Department of Mathematics and Statistics
Minimal Surfaces
Exercise 10
12.12.2014

Return by Thursday, December 11.

In Exercises 1-5 we will prove (step by step) the mean value property for weakly harmonic functions.
Let $\Omega \subset \mathbb{R}^{n}, n \geq 2$, be an open set. A function $u \in L_{\text {loc }}^{1}(\Omega)$ is weakly harmonic if

$$
\begin{equation*}
\int_{\Omega} u(x) \Delta v(x)=0 \quad \forall v \in C_{0}^{\infty}(\Omega) \tag{1}
\end{equation*}
$$

1. Let $x \in \Omega$ and $R>0$ such that $B^{n}(x, R) \subset \Omega$. Choose $\varepsilon \in(0, R)$ and $\varphi \in C^{\infty}(\mathbb{R})$ such that $\operatorname{supp} \varphi \subset(\varepsilon, R)$. Define

$$
r(y)=|x-y|
$$

and
(2)

$$
v(y)=\varphi(r(y))
$$

Prove that:
(a) $v \in C_{0}^{\infty}(\Omega)$,
(b)

$$
\Delta v(y)=\varphi^{\prime \prime}(r(y))+\frac{n-1}{r(y)} \varphi^{\prime}(r(y))
$$

(c)

$$
\varphi^{\prime \prime}(r)+\frac{n-1}{r} \varphi^{\prime}(r)=r^{1-n} \frac{d}{d r}\left(r^{n-1} \varphi^{\prime}(r)\right)
$$

2. Let φ be as above and define

$$
\psi(r)=\frac{d}{d r}\left(r^{n-1} \varphi^{\prime}(r)\right)
$$

(a) Prove that $\psi \in C_{0}^{\infty}((\varepsilon, R))$ and

$$
\int_{\varepsilon}^{R} \psi(r) d r=0
$$

(b) Prove the converse: That is, given $\psi \in C_{0}^{\infty}((\varepsilon, R))$ satisfying

$$
\begin{equation*}
\int_{\varepsilon}^{R} \psi(r) d r=0 \tag{3}
\end{equation*}
$$

find $\varphi \in C_{0}^{\infty}((\varepsilon, R))$ such that

$$
\begin{equation*}
\psi(r)=\frac{d}{d r}\left(r^{n-1} \varphi^{\prime}(r)\right) \tag{4}
\end{equation*}
$$

3. Let $\psi \in C_{0}^{\infty}((\varepsilon, R))$ be an arbitrary function satisfying (3). Then define φ and v as above (in (4) and (2)). Apply (1) with this v and verify that

$$
\begin{equation*}
\int_{\varepsilon}^{R} \psi(r) \omega(r) d r=0 \tag{5}
\end{equation*}
$$

where

$$
\omega(r)=r^{1-n} \int_{\partial B^{n}(x, r)} u d \sigma
$$

and σ is the (normalized) $(n-1)$-dimensional Hausdorff measure.
4. Prove that $\omega(r)$ is constant for a.e. $r \in(\varepsilon, R)$. Note that this constant depends on the chosen $x \in \Omega$. Denote this constant by $\sigma_{n-1} \bar{u}(x)$, where $\sigma_{n-1}=\sigma\left(\partial B^{n}(0,1)\right)$. Verify then that

$$
\bar{u}(x)=\frac{1}{\sigma_{n-1} r^{n-1}} \int_{\partial B(x, r)} u d \sigma
$$

for a.e. $r \in(0, R)$.
5. Prove that

$$
\bar{u}(x)=\frac{1}{m\left(B^{n}(x, R)\right)} \int_{B^{n}(x, R)} u d x
$$

for every $x \in \Omega$ and $R>0$ such that $B^{n}(x, R) \subset \Omega$. Furthermore, prove that \bar{u} is continuous in Ω and $u=\bar{u}$ a.e. in Ω.
6. Let $\mathbb{D} \subset \mathbb{R}^{2}$ be the unit disc and $u \in C\left(\overline{\mathbb{D}} ; \mathbb{R}^{3}\right) \cap W^{1,2}\left(\mathbb{D} ; \mathbb{R}^{3}\right)$. Let $u_{k} \in$ $C^{\infty}\left(\overline{\mathbb{D}} ; \mathbb{R}^{3}\right) \cap W^{1,2}\left(\mathbb{D} ; \mathbb{R}^{3}\right)$ be a sequence of mappings such that $u_{k} \rightarrow u$ uniformly in $\overline{\mathbb{D}}$ and $u_{k} \rightarrow u$ in $W^{1,2}\left(\mathbb{D} ; \mathbb{R}^{3}\right) .{ }^{1}$ For each $k \in \mathbb{N}$, let

$$
\begin{aligned}
u_{k} & =\left(u_{k}^{1}, u_{k}^{2}, u_{k}^{3}\right) \\
\frac{\partial u_{k}}{\partial x} & =\left(\frac{\partial u_{k}^{1}}{\partial x}, \frac{\partial u_{k}^{2}}{\partial x}, \frac{\partial u_{k}^{3}}{\partial x}\right) \\
\frac{\partial u_{k}}{\partial y} & =\left(\frac{\partial u_{k}^{1}}{\partial y}, \frac{\partial u_{k}^{2}}{\partial y}, \frac{\partial u_{k}^{3}}{\partial y}\right) \\
g_{x x}^{(k)} & =\frac{\partial u_{k}}{\partial x} \cdot \frac{\partial u_{k}}{\partial x} \\
g_{x y}^{(k)} & =g_{x y}^{(k)}=\frac{\partial u_{k}}{\partial x} \cdot \frac{\partial u_{k}}{\partial y} \\
g_{y y}^{(k)} & =\frac{\partial u_{k}}{\partial y} \cdot \frac{\partial u_{k}}{\partial y}, \\
g^{(k)} & =\operatorname{det}\left(\begin{array}{ll}
g_{x x}^{(k)} & g_{x y}^{(k)} \\
g_{y x}^{(k)} & g_{y y}^{(k)}
\end{array}\right)
\end{aligned}
$$

Define $g_{x x}, g_{x y}, g_{y x}, g_{y y}$, and g similarly for the mapping u.
Study what happens to the integrals

$$
\int_{\mathbb{D}} \sqrt{g^{(k)}} d x d y
$$

as $k \rightarrow \infty$.

[^0]
[^0]: ${ }^{1}$ See [EG], Theorems 1-3 in Section 4.2.

