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Minimal graph equation

Suppose that Ω ⊂ Rn is a bounded domain and u : Ω̄→ R a smooth
function.
Let

Su =
{(

x ,u(x)
)

: x ∈ Ω
}
⊂ Ω× R

be the graph of u.
The area (n-dim. measure) of Su is:

A(u) =

∫
Ω

√
1 + |∇u|2dx .

We want to minimize (the area functional) A among all functions with
boundary values u|∂Ω.
Let η ∈ C∞0 (Ω) and consider u + tη, t ∈ R.
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Minimal graph equation

If u is a minimizer, then

0 =
d
dt
A(u + tη)|t=0 = · · · =

∫
Ω

〈∇u,∇η〉dx√
1 + |∇u|2

.

This is the weak form of the minimal graph equation

div
∇u√

1 + |∇u|2
= 0.

(The left hand side is also called the mean curvature operator .)
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Connection to harmonic functions/mappings

Intuitively: Suppose Su ≈ ”flat", i.e. |∇u| ≈ 0. Then∫
Ω

√
1 + |∇u|2dx =

∫
Ω

(
1 + 1

2 |∇u|2 + higher order terms
)

dx

≈ m(Ω) + 1
2

∫
Ω
|∇u|2dx .

Minimizers of ∫
Ω
|∇u|2dx

are harmonic functions.
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Connection to harmonic functions/mappings

Precisely: Let Nn ⊂ Rm be a (smooth) submanifold and

π : Nn ↪→ Mm, π = (π1, π2, . . . , πm)

the inclusion map. Then

∆Nπ = (∆Nπ1,∆
Nπ2, . . . ,∆

Nπm) = H,

where ∆N is the Laplace-Beltrami operator on N (w.r.t. induced
structure) and H is the mean curvature (vector).
In particular, if N is a minimal submanifold (⇐⇒ H ≡ 0), then each πi
is a harmonic function on N.
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Connection to harmonic functions/mappings

For minimal graphs Su ⊂ Rn+1 this means:

πR : Su → R, πR
(
x ,u(x)

)
= u(x) (height function)

is a harmonic function on Su.

πRn : Su → Rn, πRn
(
x ,u(x)

)
= x

is a harmonic mapping on Su.
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Setting

From now on:
M: n-dimensional (n ≥ 2) Cartan-Hadamard manifold , i.e. complete,
connected, simply connected Riemannian manifold, with all sectional
curvatures K ≤ 0.
∂∞M: asymptotic boundary (sphere at infinity), the set of all
equivalence classes of unit speed geodesic rays:

γ1 ∼ γ2 ⇐⇒ supt≥0d
(
γ1(t), γ2(t)

)
<∞.

Equivalently, ∂∞M is the set of all unit speed geodesic rays starting
from a fixed o ∈ M, hence we may interprete ∂∞M = Sn−1 ⊂ ToM.
Compactification: M = M ∪ ∂∞M equipped with the cone topology .
M homeomorphic to B̄n ⊂ Rn, ∂∞M homeomorphic to Sn−1 ⊂ Rn.
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Asymptotic Dirichlet problem

Given θ ∈ C(∂∞M), find a (unique) u ∈ C(M) ∩ C∞(M) such thatdiv
∇u√

1 + |∇u|2
= 0 in M,

u|∂∞M = θ.

Remark
In fact, we are looking for the minimal submanifold Su ⊂ M × R, the
graph of u, with prescribed ”asymptotic boundary"{(

y , θ(y)
)

: y ∈ ∂∞M
}
⊂ ∂∞M × R.

Remark
Of course, this is not always possible (ex. Rn).
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Curvature bounds

We consider this problem under curvature bounds

−b
(
r(x)

)2 ≤ K (Px ) ≤ −a
(
r(x)

)2
(< 0),

where a,b : [0,∞)→ (0,∞) are smooth,
r(x) = d(x ,o), o ∈ M fixed,
and K (Px ) is the sectional curvature of (a 2-plane) Px ⊂ TxM.
We want to find ”optimal" curvature bounds a and b, in particular, we
are interested in the curvature upper bound function a.
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Results

In Theorems below, the curvature bounds are assumed outside a
compact set, i.e. r(x) ≥ R0 and ”YES" means that the asymptotic
Dirichlet problem fordiv

∇u√
1 + |∇u|2

= 0 in M,

u|∂∞M = θ.

is solvable with any continuous θ ∈ C(∂∞M).
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Earlier results

Theorem (Ripoll, Telichevesky (2013); Casteras, H., Ripoll
(2013))

Suppose that

−r(x)−2−ε exp
(
2kr(x)

)
≤ K (Px ) ≤ −k2

for some constants k , ε > 0. Then YES.

