Return by Thursday, September 25.

1. Let $\bar{\nabla}$ be the standard connection of \mathbb{R}^{m} and $X, Y \in \mathcal{T}\left(\mathbb{R}^{m}\right)$ smooth vector fields. Verify that $\left(\bar{\nabla}_{X} Y\right)_{p}$ depends only on the vector X_{p} and values of Y along a path $\gamma:]-\varepsilon, \varepsilon\left[\rightarrow \mathbb{R}^{m}\right.$, with $\gamma(0)=p$ and $\dot{\gamma}_{0}=$ $\gamma^{\prime}(0)=X_{p}$.
2. Let $M \subset \mathbb{R}^{m}$ be a smooth n-dimensional submanifold of \mathbb{R}^{m} and let $p \in M$. Suppose further that $v_{1}, v_{2} \ldots, v_{n}$ is a basis of $T_{p} M$. Prove that the mean curvature vector at p is given by

$$
H_{p}=\sum_{i, j=1}^{n} g^{i j} \Pi_{p}\left(v_{i}, v_{j}\right)
$$

where $\left(g^{i j}\right)$ is the inverse of the matrix $\left(g_{i j}\right), g_{i j}=\left\langle v_{i}, v_{j}\right\rangle$.
3. Verify that the Riemannian curvature tensor

$$
\begin{gathered}
\bar{R}: \mathcal{T}\left(\mathbb{R}^{m}\right) \times \mathcal{T}\left(\mathbb{R}^{m}\right) \times \mathcal{T}\left(\mathbb{R}^{m}\right) \rightarrow \mathcal{T}\left(\mathbb{R}^{m}\right), \\
\bar{R}(X, Y) Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z
\end{gathered}
$$

vanishes identically.
4. Prove the Gauss equation for smooth submanifolds of \mathbb{R}^{m} :

$$
K(P)|v \wedge w|^{2}=\left\langle\Pi_{p}(v, v), \Pi_{p}(w, w)\right\rangle-\left|\Pi_{p}(v, w)\right|^{2} .
$$

5. Suppose that $M \subset \mathbb{R}^{m}$ is a smooth submanifold, $\gamma: I \rightarrow M$ a smooth path, and V a smooth vector fiels along γ tangent to M (i.e. $V_{t} \in$ $\left.T_{\gamma(t)} M \forall t\right)$. Show that $\left(D_{t} V\right)_{t}$ is the orthogonal projection onto $T_{\gamma(t)} M$ of the ordinary Euclidean derivative $\dot{V}_{t}=V^{\prime}(t)$. Furthermore, show that γ is a geodesic on M (i.e. $D_{t} V \equiv 0$) if and only if its Euclidean accelleration $\ddot{\gamma}$ is everywhere normal to M.
6. Suppose that Ω is an open subset of \mathbb{R}^{2} and $f: \Omega \rightarrow \mathbb{R}$ a smooth function. Let M be the graph of f and N the upward-pointing unit normal vector field on M. Then M is parametrized by graph coordinates $(x, y) \in \Omega$,

$$
(x, y) \mapsto(x, y, f(x, y))
$$

Compute the components of the Weingarten map in graph coordinates, in terms of f and its partial derivatives.

