the mean curvature operator.)

Connection to harmonic functions/mappings

Intuitively: Suppose $S_{u} \approx$ "flat", i.e. $|\nabla u| \approx 0$. Then

$$
\begin{aligned}
\int_{\Omega} \sqrt{1+|\nabla u|^{2}} d x & =\int_{\Omega}\left(1+\frac{1}{2}|\nabla u|^{2}+\text { higher order terms }\right) d x \\
& \approx m(\Omega)+\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x
\end{aligned}
$$

Minimizers of

$$
\int_{\Omega}|\nabla u|^{2} d x
$$

are harmonic functions.

Connection to harmonic functions/mappings

Precisely: Let $N^{n} \subset \mathbb{R}^{m}$ be a (smooth) submanifold and

$$
\pi: N^{n} \hookrightarrow M^{m}, \quad \pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{m}\right)
$$

the inclusion map. Then

$$
\Delta^{N} \pi=\left(\Delta^{N} \pi_{1}, \Delta^{N} \pi_{2}, \ldots, \Delta^{N} \pi_{m}\right)=H
$$

where Δ^{N} is the Laplace-Beltrami operator on N (w.r.t. induced structure) and H is the mean curvature (vector).
In particular, if N is a minimal submanifold $(\Longleftrightarrow H \equiv 0)$, then each π_{i} is a harmonic function on N.

Connection to harmonic functions/mappings

For minimal graphs $S_{u} \subset \mathbb{R}^{n+1}$ this means:

$$
\pi_{\mathbb{R}}: S_{u} \rightarrow \mathbb{R}, \quad \pi_{\mathbb{R}}(x, u(x))=u(x) \quad \text { (height function) }
$$

is a harmonic function on S_{u}.

$$
\pi_{\mathbb{R}^{n}}: S_{u} \rightarrow \mathbb{R}^{n}, \quad \pi_{\mathbb{R}^{n}}(x, u(x))=x
$$

is a harmonic mapping on S_{u}.

Setting

From now on:
M: n-dimensional ($n \geq 2$) Cartan-Hadamard manifold, i.e. complete, connected, simply connected Riemannian manifold, with all sectional curvatures $K \leq 0$.
$\partial_{\infty} M$: asymptotic boundary (sphere at infinity), the set of all equivalence classes of unit speed geodesic rays:

$$
\gamma_{1} \sim \gamma_{2} \Longleftrightarrow \sup _{t \geq 0} d\left(\gamma_{1}(t), \gamma_{2}(t)\right)<\infty
$$

Equivalently, $\partial_{\infty} M$ is the set of all unit speed geodesic rays starting from a fixed $o \in M$, hence we may interprete $\partial_{\infty} M=\mathbb{S}^{n-1} \subset T_{o} M$. Compactification: $\bar{M}=M \cup \partial_{\infty} M$ equipped with the cone topology. \bar{M} homeomorphic to $\overline{B^{n}} \subset \mathbb{R}^{n}, \partial_{\infty} M$ homeomorphic to $\mathbb{S}^{n-1} \subset \mathbb{R}^{n}$.

Asymptotic Dirichlet problem

Given $\theta \in C\left(\partial_{\infty} M\right)$, find a (unique) $u \in C(\bar{M}) \cap C^{\infty}(M)$ such that

$$
\left\{\begin{array}{l}
\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=0 \quad \text { in } M, \\
u \mid \partial_{\infty} M=\theta
\end{array}\right.
$$

Remark

In fact, we are looking for the minimal submanifold $S_{u} \subset M \times \mathbb{R}$, the graph of u, with prescribed "asymptotic boundary" $\left\{(y, \theta(y)): y \in \partial_{\infty} M\right\} \subset \partial_{\infty} M \times \mathbb{R}$.

Remark

Of course, this is not always possible (ex. \mathbb{R}^{n}).

