Department of Mathematics and Statistics Minimal Surfaces Exercise 6 31.10.2014

Return by Thursday, October 30. This time we have only 4 exercises.

1. Let $D = \mathbb{C} \setminus \{z = x + iy \colon x \ge 0\}$ and let $f, g \colon D \to \mathbb{C}$ be analytic functions $f(z) = \frac{1}{z^2}, \quad g(z) = z$

in the Weierstrass-Enneper representation. Try to find out which minimal surface (or a piece of a surface) you will obtain. [Hints: Choose e.g. $z_0 = i$ as a starting point in the integration from z_0 to z. It is helpful to use polar coordinates $z = re^{i\vartheta}$ with $r = e^t$ to express the surface in parameters t, ϑ .]

- 2. Let $g(z) = e^{iz}$ and $f(z) = e^{-iz}$ in the Weierstrass-Enneper representation. Find out which minimal surface you will obtain.
- 3. Compute the total curvature of the catenoid.
- 4. Let $F : \mathbb{R}^n \to \mathbb{R}$ be convex and C^1 -smooth. Prove that

$$F(x) - F(y) \ge \nabla F(y) \cdot (x - y)$$

for $x, y \in \mathbb{R}^n$.