Return by Thursday, October 9.

1. Compute the components of the metric

$$
g_{i j}=\left\langle\frac{\partial F}{\partial x_{i}}, \frac{\partial F}{\partial x_{j}}\right\rangle, \quad i, j=1,2,
$$

for the following surfaces parametrized by F.
(a) ellipsoid $F\left(x_{1}, x_{2}\right)=\left(a \sin x_{1} \cos x_{2}, b \sin x_{1} \sin x_{2}, c \cos x_{1}\right)$;
(b) elliptic paraboloid $F\left(x_{1}, x_{2}\right)=\left(a x_{1} \cos x_{2}, b x_{1} \sin x_{2}, x_{2}^{2}\right)$;
(c) hyperbolic paraboloid $F\left(x_{1}, x_{2}\right)=\left(a x_{1} \cosh x_{2}, b x_{1} \sinh x_{2}, x_{2}^{2}\right)$;
(d) hyperboloid of two sheets $F\left(x_{1}, x_{2}\right)=\left(a \sinh x_{1} \cos x_{2}, b \sinh x_{1} \sin x_{2}, c \cosh x_{1}\right)$.
2. Consider a surface of revolution parametrized by

$$
F(s, \alpha)=(r(s) \cos \alpha, r(s) \sin \alpha, z(s))
$$

where $\left(r^{\prime}(s)\right)^{2}+\left(z^{\prime}(s)\right)^{2}=1$ for all s. Let

$$
X_{1}=\frac{\partial F}{\partial s} \quad \text { and } \quad X_{2}=\frac{\partial F}{\partial \alpha}
$$

Compute the second fundamental forms $\Pi\left(X_{1}, X_{1}\right), \Pi\left(X_{1}, X_{2}\right)$, and $\Pi\left(X_{2}, X_{2}\right)$.
3. Describe the region of the unit sphere covered by the image of the Gauss map of the following surfaces:
(a) paraboloid of revolution $\left\{(x, y, z): z=x^{2}+y^{2}\right\}$;
(b) hyperboloid of revolution $\left\{(x, y, z): x^{2}+y^{2}-z^{2}=1\right\}$;
(c) catenoid $\left\{(x, y, z): x^{2}+y^{2}=\cosh ^{2} z\right\}$.
4. Consider the parametrized surface (Enneper's surface)

$$
F(s, t)=\left(s-s^{3} / 3+s t^{2}, t-t^{3} / 3+t s^{2}, s^{2}-t^{2}\right)
$$

and let

$$
X_{1}=\frac{\partial F}{\partial s} \quad \text { and } \quad X_{2}=\frac{\partial F}{\partial t}
$$

Show that:
(a) the components of the metric $g_{i j}=\left\langle X_{i}, X_{j}\right\rangle$ are

$$
g_{11}=g_{22}=\left(1+t^{2}+s^{2}\right)^{2}, \quad g_{12}=g_{21}=0
$$

(b) the scalar second fundamental form (subject to a choice of N) are

$$
\begin{aligned}
& h\left(X_{1}, X_{1}\right)=\left\langle\Pi\left(X_{1}, X_{1}\right), N\right\rangle=2, h\left(X_{1}, X_{2}\right)=h\left(X_{2}, X_{1}\right)=0, \text { and } \\
& h\left(X_{2}, X_{2}\right)=-2
\end{aligned}
$$

(c) the principal curvatures are

$$
\kappa_{1}=2\left(1+s^{2}+t^{2}\right)^{-2} \quad \text { and } \quad \kappa_{2}=-2\left(1+s^{2}+t^{2}\right)^{-2}
$$

5. Show that at the origin $(0,0,0)$ of the hyperboloid $\{(x, y, z): z=a x y\}, a>$ 0 , we have $K=-a^{2}$ and $H=0$.
