Department of Mathematics and Statistics Minimal Surfaces Exercise 7 7.11.2014

Return by Thursday, November 6.

- 1. [McShane-Whitney extension theorem.] Let X be a metric space, $A \subset X$, and $f: A \to \mathbb{R}$ an L-Lipschitz function. Prove that there exists an L-Lipschitz function $\tilde{f}: X \to \mathbb{R}$ such that $\tilde{f}|A = f$.
- 2. Let (X, d) be a metric space and $f: X \to [a, b]$ a continuous function. Prove that, for each $i \in \mathbb{N}$, the functions $f_i: X \to \mathbb{R}, g_i: X \to \mathbb{R}$,

$$f_i(x) = \inf\{f(y) + id(x, y) \colon y \in X\},\$$

$$g_i(x) = \sup\{f(y) - id(x, y) \colon y \in X\},\$$

are i-Lipschitz and satisfy

$$a \le f_i(x) \le f_{i+1}(x) \le f(x) \le g_{i+1}(x) \le g_i(x) \le b$$

and

$$\lim_{i \to \infty} f_i(x) = \lim_{i \to \infty} g_i(x) = f(x)$$

for all $x \in X$.

- 3. Prove that a function $u \in \text{Lip}(\Omega)$ is a minimizer if and only if it is both a superminimizer and a subminimizer (see Definition 6.13).
- 4. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain and let $F = (F_1, \ldots, F_n) \colon \Omega \to \mathbb{R}^n$ be a smooth mapping. Furthermore, let $u \colon \overline{\Omega} \to \mathbb{R}$ be a Lipschitz function. Define, for a.e. $x \in \Omega$,

$$\operatorname{div}(uF)(x) = \sum_{i=1}^{n} \frac{\partial(uF_i)}{\partial x_i}(x).$$

(a) Prove that

$$\operatorname{div}(uF) = u \operatorname{div} F + \nabla u \cdot F \quad \text{a.e. in } \Omega.$$

(b) Suppose that u = 0 on $\partial \Omega$ and that F is bounded. Prove that

$$\int_{\Omega} \operatorname{div}(uF) = 0.$$