Curvature bounds

We consider this problem under curvature bounds

$$
-b(r(x))^{2} \leq K\left(P_{x}\right) \leq-a(r(x))^{2} \quad(<0)
$$

where $a, b:[0, \infty) \rightarrow(0, \infty)$ are smooth, $r(x)=d(x, o), o \in M$ fixed, and $K\left(P_{x}\right)$ is the sectional curvature of (a 2-plane) $P_{x} \subset T_{x} M$. We want to find "optimal" curvature bounds a and b, in particular, we are interested in the curvature upper bound function a.

Results

In Theorems below, the curvature bounds are assumed outside a compact set, i.e. $r(x) \geq R_{0}$ and "YES" means that the asymptotic Dirichlet problem for

$$
\left\{\begin{array}{l}
\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=0 \quad \text { in } M \\
u \mid \partial_{\infty} M=\theta
\end{array}\right.
$$

is solvable with any continuous $\theta \in C\left(\partial_{\infty} M\right)$.

Earlier results

Theorem (Ripoll, Telichevesky (2013); Casteras, H., Ripoll (2013))

Suppose that

$$
-r(x)^{-2-\varepsilon} \exp (2 k r(x)) \leq K\left(P_{x}\right) \leq-k^{2}
$$

for some constants $k, \varepsilon>0$. Then YES.

Theorem (Casteras, H., Ripoll (2013))

Suppose that

$$
-r(x)^{2(\phi-2)-\varepsilon} \leq K\left(P_{X}\right) \leq-\frac{\phi(\phi-1)}{r(x)^{2}}
$$

for some constants $\phi>1,0<\varepsilon<2(\phi-1)$. Then YES.

Recent result

Theorem (Casteras, H., Ripoll (2015))

Suppose that $n=\operatorname{dim} M \geq 3$ and

$$
-\frac{(\log r(x))^{2 \bar{\varepsilon}}}{r(x)^{2}} \leq K\left(P_{x}\right) \leq-\frac{1+\varepsilon}{r(x)^{2} \log r(x)}
$$

for some constants $\varepsilon>\bar{\varepsilon}>0$. Then YES.

Remark

Curvature upper bound close to optimal.

Remark

These same curvature bounds apply to a large class of PDEs (Laplacian, p-Laplacian, ...) and are the best known bounds under which asymptotic Dirichlet problems are solvable.

Most recent result

Theorem (Casteras, Heinonen, H. (2015))

Suppose that

$$
\begin{aligned}
K\left(P_{x}\right) & \leq-\frac{\phi(\phi-1)}{r(x)^{2}}, \quad \phi>1, \\
\left|K\left(P_{x}\right)\right| & \leq C\left|K\left(P_{x}^{\prime}\right)\right|
\end{aligned}
$$

for all 2-planes $P_{x}, P_{x}^{\prime} \subset T_{x} M$ and that

$$
\operatorname{dim} M=n>\frac{4}{\phi}+1 .
$$

Then YES.

Comment on sharpness

Remark

A curvature upper bound alone is not sufficient for solvability.

Theorem (Ripoll, H. (2013))

There exists a 3-dimensional Cartan-Hadamard manifold M, with $K \leq-1$, such that the asymptotic Dirichlet problem is not solvable for any continuous (nonconstant) boundary data.

Sketch of proof

Let's recall:

Theorem (Casteras, H., Ripoll (2015))

Suppose that $n=\operatorname{dim} M \geq 3$ and

$$
-\frac{(\log r(x))^{2 \bar{\varepsilon}}}{r(x)^{2}} \leq K\left(P_{x}\right) \leq-\frac{1+\varepsilon}{r(x)^{2} \log r(x)}=:-a(r(x))^{2}
$$

for some constants $\varepsilon>\bar{\varepsilon}>0$. Then YES.
Given $\theta \in C\left(\partial_{\infty} M\right)$, interpret it as $\theta \in C\left(\mathbb{S}^{n-1}\right)$, $\mathbb{S}^{n-1} \subset T_{o} M$ unit sphere.
Suppose θ is L-Lipschitz, extend it radially to $\theta \in C(M \backslash\{o\})$. (In fact, we also smooth out θ.) Then we have

$$
|\nabla \theta(x)| \leq \frac{c}{f_{a}(r(x))} \leq \frac{c}{r(x)(\log r(x))^{1+\tilde{\varepsilon}}}, \quad 0<\tilde{\varepsilon}<\varepsilon
$$