Theorem (Casteras, H., Ripoll (2013))

Suppose that

−r(x)2(φ−2)−ε ≤ K (Px ) ≤ −φ(φ− 1)

r(x)2

for some constants φ > 1, 0 < ε < 2(φ− 1). Then YES.
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Recent result

Theorem (Casteras, H., Ripoll (2015))

Suppose that n = dim M ≥ 3 and

−
(
log r(x)

)2ε̄

r(x)2 ≤ K (Px ) ≤ − 1 + ε

r(x)2 log r(x)

for some constants ε > ε̄ > 0. Then YES.

Remark
Curvature upper bound close to optimal.

Remark
These same curvature bounds apply to a large class of PDEs
(Laplacian, p-Laplacian, ...) and are the best known bounds under
which asymptotic Dirichlet problems are solvable.
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Most recent result

Theorem (Casteras, Heinonen, H. (2015))

Suppose that

K (Px ) ≤ −φ(φ− 1)

r(x)2 , φ > 1,

|K (Px )| ≤ C|K (P ′x )|

for all 2-planes Px ,P ′x ⊂ TxM and that

dim M = n >
4
φ

+ 1.

Then YES.
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Comment on sharpness

Remark
A curvature upper bound alone is not sufficient for solvability.

Theorem (Ripoll, H. (2013))
There exists a 3-dimensional Cartan-Hadamard manifold M, with
K ≤ −1, such that the asymptotic Dirichlet problem is not solvable for
any continuous (nonconstant) boundary data.
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Sketch of proof

Let’s recall:

Theorem (Casteras, H., Ripoll (2015))

Suppose that n = dim M ≥ 3 and

−
(
log r(x)

)2ε̄

r(x)2 ≤ K (Px ) ≤ − 1 + ε

r(x)2 log r(x)
=: −a

(
r(x)

)2

for some constants ε > ε̄ > 0. Then YES.

Given θ ∈ C(∂∞M), interpret it as θ ∈ C(Sn−1), Sn−1 ⊂ ToM unit
sphere.
Suppose θ is L-Lipschitz,
extend it radially to θ ∈ C(M \ {o}). (In fact, we also smooth out θ.)
Then we have

|∇θ(x)| ≤ c
fa
(
r(x)

) ≤ c

r(x)
(
log r(x)

)1+ε̃
, 0 < ε̃ < ε,
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Sketch of proof

where fa is the solution to Jacobi equation
f ′′a = a2fa
f ′a(0) = 1
fa(0) = 0,

a = the function in curvature upper bound.
Take a sequence Bi = B(o, ri), ri ↗∞. Solvediv

∇ui√
1 + |∇ui |2

= 0 in Bi

ui |∂Bi = θ.

Apply interior gradient estimates and regularity theory of elliptic PDEs
to extract a converging subsequence

uik → u in C2
loc(M).
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Sketch of proof

The limit u is a smooth solution to the minimal graph equation in M, so
we are left with the problem to show

lim
x→x0

u(x) = θ(x0) ∀x0 ∈ ∂∞M.

Denote
h =

|u − θ|
ν

, ν sufficient large constant.

Want to show
ϕ
(
h(x)

)
→ 0 as x → x0 ∈ ∂∞M, (1)

where ϕ is a smooth homeomorphism ϕ : [0,∞)→ [0,∞) satisfying

lim
t→0

ϕ′′(t)ϕ(t)
ϕ′(t)2 = 1.
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Sketch of proof

Writing ψ(t) = ϕ′(t)ϕ(t), we have

ϕ′(t)2 ≈ 1
2
ψ′(t)

ψ(t)2

ψ′(t)
≈ 1

2
ϕ(t)2

for t ≈ 0.
We show (1) ( = ϕ(h(x))→ 0 ) by proving:∫

M
ϕ(h)2 <∞

and
sup

B(x ,r0)

ϕ(h)2(n+1) ≤ c
∫

B(x ,2r0)
ϕ(h)2.
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Strategy of the proof

Caccioppoli inequality

Weighted Poincaré inequality

 =⇒

∫
M
ϕ(h)2 <∞

Caccioppoli inequality

Sobolev inequality

 Moser iteration
=⇒

sup
B(x ,r0)

ϕ(h)2(n+1) ≤ c
∫

B(x ,2r0)
ϕ(h)2.
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Caccioppoli inequality

Lemma

Suppose that Ψ: [0,∞)→ [0,∞) is a smooth homeomorphism,
B = B(o,R), ω ≥ 0 locally Lipschitz, θ,u ∈ C(B) ∩W 1,2(B) bounded,
u ∈ C2(B) a solution to

div
∇u
W

= 0, W =
√

1 + |∇u|2,

in B, h = |u − θ|/ν. Suppose that ω2Ψ(h)W ∈W 1,2
0 (B). Then∫

B
ω2Ψ′(h)|∇u|2 ≤ 4

∫
B
ω2Ψ′(h)|∇θ|2 + 8ν2

∫
B

Ψ2

Ψ′
(h)|∇ω|2

+ 4ν2
∫

B
ω2 Ψ2

Ψ′
(h)|∇ log W |2.
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Caccioppoli inequality

