Return by Thursday, September 18.

1. Prove that the area functional

$$
\mathcal{F}(u)=\int_{\Omega} \sqrt{1+|\nabla u|^{2}}
$$

on graphs is strictly convex.
2. Prove that the minimal graph equation

$$
\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=0
$$

is equivalent to the equation

$$
\left(1+u_{x}^{2}\right) u_{y y}-2 u_{x} u_{y} u_{x y}+\left(1+u_{y}^{2}\right) u_{x x}=0
$$

3. Verify that we may assume the function u to be radial in Bernstein's example.
4. Prove that

$$
u^{\prime \prime}(r)=-\frac{1}{r}\left(u^{\prime}(r)+u^{\prime}(r)^{3}\right)
$$

is the Euler-Lagrange equation for the radial area functional

$$
2 \pi \int_{\rho}^{R} r \sqrt{1+u^{\prime}(r)^{2}}
$$

5. Prove that Enneper's surface is obtained by choosing $f(z)=1$ and $g(z)=$ z in the Weierstrass-Enneper parametrization. You will not get exactly the same parametrization as in lecture notes but don't worry. Explain the difference.
6. Prove that the standard connection $\bar{\nabla}$ on \mathbb{R}^{m} is torsion-free and compatible with the standard inner product of \mathbb{R}^{m}.
