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Return by Thursday, September 18.

1. Prove that the area functional
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on graphs is strictly convex.

2. Prove that the minimal graph equation
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is equivalent to the equation
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3. Verify that we may assume the function u to be radial in Bernstein’s
example.

4. Prove that
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)
is the Euler-Lagrange equation for the radial area functional
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5. Prove that Enneper’s surface is obtained by choosing f(z) = 1 and g(z) =
z in the Weierstrass-Enneper parametrization. You will not get exactly
the same parametrization as in lecture notes but don’t worry. Explain
the difference.

6. Prove that the standard connection ∇̄ on Rm is torsion-free and compa-
tible with the standard inner product of Rm.