Sketch of proof

where f_{a} is the solution to Jacobi equation

$$
\begin{cases}f_{a}^{\prime \prime} & =a^{2} f_{a} \\ f_{a}^{\prime}(0) & =1 \\ f_{a}(0) & =0,\end{cases}
$$

$a=$ the function in curvature upper bound.
Take a sequence $B_{i}=B\left(o, r_{i}\right), r_{i} \nearrow \infty$. Solve

$$
\left\{\begin{array}{l}
\operatorname{div} \frac{\nabla u_{i}}{\sqrt{1+\left|\nabla u_{i}\right|^{2}}}=0 \quad \text { in } B_{i} \\
u_{i} \mid \partial B_{i}=\theta
\end{array}\right.
$$

Apply interior gradient estimates and regularity theory of elliptic PDEs to extract a converging subsequence

$$
u_{i k} \rightarrow u \quad \text { in } C_{\mathrm{loc}}^{2}(M)
$$

Sketch of proof

The limit u is a smooth solution to the minimal graph equation in M, so we are left with the problem to show

$$
\lim _{x \rightarrow x_{0}} u(x)=\theta\left(x_{0}\right) \quad \forall x_{0} \in \partial_{\infty} M
$$

Denote

$$
h=\frac{|u-\theta|}{\nu}, \quad \nu \text { sufficient large constant. }
$$

Want to show

$$
\begin{equation*}
\varphi(h(x)) \rightarrow 0 \quad \text { as } x \rightarrow x_{0} \in \partial_{\infty} M \tag{1}
\end{equation*}
$$

where φ is a smooth homeomorphism $\varphi:[0, \infty) \rightarrow[0, \infty)$ satisfying

$$
\lim _{t \rightarrow 0} \frac{\varphi^{\prime \prime}(t) \varphi(t)}{\varphi^{\prime}(t)^{2}}=1
$$

Sketch of proof

Writing $\psi(t)=\varphi^{\prime}(t) \varphi(t)$, we have

$$
\begin{aligned}
& \varphi^{\prime}(t)^{2} \approx \frac{1}{2} \psi^{\prime}(t) \\
& \frac{\psi(t)^{2}}{\psi^{\prime}(t)} \approx \frac{1}{2} \varphi(t)^{2}
\end{aligned}
$$

for $t \approx 0$.
We show (1) $(=\varphi(h(x)) \rightarrow 0)$ by proving:

$$
\int_{M} \varphi(h)^{2}<\infty
$$

and

$$
\sup _{B\left(x, r_{0}\right)} \varphi(h)^{2(n+1)} \leq c \int_{B\left(x, 2 r_{0}\right)} \varphi(h)^{2}
$$

Strategy of the proof

Caccioppoli inequality
 Weighted Poincaré inequality
 $$
\int_{M} \varphi(h)^{2}<\infty
$$

Caccioppoli inequality
Sobolev inequality $\} \stackrel{\text { Moser iteration }}{\Longrightarrow}$

$$
\sup _{B\left(x, r_{0}\right)} \varphi(h)^{2(n+1)} \leq c \int_{B\left(x, 2 r_{0}\right)} \varphi(h)^{2} .
$$