Proof.
Use

η = νω2W
(

Ψ
( (u−θ)+

ν

)
−Ψ

( (u−θ)−

ν

))
as a test function in ∫

B

〈∇u,∇η〉dx√
1 + |∇u|2

= 0.
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Weighted Poincaré inequality

K ≤ 0, everywhere

K (Px ) ≤ − 1+ε
r(x)2 log r(x)

, r(x) ≥ R0

 Laplace comparison
=⇒

r(x)∆r(x) ≥


n − 1, everywhere

(n − 1)
(

1 + 1+ε̃
log r(x)

)
, r(x) ≥ R1,

0 < ε̃ < ε, R1 = R1(ε̃) > R0.
Let B = B(o,R), R � R1, θ ∈ C∞(M), and u ∈ C2(B̄) be the unique
solution to the minimal graph equation with u|∂B = θ|∂B.
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Weighted Poincaré inequality

The estimates for ∆r(x), integration by parts, Hölder’s inequality, etc.
=⇒

n
(∫

ϕ(h)2(log(1 + r) + C(r)
)︸ ︷︷ ︸

=:L(r)

)1/2
≤ 2

(∫
ϕ′(h)2|∇h|2ω2

)1/2
,

where C : [0,∞)→ [0,∞) is a bounded, smooth function, and

ω =
r log(1 + r)√

L(r)
.

The idea is to estimate (modify) the RHS and absorb terms to the left:(∫
ϕ′(h)2|∇h|2ω2

)1/2
≤ c

(∫
ψ′(h)︸ ︷︷ ︸
∼ϕ′(h)2

|∇u|2ω2
)1/2

+
1
ν

(∫
ϕ′(h)2|∇θ|2ω2

)1/2
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Sketch of proof

(∫
ϕ′(h)2|∇h|2ω2

)1/2
≤ c

(∫
ψ′(h)︸ ︷︷ ︸
∼ϕ′(h)2

|∇u|2ω2
)1/2

+
1
ν

(∫
ϕ′(h)2|∇θ|2ω2

)1/2

Cacc.
≤ c

(∫
ϕ′(h)2|∇θ|2ω2

)1/2

+ c
(∫ ψ2

ψ′
(h)︸ ︷︷ ︸

∼ϕ(h)2

|∇ω|2︸ ︷︷ ︸
≤L(r)

)1/2

+ c
(∫

ϕ(h)2 |∇ log W |2︸ ︷︷ ︸
=o(1/r2)

ω2
)1/2

.
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Sketch of proof

Absorbing terms to the left, we get

(
n −
√

8(1 + δ)
)(∫

ϕ(h)2L(r)
)1/2

≤ C + c
(∫

ϕ′(h)2|∇θ|2ω2
)1/2

, (2)

δ > 0 (as small as we wish by choosing ν large).
Then we use Young’s inequality

ab = ka(b/k) ≤ kG
(√

a
)2

+ kF
(√

b/k
)
, k > 0,

with complementary Young functions F
(√
·
)

and G
(√
·
)2 satisfying

G ◦ ϕ′ = ϕ

and

F (t) ≤ exp

(
−1

t

(
log

1
t

)−1−ε0
)
, t > 0 small,
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Sketch of proof

to further estimate the RHS:∫
ϕ′(h)2|∇θ|2ω2 =

∫
ϕ′(h)2|∇θ|2L(r)

(
|∇θ|r log(1 + r)

L(r)

)2

≤ k
∫

G
(√

ϕ′(h)2
)2︸ ︷︷ ︸

=ϕ(h)2

L(r)

+ k
∫

F
(
|∇θ|r log(1 + r)√

kL(r)

)
L(r), k > 0 small.

The first term on the right can be absorbed to the LHS of (2).
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Sketch of proof

Finally we obtain∫
ϕ(h)2L(r) ≤ C + c

∫
F
(
|∇θ|r

c

)
L(r).

Combining estimates:

F (t) ≤ exp

(
−1

t

(
log

1
t

)−1−ε0
)
, t > 0 small,

|∇θ| ≤ c
r(log r)1+ε̃

from the curvature upper bound,

dV ≤ f n−1
b dr ∧ dϑ from curvature the lower bound,

we get ∫
B(o,R)

ϕ(h)2L(r) ≤ C <∞,

with C independent of the radius R.
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The role of curvature lower bound

Remark
The curvature lower bound was used in two places:

To obtain the estimate

|∇ log W | = o(1/r), r →∞, W =
√

1 + |∇u|2.

