Department of Mathematics and Statistics Minimal Surfaces Exercise 2 26.9.2014

Return by Thursday, September 25.

- 1. Let $\overline{\nabla}$ be the standard connection of \mathbb{R}^m and $X, Y \in \mathcal{T}(\mathbb{R}^m)$ smooth vector fields. Verify that $(\overline{\nabla}_X Y)_p$ depends only on the vector X_p and values of Y along a path $\gamma:] \varepsilon, \varepsilon [\to \mathbb{R}^m$, with $\gamma(0) = p$ and $\dot{\gamma}_0 = \gamma'(0) = X_p$.
- 2. Let $M \subset \mathbb{R}^m$ be a smooth *n*-dimensional submanifold of \mathbb{R}^m and let $p \in M$. Suppose further that $v_1, v_2 \ldots, v_n$ is a basis of $T_p M$. Prove that the mean curvature vector at p is given by

$$H_p = \sum_{i,j=1}^n g^{ij} \operatorname{II}_p(v_i, v_j),$$

where (g^{ij}) is the inverse of the matrix (g_{ij}) , $g_{ij} = \langle v_i, v_j \rangle$.

3. Verify that the Riemannian curvature tensor

$$R: \mathcal{T}(\mathbb{R}^m) \times \mathcal{T}(\mathbb{R}^m) \times \mathcal{T}(\mathbb{R}^m) \to \mathcal{T}(\mathbb{R}^m),$$

$$\bar{R}(X,Y)Z = \bar{\nabla}_X \bar{\nabla}_Y Z - \bar{\nabla}_Y \bar{\nabla}_X Z - \bar{\nabla}_{[X,Y]} Z$$

vanishes identically.

4. Prove the Gauss equation for smooth submanifolds of \mathbb{R}^m :

$$K(P)|v \wedge w|^2 = \langle \mathbf{II}_p(v,v), \mathbf{II}_p(w,w) \rangle - |\mathbf{II}_p(v,w)|^2.$$

- 5. Suppose that $M \subset \mathbb{R}^m$ is a smooth submanifold, $\gamma: I \to M$ a smooth path, and V a smooth vector fiels along γ tangent to M (i.e. $V_t \in T_{\gamma(t)}M \ \forall t$). Show that $(D_tV)_t$ is the orthogonal projection onto $T_{\gamma(t)}M$ of the ordinary Euclidean derivative $\dot{V}_t = V'(t)$. Furthermore, show that γ is a geodesic on M (i.e. $D_tV \equiv 0$) if and only if its Euclidean accelleration $\ddot{\gamma}$ is everywhere normal to M.
- 6. Suppose that Ω is an open subset of \mathbb{R}^2 and $f: \Omega \to \mathbb{R}$ a smooth function. Let M be the graph of f and N the upward-pointing unit normal vector field on M. Then M is parametrized by graph coordinates $(x, y) \in \Omega$,

$$(x,y) \mapsto (x,y,f(x,y)).$$

Compute the components of the Weingarten map in graph coordinates, in terms of f and its partial derivatives.