Caccioppoli inequality

Lemma

Suppose that $\Psi:[0, \infty) \rightarrow[0, \infty)$ is a smooth homeomorphism, $B=B(o, R), \omega \geq 0$ locally Lipschitz, $\theta, u \in C(B) \cap W^{1,2}(B)$ bounded, $u \in C^{2}(B)$ a solution to

$$
\operatorname{div} \frac{\nabla u}{W}=0, \quad W=\sqrt{1+|\nabla u|^{2}}
$$

in $B, h=|u-\theta| / \nu$. Suppose that $\omega^{2} \Psi(h) W \in W_{0}^{1,2}(B)$. Then

$$
\begin{aligned}
\int_{B} \omega^{2} \Psi^{\prime}(h)|\nabla u|^{2} & \leq 4 \int_{B} \omega^{2} \Psi^{\prime}(h)|\nabla \theta|^{2}+8 \nu^{2} \int_{B} \frac{\Psi^{2}}{\Psi^{\prime}}(h)|\nabla \omega|^{2} \\
& +4 \nu^{2} \int_{B} \omega^{2} \frac{\Psi^{2}}{\Psi^{\prime}}(h)|\nabla \log W|^{2}
\end{aligned}
$$

Caccioppoli inequality

Proof.

Use

$$
\eta=\nu \omega^{2} W\left(\Psi\left(\frac{(u-\theta)^{+}}{\nu}\right)-\Psi\left(\frac{(u-\theta)^{-}}{\nu}\right)\right)
$$

as a test function in

$$
\int_{B} \frac{\langle\nabla u, \nabla \eta\rangle d x}{\sqrt{1+|\nabla u|^{2}}}=0
$$

Weighted Poincaré inequality

$$
\begin{aligned}
& \left.\begin{array}{c}
K \leq 0, \text { everywhere } \\
K\left(P_{x}\right) \leq-\frac{1+\varepsilon}{r(x)^{2} \log r(x)}, r(x) \geq R_{0}
\end{array}\right\} \quad \text { Laplace comparison } \\
& r(x) \Delta r(x) \geq \begin{cases}n-1, & \text { everywhere } \\
(n-1)\left(1+\frac{1+\tilde{\varepsilon}}{\log r(x)}\right), & r(x) \geq R_{1},\end{cases} \\
& \text { Let } B=B(o, R), R \gg R_{1}, \theta \in C^{\infty}(M) \text {, and } u \in C^{2}(\bar{B}) \text { be the unique } \\
& \text { solution to the minimal graph equation with } u|\partial B=\theta| \partial B \text {. }
\end{aligned}
$$

Weighted Poincaré inequality

The estimates for $\Delta r(x)$, integration by parts, Hölder's inequality, etc.
\qquad

$$
n(\int \varphi(h)^{2}(\underbrace{\log (1+r)+\mathcal{C}(r))}_{=: L(r)})^{1 / 2} \leq 2\left(\int \varphi^{\prime}(h)^{2}|\nabla h|^{2} \omega^{2}\right)^{1 / 2}
$$

where $\mathcal{C}:[0, \infty) \rightarrow[0, \infty)$ is a bounded, smooth function, and

$$
\omega=\frac{r \log (1+r)}{\sqrt{L(r)}}
$$

The idea is to estimate (modify) the RHS and absorb terms to the left:

$$
\begin{aligned}
\left(\int \varphi^{\prime}(h)^{2}|\nabla h|^{2} \omega^{2}\right)^{1 / 2} & \leq c(\int \underbrace{\psi^{\prime}(h)}_{\sim \varphi^{\prime}(h)^{2}}|\nabla u|^{2} \omega^{2})^{1 / 2} \\
& +\frac{1}{\nu}\left(\int \varphi^{\prime}(h)^{2}|\nabla \theta|^{2} \omega^{2}\right)^{1 / 2}
\end{aligned}
$$