To estimate the volume form

dV ≤ f n−1
b dr ∧ dϑ,

where fb is the solution to the Jacobi equation
f ′′b = b2fb
f ′b(0) = 1
fb(0) = 0.
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Most recent result

Let’s recall

Theorem (Casteras, Heinonen, H. (2015))

Suppose that

K (Px ) ≤ −φ(φ− 1)

r(x)2 , φ > 1,

|K (Px )| ≤ C|K (P ′x )|

for all 2-planes Px ,P ′x ⊂ TxM and that

dim M = n >
4
φ

+ 1.

Then YES.
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Sketch of proof

Remark
Since there is no curvature lower bound, we do not have an estimate
for |∇ log W |. Therefore, we must use another form of a Caccioppoli
inequality.

Ilkka Holopainen (University of Helsinki) Dirichlet problem at infinity June 16, 2015 31 / 40



Another Caccioppoli inequality

Lemma

Suppose that Ψ: [0,∞)→ [0,∞) is a smooth homeomorphism,
B = B(o,R), ω ≥ 0 locally Lipschitz, θ,u ∈ C(B) ∩W 1,2(B) bounded,
u ∈ C2(B) a solution to

div
∇u√

1 + |∇u|2
= 0

in B, h = |u − θ|/ν. Suppose that ω2Ψ(h) ∈W 1,2
0 (B). Then ∀ε > 0∫

B
ω2Ψ′(h)

|∇u|2√
1 + |∇u|2

≤ Cε

∫
B
ω2Ψ′(h)|∇θ|2

+ (4 + ε)ν2
∫

B

Ψ2

Ψ′
(h)|∇ω|2.
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Another Caccioppoli inequality

We split the LHS into two parts and estimate:∫
B
ω2Ψ′(h)

|∇u|2√
1 + |∇u|2

≥ c1

∫
U1

ω2Ψ′(h)|∇u|2 (3)

+ c2

∫
U2

ω2Ψ′(h)|∇u|,

with
U1 = {|∇u| ≤ σ}, U1 = {|∇u| > σ}, σ > 0 const.,

c1 =
1√

1 + σ2
, c2 =

1√
1 + σ−2

.
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Weighted Poincaré inequality

K ≤ 0, everywhere

K (Px ) ≤ −φ(φ−1)
r(x)2 , r(x) ≥ R0

 Laplace comparison
=⇒

r∆r(x) ≥


n − 1, everywhere

(n−1)φ
1+ε =: C0, r(x) ≥ R1,

ε > 0, R1 = R1(ε) > R0.
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Weighted Poincaré inequality

This time we obtain

(1 + C0)

∫
B
ϕ(h) ≤ C + c

∫
B

rϕ′(h)|∇h|.

Estimating the RHS is more complicated. For instance, using (3),
splitting U1 = U3 ∪ U4,

U3 =
{
|∇u| ≤ σ̃ ϕ(h)

ϕ′(h)r

}
, U3 =

{
σ̃ ϕ(h)
ϕ′(h)r < |∇u| ≤ σ

}
,

and using Caccioppoli (twice) we get

c
∫

B
ϕ(h) ≤ C + c

∫
B

rϕ′(h)|∇θ|+ c
∫

B
r2ϕ′′(h)|∇θ|2.

To handle the last term on the right, we need another pair of
complementary Young functions G1 and F1 such that
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Sketch of proof

G1 ◦ ϕ′′ = ϕ and

F1(t) ≤ ct exp

(
− 2λ√

t

(
log

1
t

)−λ)
, λ > 1.

Putting all these together, we get

(C0 − 4− ε′)
∫

B
ϕ(h) ≤ c + c

∫
B

F
(
r |∇θ|

)
+ c

∫
B

F1
(
r2|∇θ|2

)
.

Curvature pinching condition =⇒

J(x) ≤ j(x)C , where

J(x) = max
∣∣V(r(x)

)∣∣, j(x) = min
∣∣V(r(x)

)∣∣,
V Jacobi field along the geodesic ray γ from o to x ,
V0 = 0, |V ′0| = 1, V ⊥ γ̇.
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Sketch of proof

In particular,

|∇θ(x)| ≤ c
j(x)

,

dV ≤ j(x)C(n−1)dr ∧ dϑ

These together with estimates of the F and F1 imply that

(C0 − 4− ε′)
∫

B
ϕ(h) ≤ c + c

∫
B

F
(
r |∇θ|

)
+ c

∫
B

F1
(
r2|∇θ|2

)
≤ C <∞,

with C independent of (the radius of) B = B(o,R).
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