Department of Mathematics and Statistics
Minimal Surfaces
Exercise 5
17.10.2014

Return by Thursday, October 16. This time we have only 3 exercises.

1. Prove that Enneper's surface

$$
F(s, t)=\left(s-s^{3} / 3+s t^{2}, t-t^{3} / 3+t s^{2}, s^{2}-t^{2}\right)
$$

intersects itself (is not embedded) but its unit normal (vector field) is asymptotically vertical.
2. A (part of) torus T can be parametrized by

$$
F\left(x_{1}, x_{2}\right)=\left(\left(a+r \cos x_{1}\right) \cos x_{2},\left(a+r \cos x_{1}\right) \sin x_{2}, r \sin x_{1}\right)
$$

where $a>r>0$ and $0<x_{1}, x_{2}<2 \pi$. Let

$$
X_{i}=\frac{\partial F}{\partial x_{i}} \quad i=1,2 .
$$

Compute:
(a)

$$
N=\frac{X_{1} \times X_{2}}{\left|X_{1} \times X_{2}\right|}
$$

(b) the second fundamental forms $\Pi\left(X_{1}, X_{1}\right)$, $\Pi\left(X_{1}, X_{2}\right)$, and $\Pi\left(X_{2}, X_{2}\right)$, and
(c) the Gauss curvature on T.
3. Let f, g be the Weierstrass-Enneper data for a minimal surface M. That is, $g: D \rightarrow \mathbb{C}$ is meromorphic and $f: D \rightarrow \mathbb{C}$ is analytic in a simply connected domain $D \subset \mathbb{C}$ such that $f g^{2}$ is analytic. Let $z=x_{1}+i x_{2} \mapsto F(z)$ be the parametrization of M given by the Weierstrass-Enneper parametrization and let

$$
X_{i}=\frac{\partial F}{\partial x_{i}} \quad i=1,2
$$

Express the basic geometric quantities of M in terms of f and g. More precisely, prove that
(a)

$$
g_{i j}=\left\langle\frac{\partial F}{\partial x_{i}}, \frac{\partial F}{\partial x_{j}}\right\rangle=\lambda^{2} \delta_{i j},
$$

where

$$
\lambda^{2}=\left(\frac{|f|\left(1+|g|^{2}\right)}{2}\right)^{2}
$$

(b)

$$
X_{1} \times X_{2}=\frac{|f|^{2}\left(1+|g|^{2}\right)}{4}\left(2 \operatorname{Re}(g), 2 \operatorname{Im}(g),|g|^{2}-1\right)
$$

(c)

$$
\left|X_{1} \times X_{2}\right|=\lambda^{2}
$$

(d)

$$
N=\frac{X_{1} \times X_{2}}{\left|X_{1} \times X_{2}\right|}=\frac{1}{|g|^{2}+1}\left(2 \operatorname{Re}(g), 2 \operatorname{Im}(g),|g|^{2}-1\right)
$$