Sketch of proof

$$
\begin{aligned}
&\left(\int \varphi^{\prime}(h)^{2}|\nabla h|^{2} \omega^{2}\right)^{1 / 2} \leq c((\underbrace{\psi^{\prime}(h)}_{\sim \varphi^{\prime}(h)^{2}}|\nabla u|^{2} \omega^{2})^{1 / 2} \\
&+\frac{1}{\nu}\left(\int \varphi^{\prime}(h)^{2}|\nabla \theta|^{2} \omega^{2}\right)^{1 / 2} \\
& \text { Cacc. } c\left(\int \varphi^{\prime}(h)^{2}|\nabla \theta|^{2} \omega^{2}\right)^{1 / 2} \\
&+c(\int \frac{\psi^{2}}{\psi^{\prime}}(h) \underbrace{|\nabla \omega|^{2}}_{\sim L(r)})^{1 / 2} \\
&+c\left(\int\right)^{\varphi(h)^{2}} \underbrace{|\nabla \log W|^{2}}_{=o\left(1 / r^{2}\right)} \omega^{2})^{1 / 2}
\end{aligned}
$$

Sketch of proof

Absorbing terms to the left, we get

$$
\begin{equation*}
(n-\sqrt{8}(1+\delta))\left(\int \varphi(h)^{2} L(r)\right)^{1 / 2} \leq C+c\left(\int \varphi^{\prime}(h)^{2}|\nabla \theta|^{2} \omega^{2}\right)^{1 / 2} \tag{2}
\end{equation*}
$$

$\delta>0$ (as small as we wish by choosing ν large).
Then we use Young's inequality

$$
a b=k a(b / k) \leq k G(\sqrt{a})^{2}+k F(\sqrt{b / k}), k>0
$$

with complementary Young functions $F(\sqrt{ })$ and $G(\sqrt{ } \cdot)^{2}$ satisfying

$$
G \circ \varphi^{\prime}=\varphi
$$

and

$$
F(t) \leq \exp \left(-\frac{1}{t}\left(\log \frac{1}{t}\right)^{-1-\varepsilon_{0}}\right), \quad t>0 \text { small }
$$

Sketch of proof

to further estimate the RHS:

$$
\begin{aligned}
\int \varphi^{\prime}(h)^{2}|\nabla \theta|^{2} \omega^{2} & =\int \varphi^{\prime}(h)^{2}|\nabla \theta|^{2} L(r)\left(\frac{|\nabla \theta| r \log (1+r)}{L(r)}\right)^{2} \\
& \leq k \int \underbrace{G\left(\sqrt{\varphi^{\prime}(h)^{2}}\right)^{2}}_{=\varphi(h)^{2}} L(r) \\
& +k \int F\left(\frac{|\nabla \theta| r \log (1+r)}{\sqrt{k} L(r)}\right) L(r), k>0 \text { small. }
\end{aligned}
$$

The first term on the right can be absorbed to the LHS of (2).

Sketch of proof

Finally we obtain

$$
\int \varphi(h)^{2} L(r) \leq C+c \int F\left(\frac{|\nabla \theta| r}{c}\right) L(r)
$$

Combining estimates:

$$
\begin{aligned}
F(t) & \leq \exp \left(-\frac{1}{t}\left(\log \frac{1}{t}\right)^{-1-\varepsilon_{0}}\right), \quad t>0 \text { small, } \\
|\nabla \theta| & \leq \frac{c}{r(\log r)^{1+\tilde{\varepsilon}}} \text { from the curvature upper bound, } \\
d V & \leq f_{b}^{n-1} d r \wedge d \vartheta \quad \text { from curvature the lower bound, }
\end{aligned}
$$

we get

$$
\int_{B(o, R)} \varphi(h)^{2} L(r) \leq C<\infty
$$

with C independent of the radius R.

The role of curvature lower bound

Remark

The curvature lower bound was used in two places:

- To obtain the estimate

$$
|\nabla \log W|=o(1 / r), \quad r \rightarrow \infty, \quad W=\sqrt{1+|\nabla u|^{2}} .
$$

- To estimate the volume form

$$
d V \leq f_{b}^{n-1} d r \wedge d \vartheta,
$$

where f_{b} is the solution to the Jacobi equation

$$
\begin{cases}f_{b}^{\prime \prime} & =b^{2} f_{b} \\ f_{b}^{\prime}(0) & =1 \\ f_{b}(0) & =0 .\end{cases}
$$

Most recent result

Let's recall
Theorem (Casteras, Heinonen, H. (2015))
Suppose that

$$
\begin{aligned}
K\left(P_{x}\right) & \leq-\frac{\phi(\phi-1)}{r(x)^{2}}, \quad \phi>1, \\
\left|K\left(P_{x}\right)\right| & \leq C\left|K\left(P_{x}^{\prime}\right)\right|
\end{aligned}
$$

for all 2-planes $P_{x}, P_{x}^{\prime} \subset T_{x} M$ and that

$$
\operatorname{dim} M=n>\frac{4}{\phi}+1 .
$$

Then YES.

Sketch of proof

Remark

Since there is no curvature lower bound, we do not have an estimate for $|\nabla \log W|$. Therefore, we must use another form of a Caccioppoli inequality.

Another Caccioppoli inequality

Lemma

Suppose that $\Psi:[0, \infty) \rightarrow[0, \infty)$ is a smooth homeomorphism, $B=B(o, R), \omega \geq 0$ locally Lipschitz, $\theta, u \in C(B) \cap W^{1,2}(B)$ bounded, $u \in C^{2}(B)$ a solution to

$$
\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=0
$$

in $B, h=|u-\theta| / \nu$. Suppose that $\omega^{2} \Psi(h) \in W_{0}^{1,2}(B)$. Then $\forall \varepsilon>0$

$$
\begin{aligned}
\int_{B} \omega^{2} \Psi^{\prime}(h) \frac{|\nabla u|^{2}}{\sqrt{1+|\nabla u|^{2}}} & \leq C_{\varepsilon} \int_{B} \omega^{2} \Psi^{\prime}(h)|\nabla \theta|^{2} \\
& +(4+\varepsilon) \nu^{2} \int_{B} \frac{\Psi^{2}}{\Psi^{\prime}}(h)|\nabla \omega|^{2}
\end{aligned}
$$

Another Caccioppoli inequality

We split the LHS into two parts and estimate:

$$
\begin{align*}
\int_{B} \omega^{2} \Psi^{\prime}(h) \frac{|\nabla u|^{2}}{\sqrt{1+|\nabla u|^{2}}} & \geq c_{1} \int_{U_{1}} \omega^{2} \Psi^{\prime}(h)|\nabla u|^{2} \tag{3}\\
& +c_{2} \int_{U_{2}} \omega^{2} \Psi^{\prime}(h)|\nabla u|
\end{align*}
$$

with

$$
\begin{aligned}
U_{1}=\{|\nabla u| & \leq \sigma\}, U_{1}=\{|\nabla u|>\sigma\}, \sigma>0 \text { const. } \\
c_{1} & =\frac{1}{\sqrt{1+\sigma^{2}}}, \quad c_{2}=\frac{1}{\sqrt{1+\sigma^{-2}}}
\end{aligned}
$$

Weighted Poincaré inequality

$$
\left.\begin{array}{c}
K \leq 0, \text { everywhere } \\
K\left(P_{x}\right) \leq-\frac{\phi(\phi-1)}{r(x)^{2}}, r(x) \geq R_{0}
\end{array}\right\} \stackrel{\text { Laplace comparison }}{\Longrightarrow} \quad \begin{array}{cc}
\\
r \Delta r(x) \geq \begin{cases}n-1, & \text { everywhere } \\
\frac{(n-1) \phi}{1+\varepsilon}=: C_{0}, & r(x) \geq R_{1},\end{cases}
\end{array}
$$

$$
\varepsilon>0, R_{1}=R_{1}(\varepsilon)>R_{0} .
$$

Weighted Poincaré inequality

This time we obtain

$$
\left(1+C_{0}\right) \int_{B} \varphi(h) \leq C+c \int_{B} r \varphi^{\prime}(h)|\nabla h| .
$$

Estimating the RHS is more complicated. For instance, using (3), splitting $U_{1}=U_{3} \cup U_{4}$,

$$
U_{3}=\left\{|\nabla u| \leq \tilde{\sigma} \frac{\varphi(h)}{\varphi^{\prime}(h) r}\right\}, \quad U_{3}=\left\{\tilde{\sigma} \frac{\varphi(h)}{\varphi^{\prime}(h) r}<|\nabla u| \leq \sigma\right\},
$$

and using Caccioppoli (twice) we get

$$
c \int_{B} \varphi(h) \leq C+c \int_{B} r \varphi^{\prime}(h)|\nabla \theta|+c \int_{B} r^{2} \varphi^{\prime \prime}(h)|\nabla \theta|^{2}
$$

To handle the last term on the right, we need another pair of complementary Young functions G_{1} and F_{1} such that

Sketch of proof

$G_{1} \circ \varphi^{\prime \prime}=\varphi$ and

$$
F_{1}(t) \leq c t \exp \left(-\frac{2^{\lambda}}{\sqrt{t}}\left(\log \frac{1}{t}\right)^{-\lambda}\right), \lambda>1
$$

Putting all these together, we get

$$
\left(C_{0}-4-\varepsilon^{\prime}\right) \int_{B} \varphi(h) \leq c+c \int_{B} F(r|\nabla \theta|)+c \int_{B} F_{1}\left(r^{2}|\nabla \theta|^{2}\right)
$$

Curvature pinching condition \Longrightarrow

$$
\begin{gathered}
J(x) \leq j(x)^{C}, \quad \text { where } \\
J(x)=\max |V(r(x))|, \quad j(x)=\min |V(r(x))|
\end{gathered}
$$

V Jacobi field along the geodesic ray γ from o to x, $V_{0}=0,\left|V_{0}^{\prime}\right|=1, V \perp \dot{\gamma}$.

Sketch of proof

In particular,

$$
\begin{aligned}
|\nabla \theta(x)| & \leq \frac{c}{j(x)}, \\
d V & \leq j(x)^{C(n-1)} d r \wedge d \vartheta
\end{aligned}
$$

These together with estimates of the F and F_{1} imply that

$$
\begin{aligned}
\left(C_{0}-4-\varepsilon^{\prime}\right) \int_{B} \varphi(h) & \leq c+c \int_{B} F(r|\nabla \theta|)+c \int_{B} F_{1}\left(r^{2}|\nabla \theta|^{2}\right) \\
& \leq c<\infty
\end{aligned}
$$

with C independent of (the radius of) $B=B(o, R)$.

References

國 J.-B. Casteras, E. Heinonen, I. Holopainen (2015)
Solvability of minimal graph equation under pointwise pinching condition for sectional curvatures
arXiv:1504.05378
(i. J.-B. Casteras, I. Holopainen, J. Ripoll (2013)

On the asymptotic Dirichlet problem for the minimal hypersurface equation in a Hadamard manifold
arXiv:1311.5693
屢 J.-B. Casteras, I. Holopainen, J. Ripoll (2015)
Asymptotic Dirichlet problem for A-harmonic and minimal graph equations in
Cartan-Hadamard manifolds
arXiv:1501.05249
I. Holopainen, J. Ripoll (2013)

Nonsolvability of the asymptotic Dirichlet problem for some quasilinear elliptic PDEs on Hadamard manifolds
arXiv:1312.6285, to appear in Rev. Mat. Iberoamericana

References

J. Ripoll, M. Telichevesky (2013)

Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems arXiv:1301.0444, Trans. Amer. Math. Soc. 367 (2015), 1523-1541

Gràcies

